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Abstract
The severity and harmfulness of a rockburst event are significantly correlated with the scale of rock mass ejection, especially
when the rock mass are not supported. This paper presents a microseismicity-based method for the early estimation of rockburst
occurrence and its potential scale, which is graded according to the volume of the rockburst pit (Rv). The establishment of the
estimation method involves a rockburst database, a grading scheme of the rockburst scale, selection and clustering analysis of
rockburst samples, training of an artificial neural network (ANN) model, and dynamic updating. Firstly, a rockburst database is
established from cases that were collected from the tunnels at depths of 1900–2525 m in the Jinping II hydropower station,
located in southwest China. A grading scheme regarding the rockburst scale is preliminarily proposed on the basis of statistical
analysis. Next, seventy-four rockburst cases, collected in tunnels with microseismic (MS) monitoring from October 2010 to
March 2011, are selected as typical rockburst samples by using cluster analysis, and the relationships between the microseis-
micity and rockburst scale are deeply revealed. Then, three MS parameters, namely, the cumulative number of events, the
cumulative energy, and the cumulative apparent volume, are determined and used together as input indicators for the identifi-
cation of the rockburst scale. The estimation model is trained and cross-validated by the ANN optimized through genetic
algorithm (GA). Finally, the performance of this microseismicity-based method has been validated by thirty-one cases that
occurred in the tunnels with a cumulative length of 1.85 km, excavated from April 2011 to November 2011. The result indicates
that approximately 83.9% of the rockburst cases could be reliably estimated. This study provides a new and feasible method for
rockburst scale estimation, which can be used separately or applied as a complementary approach to current prediction methods
for risk assessment and management of rockbursts in drill-and-blast tunneling.
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Introduction

With the rapid development and utilization of the deep under-
ground space, an increasing amount of rock fracturing phe-
nomena and associated rockburst hazards have emerged

surrounding the excavation of highly stressed rock masses in
deep underground engineering. The rockburst is a sudden re-
lease of elastic energy that has accumulated in rock masses
under tunnel excavation or other disturbances. It can result in
the violent failure and ejection of surrounding rock (Ortlepp
and Stacey 1994; Kaiser et al. 1996; Gong et al. 2019) and
often causes various undesirable consequences in engineering
construction (Liu et al. 2016; Wang et al. 2019; Chinese
standards 2019). Overall, the harmfulness of a rockburst,
which includes the series of consequences and losses, is sig-
nificantly correlated with the scale of the surrounding rock
ejection. The rockburst intensity (none, slight, moderate, in-
tense, or extremely intense) has been used as a common index
to describe the severity of a rockburst. The maximum failure
depth of the rockburst pit is always used as one of the most
important evaluation factors to describe the characteristic and
determine the intensity of a rockburst (Kaiser et al. 1996;
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Chinese standards 2016). The depth of a rockburst is easily
obtainable in engineering practice, and it can reflect the
rockburst scale to some extent. However, two rockbursts with
approximately the same failure depth or the same intensity
may differ in terms of the scale of rock mass ejection.
Alternatively, the volume of the rockburst pit (Rv) could be
adopted to describe the rockburst scale from the three-
dimensional perspective. The larger the Rv is, the larger the
amount of failed rock a rockburst generates.

The prediction and warning of rockburst risk have consti-
tuted a global problem in deep tunneling and mining engineer-
ing. Over the past few decades, microseismic (MS) monitor-
ing techniques that involve three-dimensional monitoring of
micro-cracking events in rocks have been frequently applied
for monitoring rockburst risk for their advantages of continu-
ity, real-time performance, and precision in tracking the de-
velopment process of macroscopic rock failure behaviors. MS
waves released from rock cracking can be captured by using
sensors that are positioned at various azimuths. Then, the time,
location, energy, and type of rock cracks can be gradually
obtained as precursor information of a rockburst, based on
which, an early prediction of impending rockburst risk may
be conducted. The technology was initially applied in deep
mines (Mccreary et al. 1992; Mendecki 1996) for the manage-
ment of rockburst monitoring. Aswegen and Bulter (1993)
presented the application of quantitative seismology to mining
safety in South African gold mines. Afterward, studies regard-
ing the MS monitoring of rockbursts in underground tunnels
were conducted. MS data contain an enormous amount of
information about the rock mechanics and have been well
used to elucidate the rocks’ mechanical properties (Cai et al.
2001). The technology has been widely applied in deep tunnel
engineering for the research and management of rockburst
monitoring. Several advantageous techniques for improving
MSmonitoring in long, deep tunnels were developed by Feng
et al. (2013) and Feng (2017). The analysis on the evolution
properties of important MS parameters, such as MS events,
apparent volume, energy index, theb-value, and so on in the
rockburst development process, is commonly used in the pre-
diction of rockburst risk. Ma et al. (2015) proved that the
microseismic activities are of temporal priority and spatial
consistency with rockburst events through case studies from
the deep-buried tunnels in a hydropower station. Feng et al.
(2015b) found that the evolution of the cumulative number of
MS events, cumulative MS energy, cumulative MS apparent
volume, MS event rate, MS energy rate, and MS apparent
volume rate affect the rockburst intensity significantly. On
the basis, a rockburst warning formula for dynamic warning
of rockburst intensity was proposed, and it has been
successfully applied in engineering practice. Xu et al. (2016)
found that the concentration of MS events before a strainburst
is a significant precursor. Yu et al. (2016) suggested that the
daily maximum microseismic energy can be used as a basis

for estimating the rockburst based on an analysis of hundreds
of rockburst cases. Current researches have shown that
rockburst prediction in tunneling mainly focuses on the posi-
tion, the range of the failure depth, and the intensity according
to the precursory MS information during the development
process of a rockburst, and various degrees of success have
been achieved in plenty engineering practices (Tang et al.
2010; Feng et al. 2012, 2013; Chen et al. 2012; Feng et al.
2015b, 2020; Ma et al. 2015; Xu et al. 2016; Zhang et al.
2018; Hu et al. 2019; Li et al. 2021). The prediction of the
exact volume of the ejected rock mass (Rv) seems very diffi-
cult at present; however, it is of guiding significance in appli-
cations if the occurrence and a probable range of the potential
scale of a rockburst are early estimated. It would further con-
tribute to rockburst risk assessment and management when the
intensity and scale of a potential rockburst are both predict-
able. However, the relation between the microseismicity and
the potential rockburst scale, which are closely interrelated,
has long been unexamined in previous researches. And an
associated method for the dynamic estimation of the rockburst
scale risk has yet to be established.

Based on the deep tunnels with a maximum burial depth of
2525 m in the Jinping II hydropower station, located in south-
west China, this paper aims at presenting a newmethod for the
risk estimation of potential rockburst scale. Firstly, a prelimi-
nary scheme of grading the rockburst scale by the volume of
the rockburst is proposed based on statistical analysis of hun-
dreds of rockburst cases. Then, the relationships between the
microseismic information and rockburst scale are revealed
through a comprehensive statistical analysis. After that, a
new method for utilizing the key MS parameters to estimate
rockburst scale is established, based on the use of an artificial
neural network (ANN) which is optimized by a genetic algo-
rithm (GA). Finally, the dynamic estimation on the rockburst
occurrence and its potential scale in real time during tunnel
excavation is clearly presented via a case analysis. In practice,
multiple cases in the tunnels with a cumulative length of
1.85 km have been analyzed to validate the applicability of
the microseismicity-based method.

Basic information of project and the rockburst
database

Project profile

The Jinping II hydropower project is located on the Yalong
River, in Sichuan Province in southwestern China, as shown
in Fig. 1, which has the largest and deepest water tunnel sys-
tem in the world. The tunnel system consists of four headrace
tunnels, two assistant tunnels, and one drainage tunnel at
depths of between 1900 and 2525 m. The seven tunnels have
the same length of 16.67 km, and they are parallel to each

3606 G.-F. Liu et al.



other. The headrace tunnels have a circular cross section that is
12.4–13 m in diameter, and the drainage tunnel is 7.2 m in
diameter. The stratigraphic rock surrounding the tunnels is
mostly marble formation, which belongs to the Triassic sys-
tem. According to the in situ stress data measured through
hydraulic fracturing technique and back analysis of the in situ
stress field, the maximum and minimum principal stress on
the cross section of the tunnel at the depth of around 2500 m
were approximately 69 and 45 MPa, respectively. The maxi-
mum principal stress was nearly vertical, and the minimum
principle stress was nearly horizontal. According to Chinese
“Standard for engineering classification of rock mass” (Feng
and Hudson 2011), the quality of rock mass is ranked as “II”
and “III,” which are conductive to the construction of under-
ground tunnels. According to the GSI classification (Hoek
et al. 1998), the index of rock mass quality is approximately
60–80.

Mechanical strength of marble

Laboratory uniaxial compression tests for the marbles collect-
ed at the site of the headrace tunnels were performed, and the
results indicated that the failure behavior of the marbles is
characterized by typical brittle splitting, whose slices were
nearly parallel to the axis of the cylinder specimens (see Fig.

2). The uniaxial compression strengths (UCS) of suchmarbles
were mostly 100–140 MPa, and further Brazil disk split tests
showed that the indirect tensile strengths (TS) of the marbles
were mostly 3–6 MPa. The value of the TS/UCS is distinctly
low and the rock mass would be more prone to tensile failure.
According to the strength-stress ratio (less than 2) and rock
properties, there would be significant rockburst risks during
the excavation activities. In fact, rockburst hazards were fre-
quently encountered in the excavation period of these tunnels
(Jiang et al. 2010; Feng et al. 2013; Zhang et al. 2013), which
resulted in a series of unexpected impacts, as the examples
shown in Fig. 3.

Rockburst database

According to field investigations on two assistant parallel tun-
nels that were completed prior to the other five tunnels, 18.5
and 16.3% of the excavated tunnel lengths had been affected
by rockbursts (Shan and Yan 2010). Therefore, to reduce the
subsequent rockburst risk, a high-performance integrated seis-
mic system (ISS) was adopted for rockburst monitoring in the
headrace and drainage tunnels. Details on the MS monitoring
network are available in the relevant reference (Feng et al.
2015a).

Beijing

Shanghai
Xi`an

Loca n of
hydropower sta on

West end East end

Marble Chlorite schist

Sandy-slateFault

Tunnels

16,700m

2,
52

5m

(a) (b)

(c)

No.4 No.3 No.2 No.1

Headrace tunnels

Drainage
tunnel

Assistan� unnels

A B

Marble

45m 60m 60m 60m35m35m

Fig. 1 Location and general layout of the Jinping II hydropower station: a the location of the Jinping project in China, b the geological profile along the
tunnels, and c the layout of the tunnels
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Firsthand information on rockburst cases is essential for the
study of rockburst hazards, which can be well managed by
constructing a database. Therefore, a dynamic rockburst data-
base for four headrace tunnels and the drainage tunnel was
built from the period of early excavation. The rockburst data-
base became richer as more tunnels were excavated, and the
rockbursts that were collected earlier could be analyzed to
establish a related estimation or prediction method for

application in subsequent tunnel construction for rockburst
risk analysis.

A suitable database of rockburst cases must contain the
following rockburst information:

& Rockburst intensity (none, slight, moderate, intense, or
extremely intense)

& Spatiotemporal information on the rockburst and related
geological conditions

Axial strain 
gauge

Radial strain 
gauge

Specimen

(b)(a)

Fig. 2 Result of the typical uniaxial compression test of marble: a the stress-strain curve and b measuring method

Rockburst zone

(a) (b)

(c) (d)

Break of steel arch frame

Rockburst
zone

Damaged opera�on 
pla�orm 

Rockburst on 
working face

Fig. 3 Rockbursts that occurred in the Jinping tunnels and the impacts: a
violent failure of the rock mass around the working face (Feng et al.
2013), b large deformation and breakage of the steel arch frame support

due to a rockburst (Feng et al. 2013), c breaking of the rock mass from the
tunnel wall with high-strength anchor support, and d damage to the op-
eration platform
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& Failure depth and approximate volume of the rockburst pit
& Excavation and rock support information
& MS monitoring data
& In situ image

Method for dynamic estimation
of the rockburst scale

Basic strategy

The occurrence of a rockburst involves a development process
that may last from one to several days or even several weeks.
Before a rockburst occurs, a series of MS events occur around
the zones in which the rockburst will occur. According to the
evolution time after excavation, rockbursts are classified by
the immediate type and the time-delayed type (Chen et al.
2012; Feng et al. 2013). For the immediate rockburst, these
MS events possess temporal, spatial, and energy fractal char-
acteristics that obey objective laws (Feng et al. 2012).
Therefore, it is feasible to estimate the immediate rockburst
risk by employing these MS data. For the time-delayed
rockburst, the studies indicated that the microseismic activity
always has a readily observable “sleep” period in the devel-
opment process (Chen et al. 2012), and early estimation of
such a rockburst is difficult. This study focuses on the imme-
diate rockbursts, which are most commonly encountered
around the working face in tunneling.

According to the characteristics of immediate rockbursts
and the construction process of a drill-and-blast tunnel, the
basic strategy for the dynamic estimation of the potential
rockburst scale during tunnel excavation is proposed, as illus-
trated in Fig. 4. So far, the prediction of the exact occurrence
time of the rockburst has been a difficult task. The proposed
microseismicity-based method provides a strategy for the dy-
namic estimation of the rockburst development process.When
the location of the tunnel working face at time t is determined,
a spatial rockburst estimating volume is obtained. Then, relat-
ed MS information in the estimating volume before t should
be collected as input to a rockburst estimation model (details
will be presented later) to obtain the grade of the rockburst
scale. It is recommended that the estimation be conducted
every day. However, if the microseismicity is violent, the
estimation can be conducted every few hours. The rockburst
estimation method is described in detail below.

The microseismicity within the spatial analysis volume dif-
fers among zones. For estimating the scale of a potential
rockburst, one spatial estimating volume, namely, a limited
spatial zone that covers the potential rockburst object and
the MS activity which is involved in the rockburst develop-
ment process, must be selected. However, there was still not
much information available regarding the location of the

rockburst during the estimation process. Therefore, the size
of this estimating volume should be determined based on the
spatial distribution of the microseismicity and the unloading
zone that is affected by the tunnel excavation. For the Jinping
tunnels, the zone from 30 m behind the working face to 10 m
ahead (length), from 35 m to the left of the tunnel axis to 35 m
to its right (width), and from 50 m above the tunnel axis to 35
m below (height) was selected as the spatial estimating vol-
ume via an analysis of the spatial distribution of the rockbursts
and associated MS information, along with the engineering
characteristics of the tunnels (Feng et al. 2015b), as shown
in Fig. 5.

Grading of the rockburst scale

A rockburst grading scheme of the scale of the failed
rock mass is necessary in this study. There are several
basic principles that should be considered while estab-
lishing a grading scheme of the rockburst scale using
Rv. Firstly, for estimating whether a rockburst will oc-
cur or not, “none” should be included in the list of the
grading scheme. “None” represents a rockburst scale of
zero, namely, no rockburst risk. Secondly, the number
of grades should be suitable. Insufficient grades will
lead to the loss of guiding effectiveness of estimation
results, while too many grades will result in a reduction
of the estimation accuracy. It is recommended to divide
the rockburst scale into five grades. Thirdly, the volume
of a rockburst could vary from very small to very large.
The potential range of the rockburst volume that corre-
sponds to a higher rockburst risk is bigger than the
volume that corresponds to a lower risk. Therefore, the
partitioning of Rv into increments from small to large is
more reasonable.

In addition, for the comparative analysis of the esti-
mation results, it is suggested that the grading of the
rockburst scale corresponds to the rockburst intensity
classification. That is, the threshold value for each scale
grade could be determined based on the volume distri-
bution of rockbursts with different intensities. By
March 31, 2011, 206 rockburst cases were collected
via in situ investigations, and Fig. 6 shows that the
rockburst volume and the associated variation range in-
crease with the rock intensity overall. Herein, the vol-
ume value for the quantile that corresponds to 90% of
the cumulative frequency was selected as the threshold
value of the corresponding grade of rockburst scale.
Thus, a preliminary grading of rockburst scale for the
Jinping tunnel engineering was constructed, which is
presented in Table 1. However, this grading scheme
should be determined according to the scope and nature
of the project and may differ among engineering
projects.
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Selection and statistical analysis of rockburst samples

Selection and cluster analysis of samples

Feng et al. (2015b) found that the following MS parameters
are suitable for expressing the microseismicity for the estima-
tion or warning of the rockburst risk in the rockburst develop-
ment process:

& Cumulative number of MS events (expressed as variable
N below)

& Cumulative MS energy (expressed as E)
& Cumulative MS apparent volume (expressed as V)

& MS event rate (per day or hour and expressed as Ṅ )

& MS energy rate (per day or hour and expressed as Ė )
& MS apparent volume rate (per day or hour and expressed

as V̇ )

Among these sixMS parameters, the cumulative number of
MS events represents the number and density of the
microfractures that arise inside the rock mass. The cumulative
MS energy and cumulative MS apparent volume represent the
strength and size, respectively, of the microfractures.
Combining the factor of time, these parameters can be used
to further interpret the state of the microfractures in the rock
mass.

Among the hundreds of rockburst cases that were collected
by March 31, 2011, seventy-nine cases that occurred in the
zones with MS monitoring and contained all required data
were extensively analyzed. The MS data for these cases can
be found in the work by Feng et al. (2013). The related mi-
croseismic information means the MS activity generated from
the spatial estimating volume (Fig. 5) that was determined at
the moment before the rockburst occurred. These seventy-
nine rockburst cases were divided into five groups according
to the scale grade. Figure 7 presents the distribution of the MS
information for all cases as a parallel coordinated plot for the
graphical presentation of multivariate MS information. The
logarithm of the MS parameters including the cumulative en-

ergy (E), apparent volume (V), energy rate (Ė ), and apparent

volume rate (V̇ ) is adopted in this study for convenient pro-
cessing as it reduces the sizes and volatility of the data.
Naturally, data intersection occurred in a few cases that dif-
fered in terms of rockburst grade. By and large, however, the
value distributions of MS data that corresponded to different
grades of rockburst concentrated on different ranges, thereby
demonstrating a hierarchical structure from low grade to high
grade. Hence, the rockburst scale and the related MS informa-
tion are strongly correlated, which enabled the development of
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a quantitative model for rockburst estimation via further sam-
ple analysis and data processing.

In order to eliminate the exceptional cases that were inev-
itably encountered in the data collection process, a filtering
selection of typical rockburst samples should be conducted.
Cluster analysis, partitioning method for grouping a set of
objects (Everitt et al. 2001), can be used to identify the excep-
tional cases. This method treats the observations in the data as
objects that have locations and distances from each other.
Therefore, the distances between the rockburst cases in the
same scale grade can be calculated and partitioned from close
to far by creating a cluster tree. Most of the samples are close
to each other and more concentrated. Hence, the cases that are
far from the majority could be easily eliminated as exceptional
cases. “Distance” in the cluster analysis is defined by the fol-
lowing formula:

d xK ; xLð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑
p

j¼1
xKj‐xLj
� �2

s

ð1Þ

where d(xK, xL) is the Euclidean distance between the Kth and
the Lth rockburst cases; xKj and xLj denote the values of MS
parameter j in the Kth and Lth cases, respectively; and p is
equal to six, namely, the number of MS parameters.

A nondimensional treatment of these MS data should be
applied prior to the cluster analysis to remove the distance
calculation errors that were generated from the dimensional
differences in the MS parameters. The dimensions of various
MS parameters can be normalized through a regularization
transformation via the following formula (Eq. 2). After the
cluster analysis, the remaining seventy-four cases are selected
as the typical rockburst samples, and the numbers that corre-
spond to scale grades 1 to 5 are 22, 20, 18, 9, and 5, respec-
tively.

X *
ij ¼

X ij−X j;min

X j;max−X j;min
ð2Þ

where i is the sequence number of the rockburst samples (i =
1, 2,… ,74); j is the dimension of the MS data ( j = 1, 2,… ,6,
which correspond to above six MS parameters); Xij denotes

Table 1 Grading of the rockburst
scale based on a statistical
analysis of hundreds of cases
from Jinping tunnels

Grade of the rockburst scale 1 2 3 4 5

Description None Small Medium Large Very large
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the value of MS parameter j of sample i before the normaliza-
tion; X *

ij denotes the normalized value of MS parameter j of
case i; and Xj,max and Xj,min are the maximum and minimum
values of MS parameter j among all cases. The value range of
eachMS parameter among all cases is transformed to [0, 1] via
the normalization.

Statistical regularities of various MS parameters
for the rockburst scale

Based on statistical analysis on these typical samples, the dis-
tribution characteristics of each MS parameter (N, LgE, LgV,

Ṅ , LgĖ, and LgV̇ ) on various grades of rockbursts could be
further illustrated as a statistical box-whisker plot, as shown in
Fig. 8. The following regularities of the MS parameters for the
rockburst scale are identified:

(1) As the scale grade of the rockburst increases, the average
value of the MS data involved in each parameter in-
creases accordingly, and this is an important indicator
for the identification of the rockburst grade. A low-
grade rockburst is observed when the values of all the
MS parameters were small.

(2) The distributions and variations of the MS data for the

parameters Ṅ , LgĖ, and LgV̇ are similar to those of
parameters N, LgE, and LgV, respectively. This was fur-
ther proved by the correlation analysis (Table 2). There
are very high correlations between the three pairs of pa-

rameters: N and Ṅ , LgE and LgĖ, and LgV and LgV̇ .
(The corresponding correlation coefficient for each pair
is approximately 0.9.) Thus, the three parameters could
almost fully reflect the relationships between the
rockburst scale and the microseismicity that are

represented by the six parameters. Since there are a few
more mild outliers that are separated from the regular

distribution of the MS data for parameters such as Ṅ

and LgV̇ , the MS parameters including N, LgE, and
LgV are therefore selected as the final indicators for
rockburst scale estimation.

(3) The interquartile range (the size of the box) and the as-
sociated whisker length could reflect the degree of dis-
creteness of the MS data. For one MS parameter, a smaller
discreteness of the MS data seems more favorable for the
identification of the corresponding rockburst grade. More
important to the identification of the rockburst scale are the
distribution differences of this MS parameter under various
grades. Comparing the overlap ranges in the MS data dis-
tribution regarding different grades of rockburst, the sensi-
tivity of each MS parameter to the same rockburst grade
differs. For instance, a rockburst of scale grade 1 could be
better identified by parameters such as parameterN or LgE,
while a rockburst of scale grade 5 could be better identified
by parameterN or LgV. The indicator function of parameter
LgV for a rockburst of scale grade 3 outperforms the pa-
rameter N or LgE. Therefore, the estimation results should
be combined for application to avoid one-sidedness and the
limitations of using only a single result.

Rockburst estimation model

Model structure and principles of ANN optimization by GA

Based on the above rockburst dataset, a series of mathematical
tools for processing complex nonlinear problems, such as artificial
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neural networks (Simpson 1990), fuzzy set theory (Dubois and
Prade 1980; Adoko et al. 2013), support vector machines (Vapnik
1995), gray systems (Deng 1982), and Bayesian networks
(Cooper and Herskovits 1992), can be employed to establish the
correlation between theMS parameters and the rockburst scale. In
this study, the artificial neural network (ANN) is employed for its
nonlinear transformation and highly parallel computing, which is
optimized by the genetic algorithm (GA). ANN has been success-
fully applied as an efficient tool for solving various types of non-
linear prediction problems in underground rock engineering
(Suchatvee and Herbert 2006; Abbas and Morteza 2010; Zhou
et al. 2015; Chen et al. 2016). The training process of this ANN
model for rockburst scale estimation is described as follows.

A neural network is a network of simple processing ele-
ments (artificial neurons) that can display complex global be-
havior as determined by connections between the processing
elements and their parameters (Simpson 1990). In machine
learning, ANN is a family of statistical learning models that
are inspired by biological neural networks and is used to esti-
mate functions based on many inputs that are typically un-
known. According to the analyses above, an ANN estimation
model that accepts the three MS parameters, namely, N, LgE,
and LgV, as inputs and the grade of the rockburst scale as
output is established, the structure of which consists of four
layers in total, namely, an input layer, two medium hidden
layers, and an output layer, as illustrated in Fig. 9a. The model
can be trained by above sample dataset and further optimized
via the GA to obtain the best structures and initial weights of
the network.

As the basic element in the ANN, the common principle of
the operational model for a single neuron is illustrated in Fig.
9b. The training process of an ANN model typically begins
randomly. In order to reduce the differences between the cal-
culated and expected outputs, a back-propagation algorithm is
used to update the weight values in the ANN training process.
The back-propagation neural network (BPNN) is a multilayer
feed-forward algorithm that is trained via backward error
propagation (Fig. 9c). Furthermore, to overcome the inconsis-
tent and unpredictable performance from trapping in a local
minimum in the conventional back-propagation neural
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Fig. 8 Box-whisker plot of each MS parameter for five grades of rockburst (G-1 to G-5 denote the rockbursts of grades 1 to 5)

Table 2 Correlation coefficient matrix between the MS parameters in
the sample dataset

N LgE LgV Ṅ LgĖ LgV̇

N 1.000 0.601 0.650 0.891 0.552 0.532

LgE 1.000 0.672 0.533 0.982 0.529

LgV 1.000 0.533 0.614 0.913

Ṅ 1.000 0.552 0.555

LgĖ 1.000 0.542

LgV̇ 1.000

Note:The value with bold emphasis means a very high coefficient and
indicates that the two corresponding parameters are highly correlated.
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network, a GA-improved training algorithm (Goldberg 1989)
has been proposed for optimizing the parameter settings, es-
pecially the number of neurons in each hidden layer during the
training process. By employing the GA, the structure
parameters of hidden layers can be evolved in the outer
GA procedures. Then, the initial weights of the model
structure are evolved in the inner GA procedures, where
a back-propagation algorithm is used to evaluate the
fitness of the initial weights. Fitness is an important
indicator which is optimized via natural selection in a
GA. For controlling the evolution process, the fitness of

each generated initial weight set is calculated according
to the difference between the calculated results and the
expected results, which can be expressed by the follow-
ing Equation if the mean square error is used.

fitness ¼ 1

n
∑
n

i¼1
ui−u*i
� �2 ð3Þ

where ui and ui* are the calculated result and the ex-
pected result, respectively, and n is the number of learn-
ing samples.
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Fig. 9 Basic strategy of the ANN
model for rockburst estimation: a
the structure of the four-layer
ANN model, b the operational
model of a single neuron (the ba-
sic element in the ANN), and c the
fundamentals of the back-
propagation neural network
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Training samples and parameter settings

ANN is a data-based method, and the seventy-four cases used
for ANN training were randomly split into two parts: learning
samples and testing samples. The training data should be rep-
resentative and evenly spread over the solution space, and the
ratio of learning samples and testing samples was determined
from the relevant literatures (Zhou et al. 2012; Sen et al. 2012;
Sezer et al. 2014; Chen et al. 2016). In this study, 80% of the
available data (fifty-nine cases) were regarded as the learning
dataset for ANN training of the estimation model, and the
reserved fifteen cases are used as the testing dataset for the
performance evaluation of the ANN-basedmodel. Some cases
used are listed in Table 3 as examples. The data types of the
three input parameters are set as N, LgE, and LgV, respective-
ly. However, the input data typically must be normalized to
avoid unnecessary numerical problems that are caused by di-
mensional differences and to accelerate the convergence of the
neural networks, as expressed in Eq. 2. The output data are set

as follows, [1, 0, 0, 0, 0], [0, 1, 0, 0, 0], [0, 0, 1, 0, 0], [0, 0, 0, 1,
0], and [0, 0, 0, 0, 1], which denote the rockbursts of scale
grade 1, grade 2, grade 3, grade 4, and grade 5, respectively.

A series of parameters must be set in the GA and ANN
procedures. In the outer GA procedure, the hidden layers con-
stitute a feed-forward structure for a general function approx-
imation, and a search space that ranges from 5 to 50 is set for
the determination of the number of hidden layer nodes. The
population size is set to 30, and the crossover probability and
mutation probability are set to 0.7 and 0.1, respectively. In the
inner GA procedure, the number of initial weights changed
according to the values of the structural parameters. The range
setting of the initial weights in the GA optimization proce-
dures can substantially influence the convergence speed and
training accuracy. According to studies from Chen et al.
(2016), a smaller range of initial weights could lead to faster
convergence and higher training accuracy through the analysis
and comparison of several groups of recommended weight
ranges, which include [−0.5, 0.5] (Sietsma and Dow 1999),

Table 3 Learning and testing
samples for ANN training of the
rockburst estimation model

Sample types No. Input: MS monitoring information Output: rockburst grade

N LgE (J) LgV (m3) 1 2 3 4 5

Learning samples 1 1 2.970 4.164 1 0 0 0 0

2 5 3.996 3.279 1 0 0 0 0

3 3 3.616 4.603 1 0 0 0 0

20 8 2.197 2.511 1 0 0 0 0

21 3 3.668 3.609 1 0 0 0 0

22 7 5.269 4.817 0 1 0 0 0

23 9 5.204 3.977 0 1 0 0 0

41 21 3.543 4.732 0 1 0 0 0

42 14 4.818 4.266 0 1 0 0 0

44 23 4.408 4.873 0 0 1 0 0

45 14 5.841 4.622 0 0 1 0 0

59 31 5.008 4.627 0 0 1 0 0

60 17 4.944 4.598 0 0 1 0 0

61 22 5.859 4.895 0 0 0 1 0

62 49 6.373 5.168 0 0 0 1 0

68 42 6.284 5.050 0 0 0 1 0

69 10 6.576 5.081 0 0 0 1 0

73 58 7.094 4.975 0 0 0 0 1

74 63 6.420 5.357 0 0 0 0 1

Testing samples 5 6 4.850 2.735 1 0 0 0 0

17 4 2.390 2.354 1 0 0 0 0

26 7 4.381 4.132 0 1 0 0 0

35 12 3.543 4.223 0 1 0 0 0

49 20 5.589 4.589 0 0 1 0 0

55 11 5.724 4.251 0 0 1 0 0

62 36 6.105 4.956 0 0 0 1 0

72 70 6.147 5.152 0 0 0 0 1
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[−0.25, 0.25] (Gallagher and Downs 2003; Kavzoglu and
Mather 2000), and [−0.1, 0.1] (Rayburn and Klimasauskas
1990). Therefore, the initial weight range in this work is set
as−0.1 to 0.1. In addition, binary coding is adopted and
fitness-proportionate selection is used as the selection strategy
in GA procedures. The fitness function is a standard cost
function. The genetic operators employ uniform hybridization
and uniform mutation.

The learning rate and momentum coefficient are critical for
network convergence and stability. The lower learning rate
will lead to longer learning time, while a lower learning rate
is more conducive to network convergence. Thus, 0.1 is se-
lected as a relatively small value in the training. The momen-
tum coefficient is typically added as a parameter to avoid the
local minimum point in the training process, and it is set to 0.6
herein. The learning and testing termination errors are set to 1
× 10−5 and 1 × 10−8, respectively. More attention should be
paid to whether an overfitting phenomenon occurs under very
small learning and testing errors and a very large number of
allowed iterations.

Training results

Figure 10 presents the optimization results of hidden layer
nodes and the fitnesses of individuals that are involved in
the ANN structure over six generations, based on a GA-
based global search that uses a series of genetic operations
including reproduction, crossover, and mutation. The optimi-
zation was successfully completed with stable convergence
when the GA procedure ran to the second generation (see
Fig. 10h), in which the best fitness value was 0.0835 and the

corresponding optimal numbers of nodes in the two hidden
layers were 37 and 46.

According to the optimized parameters, a final training
process was conducted to establish an estimation model of
the rockburst scale. As shown in Fig. 11, the training process
finished successfully when the testing and learning errors
were minimized without overfitting. Figure 12 compares the
results that were calculated by using the trained ANN model
with the expected results for all samples. The rates of correct
rockburst estimation of the learning samples and testing sam-
ples are 100 and 93.33%, respectively. Hence, this rockburst
estimation model has satisfactory application prospects for
known samples and for unknown samples that are not includ-
ed in the learning process.

k-fold cross validation

The k-fold cross validation (Delen et al. 2005; Sen et al. 2012),
also called rotation estimation, can be employed as an effec-
tive approach to minimize the bias associated with the random
sampling of the training. In k-fold cross validation, the com-
plete dataset (D) is split randomly into k mutually exclusive
subsets (the folds: D1, D2,…, Dk) with approximately equal
size. The classification model is then trained and tested k
times. Each time, it is trained on all but one folds (Di) and
tested on the remaining single fold (Di). Finally, these k indi-
vidual accuracy results from the k-fold cross validation can be
averaged to produce a single result as the overall accuracy. In
this study, 5-fold cross validation was used; namely, the com-
plete seventy-four samples were divided randomly into 5 ex-
clusive subsets. The sizes of samples in the five subsets were
15, 15, 15, 14, and 15, respectively. The class distribution in
the five subsets was nearly the same as the original dataset. In
particular, the testing dataset used in the above modeling was
treated as one of the five subsets (Train-3 in Table 4). The
training like the process as illustrated above was performed for
five times in total, and the cross validation result is shown in
Table 4. It indicated that the accuracies of the models trained

�Fig. 10 Optimization results of hidden layer nodes and the best fitness
value over six generations: a the initial generation, b the first generation, c
the second generation, d the third generation, e the fourth generation, f the
fifth generation, g the sixth generation, and h the evolution of the best
fitness value
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Fig. 11 Error variation of the
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by five times, based on different datasets assigned from ran-
dom sampling, were different and fluctuated in a certain range.
Nevertheless, the testing accuracy of the trained model was at
least more than 85.71 % and reached 90.48 % in terms of the
average value under random sampling. The results showed
that the model trained by these rockburst samples could work
for most cases.

Dynamic updating

Dynamic updating is essential for ensuring the performance of
the estimation method in optimization, and it can be imple-
mented by the following two mechanisms in this method.

As discussed previously, the exact rockburst occurrence
time remains unpredictable. The occurrence of a rockburst
often involves a development process that may last from one
to several days; hence, a dynamic estimation process is always
required. The estimated result at time t indicates that there may
be a rockburst risk nearby at a later time, but rockbursts do not
always occur instantaneously. Regardless of whether this es-
timated result is verified later or not, the rockburst estimated
results should be updated timely when either new monitoring
microseismic information arises in the current rockburst esti-
mating volume or the working face advances. Thus, a series of
updates of the estimate may need to be conducted before a
rockburst occurs, especially for a rockburst that has a long
development process. The estimation process will be

successful if the latest estimation result before the occurrence
of a rockburst matches the actual rockburst scale. A case that
involves the dynamic estimation process will be presented
later to demonstrate the estimation updating process more
clearly.

Once the proposed method has been applied to estimate the
rockburst risk, a new case will emerge. This case should be
added into the rockburst database (as a successful or unsuc-
cessful case). As the rockburst estimation process continues
with the tunnel excavation, the ANN estimation model will be
improved and optimized continuously as the rockburst data-
base updates.

Engineering validation

A case study for dynamic rockburst estimation

As an example, a typical rockburst case that involves the dy-
namic estimation process is firstly presented. On August 9,
2011, the upper benching face of the #3 headrace tunnel was
at chainage K8+728 moving eastward, where the burial depth
was close to 2500 m. The surrounding rock was marble and
characterized by its brittleness and low TS/UCS. There were
some rigid joints without fillings in local positions of the wall,
as shown in Fig. 13. The fresh surrounding rock had good
quality and was ranked as “III,” according to Chinese

Learning samples Tes ng samples
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Fig. 12 Comparison of the calculated and expected results of the learning and testing cases with the trained ANN model

Table 4 The performance of five-fold cross validation for the ANN training of rockburst estimation

Learning dataset Testing dataset Testing accuracy Total mean squared error Squared correlation coefficient

Train-1 Subsets 2–5 Subset 1 86.67% 1.21E-2 0.925

Train-2 Subsets 1 and 3–5 Subset 2 100% 1.06E-5 0.999

Train-3 Subsets 1–2 and 4–5 Subset 3 93.33% 5.41E-3 0.966

Train-4 Subsets 1–3 and 5 Subset 4 85.71% 1.03E-2 0.936

Train-5 Subsets 1–4 Subset 5 86.67% 1.09E-2 0.932

Average 90.48% 7.74E-3 0.952
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“Standard for engineering classification of rock mass,” and
therefore might be subjected to the rockburst hazards.

To estimate the subsequent rockburst risk in that scene, the
rockburst estimating volume was firstly determined, the range
of which along the tunnel axis was the zone from K8+698 to
K8+738, namely, the zone from 30m behind the working face
to 10 m ahead. The spatial distribution and temporal evolution
of the microseismic events that developed in the spatial esti-
mating volume by 24:00 Aug. 9 are presented in Fig. 14a, b,
and Table 5 summarizes the detailed information of the pre-
cursory microseismicity. Then, these MS data were input into
the ANN estimation model that was trained by the cases that
were previously collected, and the output result was [0, 0, 0, 1,
0]; namely, a rockburst with the scale of grade 4 (10~30 m3 in
volume) would occur in the current spatial estimating volume
on August 10, 2011, or later.

Recent development in numerical methods delivers strong
supports for the behavioral study of underground construc-
tions under a set of predefined initial environments like
boundary conditions, in situ stresses, and geometry (Das
et al. 2017). In order to further estimate the potential rockburst
area on the cross section of the tunnel, the elastic analysis of
stress concentration induced by the excavation was performed
through numerical simulation. The FLAC3D program (Itasca,
2012) which has been commonly used in geotechnical engi-
neering field was chosen herein to achieve it. According to
mechanical tests and back analysis, the elastic modulus and
Poisson’s ratio of the rock mass were determined as 19 GPa
and 0.23, respectively. As shown in Fig. 15, the simulation
result indicated that the maximum stress concentration area
induced by the upper benching would occur in the north side-
wall, and the stress redistribution in the south sidewall also
needed attention. Actually, the stress concentration in the two

opposite sidewalls with high rockburst risk was relevant to the
in situ stress orientation.

At 9:10 a.m. on Aug. 10, 2011, an intensive rockburst
occurred in the south sidewall of the tunnel from chainage
K8+700 to K8+728, which made a loud noise on site. The
position of the rockburst on the tunnel cross section matched
the simulation result, and the maximum depth of this
rockburst pit was 1.2 m, as presented in Fig. 14c. According
to an in situ investigations, the volume of the rockburst pit was
approximately 20~25 m3 and graded as 4, which agreed with
the estimated result obtained by the ANN model. As the
rockburst undergoes its development process, which may last
several days, the estimations must be conducted dynamically.
Figure 16 presents the dynamic estimation process of this case
with the tunnel excavation, in which the microseismicity in
the related spatial estimating volume and the associated esti-
mation result, along with actual scenario, were provided. The
results demonstrate that new rockburst estimating volume was
constantly determined with the advance of the working face
(Fig. 16a), and the microseismicity-based estimation result
was updated accordingly (Fig. 16b). The rockburst risk around
the working face increased from grade 2 to grade 3 since
August 4 and remained at grade 3 until Aug. 7. Then, the
excavation stopped, and the working face remained at
chainage K8+728, while the microseismicity in the spatial
estimating volume was still active. According to the estima-
tion at 24:00 on Aug. 9, the rockburst risk near the working
face in the subsequent days (Aug. 10 or later) increased to
grade 4. A rockburst of scale grade 4 occurred approximately
9 h later, and the occurrence and the scale of this rockburst
were well estimated by the precursory microseismicity in the
rockburst estimating volume and an ANN estimation model.

In this case, the estimation could also be conducted every
few hours during the days in which the rockburst risk began
increasing from grade 3 to grade 4. Therefore, it is necessary
to ascertain whether the estimated result of rockburst scale
changes during the last 9 h before the rockburst occurred.
The distribution of all MS events that occurred before 9:10
a.m. on Aug. 10 in the rockburst estimating volume is present-
ed in Fig. 17. Compared with the precursory microseismicity
that was collected by 24:00 on Aug. 9, three new MS events
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Fig. 13 The planar distribution of geological information of the tunnel wall

Table 5 Microseismicity
in the rockburst
estimating volume by
24:00 August 9, 2011

Microseismic parameters

N E (J) V (m3)

Value 45 6.353×104 6.886×104
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occurred in the last 9 h, and the values of corresponding MS
parameters N, E, and V increased to 48, 6.395×104(J), and
6.988×104(m3), respectively. The new calculation demon-
strated that the estimated rockburst scale still remained grade
4 and matched the actual rockburst scenario. In this case, the
dynamic estimation process is presented as a series of estima-
tions that were conducted daily as an example. If the rockburst
estimating volume continues to produce microseismic events

and the rockburst risk is at a high grade, the estimation result
should be updated every few hours instead of once a day to
timely track and manage the rockburst risk.

Validation results of multiple cases

To further validate the applicability of the proposed es-
timation method of the rockburst, thirty-one cases that
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occurred in parts of the #3 and #4 Jinping tunnels,
which had a cumulative length of 1.85 km (3#K5 +
750 ~ K6 +200, 3#K8 + 600 ~ K9 + 000, 4#K7 +
750 ~ K8 + 350, 4#K8 + 600 ~ K9 + 000) and were
excavated after March 31, 2011, under continuous MS
monitoring, have been extensively analyzed and studied.
Figure 18a presents the geological cross section along
the related tunnels and the distribution of these
rockburst cases at various scales. The agreement be-
tween the rockburst estimation results and the actual
situations is presented in Fig. 18b, which shows that
approximately 83.9% of the rockburst cases were esti-
mated reliably. Hence, the proposed estimation method
is highly applicable in most cases. There are five cases
in which the estimated results were inconsistent with the
actual scenarios, indicating that this method still have
some limitations for a few cases, and these cases can
be divided into two types. (1) For case 6, 16, or 25, in
which the estimated scale was one grade higher or low-
er than the actual scale, there was a substantial disper-
sion of the MS parameter values. The microseismicity
of these rockburst cases differed from the statistical
characteristics of rockbursts of that grade but was more
similar to the characteristics of rockbursts with an adja-
cent grade, which hindered the exact identification. (2)
In the monitoring process, for only a few rockbursts
(less than 10%), the associated precursory microseismic-
ities were not readily observed (Feng et al. 2015b; Liu
et al. 2016). This causes the estimated scale of a
rockburst to be far lower than actual value, such as in
cases 22 and 29, as shown in Fig. 18b, in which each
had a low estimated grade (1 or 2) but a relatively high
actual grade (3 to 4). In the modeling process, these
individual cases were often treated as exceptional cases
(as stated above) and easily to be removed by the clus-
ter analysis. For the rockbursts that lack readily observ-
able MS precursors, additional investigation is needed to
improve the interpretation of the rockburst mechanism.

It is noted that the rockburst estimation model was con-
stantly updated and improved as new cases occurred during
the engineering validation process. At last, the rockburst esti-
mation model was updated by 110 cases (sum of 79 and 31) in
total by repeating previous training process which mainly in-
cludes the cluster analysis, ANN training, and k-fold cross
validation. The new five-fold cross validation regarding the
trainings by more samples showed that the updated model
had the average accuracy of 91.30%, which was a bit higher
than that (90.48 %) of the old model concerning seventy-four
cases. Moreover, the differences in the testing accuracies of
the five trainings were further reduced (within 5%); that is to
say, the accuracy fluctuation of the model trained under ran-
dom sampling is decreased as the size of the dataset used for
training increases.

Discussion

Rockburst prediction from both intensity and scale

The rockburst intensity is a common indicator for the evalua-
tion of the failure degree of a rockburst. The rockburst warn-
ing formula, proposed by Feng et al. (2015b), can be used to
calculate the probabilities of rockburst risk with various inten-
sities during the rockburst development process, which is
expressed as follows:

Pi ¼ ∑
n

j¼1
wj⋅Pji ð4Þ

where i is the rockburst intensity (extremely intense, intense,
moderate, slight, or none); j denotes the microseismic param-

eter (N, E, V, Ṅ , Ė, and V̇ ); n is the number of MS parameters
that are used to express the microseismicity; wj is the
weighting coefficient; Pji is the functional relationship be-
tween microseismic parameter j and rockburst intensity i;
and Pi is the probability of rockburst intensity i.

As stated in the “Introduction” section, the failure scale of
surrounding rock caused by a rockburst is typically propor-
tional to the rockburst intensity in most cases, but not all. The
estimation method proposed in this study could be used sep-
arately to focus on the dynamic estimation of the potential
rockburst scale or used as a complementary approach to add
details on the characteristics of the unknown rockburst risk
besides the intensity prediction. Studies on two cases are pre-
sented to demonstrate the advantages of using a combination
of the rockburst estimates from the two perspectives.

Taking the case analyzed in the above section as the first
example, the rockburst warning formula (Eq. 4) was used to
assess the rockburst risk based on the same microseismicity
data that were collected up to Aug. 9. The warning results are
as follows:Pnone =0.0%,Pslight =11.2%, Pmoderate =29.8%, and
Pintensive =59.0%. The estimation result that was calculated via
the ANN model that is presented in this study was grade 4.
Hence, there was a high risk of an intensive rockburst of grade
4 in scale in the rockburst estimating volume (3#K8+698 ~
K8+738) on Aug. 10, 2011, or later. The actual scenarios
described above prove the correctness of both assessment
results.

At 7:10 p.m. on November 21, 2011, another rockburst
occurred in the north sidewall of the tunnel from chainage
3#K8+950 to chainage 3#K8+990 when the working face
advanced to chainage 3#9+000. The position of this rockburst
on the tunnel cross section is consistent with the stress analysis
result which is almost similar to Fig. 15. Figure 19a presents
the spatial distribution and evolution of the MS events that
developed in the rockburst estimating volume up to Nov. 10,
and Table 6 summarizes in detail the information on the pre-
cursory microseismicity. According to Eq. 4, the warning
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results of rockburst intensities are as follows: Pnone =7.4%,
Pslight =11.4%, Pmoderate =7.9%, and Pintensive =73.3%.
Moreover, the output that was calculated by the ANN model
of the rockburst scale was [0, 0, 0, 0, 1]. Based on both results,
an intensive rockburst of grade 5 would occur on Nov. 11,
2011, or later. An in situ investigation showed that the
rockburst that occurred on Nov. 11 was an intensive
rockburst, and the rockburst pit was almost 40 m in length
along the tunnel axis and reached a maximum height of 7 m
and a maximum failure depth of approximately 1.2 m, as

shown in Fig. 19b. The volume of this rockburst pit was ap-
proximately 60 m3 and graded as 5. The actual situations
matched the warning and estimation results.

Thus, two rockbursts that have the same intensity may
cause variable scales of damage (in volume) to the surround-
ing rock. Based on the estimation of the rockburst scale, it is
possible to identify the characteristic differences of rockbursts
that are of the same intensity from the other aspect and to
provide useful details regarding potential rockbursts besides
the intensity.
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Determination of the rockburst scale

In the study, the volume of the rockburst pit (Rv) is proposed
as a new indicator of the failure scale of a rockburst. Rv is a
superior indicator to the failure depth for evaluating the sever-
ity of a rockburst, while it is not easy to obtain. In this study,
the scale data for most rockburst cases were approximated via
mathematical calculation by establishing a rapid geometric
model according to the geometrical shape of the rockburst
pit. Field investigations in the Jinping tunnels showed that
the rockburst pits could be characterized by regular geometric
profiles in various cases. Feng et al. (2013) classified the pro-
files of common pits of rockbursts from the Jinping tunnels

into two types: nest-shaped and V-shaped, as presented in the
examples in Fig. 20a–e. According to relevant studies, the
rockburst pits can be characterized by nest-shaped, V-shaped
(also called triangle-shaped), and bowl-shaped (in a few cases)
geometric profiles (Ewy and Cook 1990; Xu et al. 2002; Gu
et al. 2002). Therefore, an approximate geometrical model that
corresponds to each type of rockburst shape can be construct-
ed, and a simplified mathematical solution can be obtained for
the calculation of the rockburst scale. When using this meth-
od, several aspects should be considered: (1) The simplified
geometrical model may have different forms since it also de-
pends on the profile of the rockburst pit along the axial direc-
tion of a tunnel, for both the vault shape and the V shape. (2)

Table 6 Microseismicity in the rockburst estimating volume by 24:00 on Nov. 20, 2011

Microseismic parameters

N E (×106J) V (×104m3) Ṅ Ė (×104J) V̇ (×103m3)

Value 49 1.426 8.760 1.0 2.909 1.788

01 Oct 2011  11:40:54
07 Oct 2011  02:23:41
12 Oct 2011  17:06:27
18 Oct 2011  07:47:02
23 Oct 2011  22:29:49
29 Oct 2011  13:10:24
04 Nov 2011  03:55:21
09 Nov 2011  18:35:57
15 Nov 2011  09:18:43
20 Nov 2011  23:59:19

Time

Working face 
(K9+000)

Excava�on direc�on

MS event

Tunnel

Rockburst

(a)

Rockburst pit

(b)

Fig. 19 Rockburst estimation
results when the working face
advanced to chainage 3#K9+000:
a spatial distribution of the MS
activity by 24:00 on Nov. 20 and
b the rockburst that occurred in
the north sidewall from chainage
3#K8+950 to 3#K8+990 on
Nov. 21, 2011
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For various unavoidable cases of irregular rockburst pits, the
analysis should be conducted according to the circumstances.
Geometrical simplification can still be used to calculate the
scope of the rockburst scale (the upper and lower limits) by
adopting regular models such as nest-shaped, V-shaped, and
even rectangle-shapedmodels. The types of rockburst pits that
are shown in Fig. 20f could be partitioned for calculation more
than once and measured by an accumulative result. (3) This
calculation method requires data on the length, depth, and
height that are measured from multiple positions of the
rockburst pit. Themore available the data is, the more accurate
the obtained result is. (4) Although this simplified mathemat-
ical method can provide only an approximate result regarding

the rockburst scale, it is sufficient for determining the grade of
the rockburst scale, on which this study focuses.

The scale of a rockburst could also be approximated by
measuring the volume of the rock mass ejected by the
rockburst. This is a crude and relatively straightforward ap-
proach but is not easy to implement if the rock mass ejection
by the rockburst are mixed with rocks that were abandoned
during excavations. In addition, it may suffer from a few de-
ficiencies if the ejected rocks have not been gathered well for
disposal. In recent years, 3D laser scanning technology has
been increasingly used in geotechnical engineering and under-
ground projects. Obtaining 3D models with fine details as
quick, precise, and untouched solutions for the reconstruction

(a) (b)

(d)

(e) (f)

(c)

Fig. 20 Examples of various types of rockburst pits on site. Herein, a–c are long nest-shaped rockbursts, d–e are V-shaped rockbursts, and f is a
rockburst of irregular shape
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of the surfaces of complex objects is convenient. If feasible, it
is an effective solution via which the volume of a rockburst pit
can be accurately identified.

In addition, this study is conducted based on a grading
scheme of rockburst scale that is proposed in this paper. The
accuracy of a rockburst prediction model depends on the grad-
ing scheme, which is a classification issue. The grading
schemes may differ among views, which require further
investigation.

Conclusions

Compared with the previously proposed rockburst prediction
methods, the potential rockburst scale, graded by the volume
of the rockburst pit, is proposed as a new indicator in this
study for analyzing the rockburst risk from a new perspective.
Firstly, the principles for grading of the rockburst scale in the
estimationmethod are discussed, and a grading scheme for the
rockburst scale, composed of five grades, is established based
on a statistical analysis of hundreds of rockburst cases. Then,
the relationships between the MS parameters and the
rockburst scale are extensively analyzed, and the results dem-
onstrated that the average value for each MS parameter in the
development process of the rockburst increases as the
rockburst scale becomes bigger . Thirdly, a new
microseismicity-based method that uses three MS parameters
(the number of MS events, MS energy, and MS apparent
volume) to obtain the potential failure scale of surrounding
rock during rockburst risk estimation is presented, in which
an ANN predictive model optimized by the GA is contained.

According to this proposed method, the rockburst occur-
rence and the grade of its potential scale can be early estimated
in real time during tunnel excavation. Several advantages of
the proposed method are identified: (a) a focused spatial
rockburst estimating volume is used; (b) the precursory mi-
croseismicity in the spatial estimating volume could indicate
the level of rockburst risk and provide important support for
the early estimation of the rockburst scale; (c) the proposed
ANN estimation model is easy to use and well understood,
and the forms of input parameters and output results are sim-
ple; (d) and the estimation result and the proposed estimation
model can be constantly updated.

The proposed estimation model has been trained on hun-
dreds of typical rockburst cases that were collected from the
tunnels at depths of 1900–2525 m in the Jinping II
hydropower station in China. The engineering validation
are carried out in the 1.85-km-long tunnel sections with
continuous MS monitoring, and the result indicates that

approximately 83.9% of rockburst cases could be reli-
ably estimated, which proves the applicability of the
proposed method.

Nomenclatures Rv, the volume of the rockburst pit; MS, microseismic;
N, cumulative number ofMS events; E, cumulative microseismic energy;
V, cumulative microseismic apparent volume; Ṅ , microseismic event
rate; Ė , microseismic energy rate; V̇ , microseismic apparent volume
rate; UCS, uniaxial compression strength; TS, tensile strength; ANN,
artificial neural network; GA, genetic algorithm; BPNN, back-propaga-
tion neural network;Wij, connective weight between neuron i and neuron
j; θi , the neural network threshold; G-1, the rockburst of scale grade 1; G-
2, the rockburst of scale grade 2; G-3, the rockburst of scale grade 3; G-4,
the rockburst of scale grade 4; G-5, the rockburst of scale grade 5; xKj,
value of microseismic parameter j of the Kth case; xLj, value of micro-
seismic parameter j of the Lth case; X *

ij , normalization value of micro-
seismic parameter j of case i; Xij, value of microseismic parameter j of
sample i; Xj, max, the maximum value of microseismic parameter j among
total cases;Xj, min, the minimumvalue ofmicroseismic parameter j among
total cases; ui, the result calculated by the artificial neural model for the ith
learning sample; ui*, expected result for the ith learning sample; Pi, the
probability of rockburst intensity i;wj, weighting coefficient of microseis-
mic parameter j for rockburst warning; Pji, functional relationship be-
tween parameter j and rockburst intensity i
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