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Abstract
Forward prospecting to predict the location of high-risk geological zones during tunnel boring machine (TBM) tunneling is
important for safe and efficient tunnel construction. Seismic forward-prospecting methods are sensitive to geological structures
and have been widely used in areas with relatively well-developed structures, such as mountainous areas with active tectonics.
The Gaoligongshan Tunnel in Yunnan, China, with an advance pilot tunnel, was chosen for this study. The advantages of seismic
while tunneling and active source methods for different detection distances were investigated, and the methods were combined to
determine the geological conditions. An excavate geological study of the tunnel had identified fractured zones ahead of the tunnel
face. Our seismic prospecting results were basically consistent with this conclusion. On the basis of these data, the excavation rate
was slowed and tunnel support was increased; excavation through the area was then able to proceed without incident. The
presence of a pilot tunnel was found to create interference in the seismic signals. We modeled this effect with numerical
simulations. On the basis of the results, we discuss appropriate observation systems for use in tunneling projects with pilot
tunnels.We demonstrate that seismic signals received by geophones coupled to the wall further from the pilot tunnel reflected the
geological conditions for both seismic while tunneling and active source methods. The seismic source should thus be placed on
the tunnel wall further from the pilot tunnel to improve results.

Keywords Tunnel seismicwhile drilling (TSWD) .Active seismicmethod .Observation system . Fracture zone .Gaoligongshan
tunnel

Introduction

The rapid development of infrastructure has created the demand
for a large number of tunnels to meet the needs of industries such
as mining, transportation, and energy transport. Tunnel engineer-
ing thus plays a significant role in these fields. Tunnel boring

machines (TBMs) are widely used because they are faster and
safer than traditional drilling and blasting methods (Yin et al.
2005), thus facilitating efficient and economic tunnel construc-
tion (Petronio and Poletto 2002).

However, TBMs can struggle to adapt to adverse geologi-
cal conditions, sometimes resulting in serious accidents
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(Parise et al. 2008). Sudden malfunctions such as machine
blockage, tunnel collapse, and water or mud inrush can result
in substantial losses (Yin et al. 2005). For example, there were
several incidents of water and mud inrush during tunneling at
the Dul Hasti Hydroelectric Project in India and, as a result, it
led to schedule delays (Vibert et al. 2005). While drilling the
Pinglin Tunnel, a TBM became blocked while passing
through a wide fractured zone early in the project (Barton
2012). Several machine blockage accidents caused a major
300-day delay during the construction of the Shanggongshan
Tunnel in the Yunnan Province of China, and the TBM was
ultimately abandoned in favor of drilling and blasting
(Tiantian et al. 2004). It is thus important for geotechnical
engineers to focus on avoiding such incidents.

Forward prospecting methods are of interest in tunnel
engineering because they can detect geological conditions
ahead of the tunnel face, allowing necessary support mea-
sures to be taken (Price 2008; Chen et al. 2011; Jiao et al.
2015; Yokota et al. 2016; Li et al. 2017). At present, the
forward prospecting methods used for TBM tunnels in-
clude advanced drilling surveys, advance pilot tunneling,
and non-destructive geophysical investigations (Zhang and
Fu 2007). The latter has been widely used because it does
not significantly affect subsequent TBM excavation.
Furthermore, geological results can be obtained rapidly,
which is crucial for construction progress.

Geophysical investigations include electromagnetic
(Mahrer and List 1995), electrical (Denis et al. 2002; Ryu
et al. 2011; Liu et al. 2020a), and seismic (Ashida 2001;
Sattel et al. 1996; Jetschny et al. 2011; Liu et al. 2017)
methods. Seismic prospecting is sensitive to fractured
zones and lithological interfaces, so it is suitable for detecting
tectonic differences (Liu et al. 2018a). Furthermore, the struc-
tures of most TBMs are good metallic conductors, which can
adversely affect electromagnetic detection methods; seismic
methods avoid this problem.

Seismic prospecting methods employ different sources
to produce elastic waves and geophones coupled to the
tunnel sidewall to record reflected signals. These results
are then analyzed to obtain an image of the geological
conditions ahead of the tunnel face. These techniques ei-
ther use conventional seismic sources or the cutting motion
of the cutter head as the signal source. For conventional
seismic methods, active sources, such as explosives or
hammers, produce the seismic waves. These sources pro-
duce relatively weak reflection signals with a wide fre-
quency band. To limit interference from drilling activities,
these conventional seismic surveys are usually conducted
during maintenance work.

In recent years, a new class of seismic prospecting
techniques, named tunnel seismic while drilling (TSWD)
has been developed. This method can adapt to complex
construction environments and the rapid tunneling of

TBM tunnels. This method uses elastic waves that are
generated by the cutter head during excavation instead
of traditional active sources (Petronio and Poletto 2002).
Petronio and Poletto (2002) demonstrated that the TSWD
method provides interpretable seismic data by cross-
correlation of the pilot signal. Previously, the observation
system for the TSWD method uses geophones mounted
on the ground surface or tunnel entrance (Petronio et al.
2007). For deep and/or long tunnels, a pilot sensor was set
on the TBM and geophones were placed along the bored
tunnel.

The subject of our case study is the Gaoligongshan
Tunnel, located in the Yunnan Province of China.
Tunneling in this region is hazardous because fold struc-
tures are widely distributed and fractured zones are well
developed. Here, a pilot tunnel precedes the main tunnel to
obtain advance information as a reference for the excava-
tion of the main tunnel. Recent results from the pilot tunnel
had indicated a wide fracture zone ahead of the tunnel face,
between 20 and 100 m thick, basically consistent with pre-
liminary site investigations. We therefore chose to employ
seismic methods to prospect the geological conditions,
considering that faults and fracture zones are well devel-
oped in this area. We combined two different seismic
methods, with complementary advantages in terms of de-
tection distance, and considered the imaging results com-
prehensively. The TSWD method was used when TBM
tunneling was in progress, and an active seismic source
was used during maintenance; this ensured that there was
no delay to the schedule.

The objective was to combine the two seismic
prospecting methods to predict weathering fracture zones
for the Gaoligongshan Tunnel project. These predictions
could then be used to guide construction, allowing the
TBM to pass safely through the fractured zones.
Following successful excavation results, we used numer-
ical simulations to develop a model to analyze the effect
of the pilot tunnel on the imaging results. These results
could help to prevent accidents in potentially hazardous
tunnel sections.

Background of the study area

The Gaoligongshan Tunnel is located at the western edge
of the Yunnan Plateau. It is relatively long (34.5 km) and
deep (maximum burial depth of 1155 m), under the south-
ern flank of Gaoligongshan Mountain (Fig. 1). Its con-
struction is part of the Da-Rui railway project, which
stretches from Dali station to Ruili station, and it is a
substantial part of the China-Myanmar international rail-
way in Southwest China. Geographically, it is situated at
the junction of the Indian and Eurasian plates. The
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geology of this area is characterized by high geothermal
energy, large ground stresses, and strong earthquakes. The
construction of this tunnel is therefore particularly hazard-
ous, so a pilot tunnel was constructed in advance of and
parallel to the main tunnel to obtain reference informa-
tion. Laterally, the pilot tunnel is approximately 30 m
from the main tunnel, and both tunnel faces are 200 m
deep. Two open TBMs with diameters of 6.39 m and 9 m
were used to drill the pilot and main tunnels, respectively.
This work began in 2017.

Excavation results and on-site conditions are shown in
Fig. 2. The main tunnel mileage is at 224 + 386, and the
pilot tunnel is slightly ahead of the main tunnel, with mile-
age 224 + 316 (Fig. 2d). As of July 10, 2018, 2460 m of the
main tunnel had been excavated. The bedrock comprises
Yanshanian granites and metamorphic rocks. Joints and
fractures in the surrounding rock are well developed, and
local fall-blocks can be observed. A preliminary site inves-
tigation had indicated a wide fractured zone in front of the
tunnel face, approximately 20–100 m thick. However,
there may be deviations in the actual posistion of the zone,
so further detection is required. A longitudinal diagram of
the tunnel, including the position of the expectant fractured
zones, is shown in Fig. 2a. This information, along with
photographs of the tunnel face, suggested that the quality
of the rock ahead of the main tunnel was worse than ex-
pected. There is thus certain risk to the TBM as it passes

through this area, including the possibility of machine
blockages and tunnel collapse.

Methodology

Forward prospecting schedule

The pilot tunnel was used to supplement the available infor-
mation and mitigate the hazardous geological conditions
while crossing the weak stratum. Additionally, we used the
active seismic and TSWD methods to predict the geological
condition prior to TBM excavation. The TSWD method
employed pilot sensors and geophones to collect signals gen-
erated by the TBM cutter head during excavation and rock
crushing, an efficient technique in deep and long tunnels.
The active seismic data were collected during TBM mainte-
nance, using a hammer source and geophones. By combining
thesemethods, project delays were avoided bymaking full use
of the TBM tunneling routine. The two methods are also com-
plimentary in that the TSWD method uses a lower frequency
and higher energy, making it suitable for relatively long-
distance detection, while the active seismic method uses a
higher frequency and lower energy, making it better suited
for relatively short distances. This approach enhances the
quality of the advance information, aiding the safe and effi-
cient construction of the tunnel.

Kunming 

Dali

Ruili Mangshi 
Longling

Baoshan

(c)

(a)

(d)

(b)

Caiyun TBM

1 2 4 8Km

Fig. 1 Engineering overview of the Gaoligongshan Tunnel. a Location overview from Google Maps. b The TBM used in this project (photo from the
China Railway Engineering Equipment Group Co., Ltd.). c The location of the Da-Rui railway project. d The location of Yunnan Province in China
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TSWD method

A suitable layout of the observation system was required to
obtain high-quality data from seismic wave prospecting (Liu
et al. 2018b). To simplify the process of laying out the geo-
phones, we used a different arrangement than is typically
employed (Petronio et al. 2007), shown in Fig. 3. The pilot
sensors (A0) were coupled close to the TBM cutter head,
mainly to record the signals from cutting the rock masses
while drilling. Other geophones (A1–A4, A5–A8) were
installed in a straight line on the side walls behind the cutter
head to record data including noise and reflections from geo-
logic interfaces ahead of the tunnel. The geophones were
spaced 3 m apart, and the minimum distance between geo-
phone A1 and the tunnel face was 14 m. The source, the TBM
cutter head, was considered to be stationary because the dis-
tance the TBM advanced during the acquisition time (a few
tens of centimeters) was considerably shorter than the resolu-
tion of the λ/4 criterion of 10–14 m (Widess 1973; Petronio
et al. 2007).

The original data were recorded for approximately 20 min
using the pilot sensor and geophones while the TBM was in
operation at tunnel mileage 224 + 386 on July 10, 2018. We
processed the data according to the steps listed in Table 1,
analyzed the main effective signals, and designed a processing
program to image reflector planes using the equi-travel time
plane (Ashida 2001). Figure 5c and d shows cross-correlation
data from the TSWD method and the results of our data
processing.

The data processing comprises preprocessing and process-
ing phases. During preprocessing, the files were formatted, the
direct component (DC) was eliminated, and integral transfor-
mations were performed to establish the foundation data for
subsequent calculations and analysis. To reduce the effect of
random noise, we divided the data into several fragments and
stacked them; stacking reduces noise and enhances data co-
herence. Furthermore, we used one-bit normalization, where
the signal is set to 1 or − 1 depending on the original sign, to
normalize the waveform (Shapiro and Campillo 2004). This
suppresses noise, eliminates differences between the sensors,
and improves the signal-to-noise ratio (SNR) (Bensen et al.
2007).

An important step in the formal processing phase was
cross-correlation because ambient construction noise could
easily overwhelm the useful signals (Petronio et al. 2007).
Noise sources such as the jumbolter, belt conveyor, and other
machines could seriously interfere with valid signals recorded
by geophones; we used cross-correlation to extract the useful
signals. This helped to enhance signals and noise that were
shared by two sequences (Poletto and Petronio 2006). After
cross-correlation, we rebuilt the seismic recordings. The re-
maining steps are listed in Table 1; the same procedure was
also used for the processing the traditional active seismic data.

Active seismic prospecting method

We used the active seismic method alongside TSWD to pre-
dict geological condition ahead. The active seismic method is
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Fig. 2 Geology surrounding the tunnel face and a schematic diagram of
the tunnel. a The condition of the surrounding rock in the area that the
tunnel is passing through, according to a preliminary geological survey
(the numerals I–V indicate the grade of surrounding rock, and V refers to

the worst integrity) (the figure is modified from China Railway Eryuan
Engineering Group Co., Ltd.). b The location of main and pilot tunnels. c
Rock surrounding the left side of the shield. d Rock surrounding the right
side of the shield
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illustrated in Fig. 4. To identify the spatial position of the
zones of interest, six hammer points were arranged in a circle
on each side of the wall behind the face (12 points in total, S1–
S12). These were struck three times to obtain high-quality data
after stacking. The hammer points were spaced approximately
1 m apart, and the minimum distance between the source (S1)
and the tunnel face was 13 m. Eight geophones (A1–A8) were
coupled with the side wall behind the hammer points to re-
ceive reflection data from multiple directions, which im-
proved the quality of the imaging results. The geophones were
spaced 3m apart and arranged in straight lines on either side of
the tunnel. Theminimum distance between geophones A1 and
A5 and the tunnel face was 23 m. Figure 5a and b shows the
original data and the result of our data processing. The proc-
essed results are roughly consistent with the results of the
TSWD method.

The original active method data were recorded when the
TBM was tunneling at mileage 224 + 381 on July 11, 2018.
The TBM had progressed 5 m from the previous day when the
TSWD method was employed. The data processing was di-
vided into preprocessing and processing phases. During the
preprocessing phase, the files were formatted, the DC was
eliminated, and integral transformations were performed to
remove low-quality data and correct differences in the ampli-
tude between the detectors. During the processing phase, we
selected direct arrivals to provide a basis for migration imag-
ing and subsequently removed the direct waves. After a spec-
tral analysis, band-pass filtering was used to remove some of
the interference. Deconvolution was then applied to compress
the length of wavelet and increase the resolution. We then

used f-k filtering to eliminate useless signals and enhance
the SNR of deconvolution results (Liu et al. 2017). Finally,
we used the equi-travel time plane to generate an image of the
geological conditions ahead of the tunnel face (Ashida 2001).

Results and analysis

Detection results

As described in the section “Methodology,” we derived im-
aging results ahead of the tunnel face from the TSWD and
active seismic methods (Figs. 6 and 7). Combined with
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Tunnel face

1 m 13 m 3 × 3=9 m

9m
A1 A2 A3 A4

(a)

(b)

(c)

(d)

A0

A0

A5 A6 A7 A8

A5-A8

Fig. 3 Observation system used for the TSWDmethod in the Gaoligongshan Tunnel. a Lateral view of the system. b Installation location of the sources,
the pilot sensor, and geophones. c Photograph of the pilot sensor. d Photograph of one of the geophones

Table 1 Processing flow for the TSWD method with Caiyun TBM

Preprocessing

1. File formatting, DC elimination, data transformation

2. Data divided into several sections and stacked

3. 1-bit processing

4. Cross-correlation with pilot signal

Processing

5. Band-pass filtering

6. Direct-arrivals picking

7. Direct wave removal

8. Deconvolution

9. Wave field separation (f-k filter)

10. Migration (equi-travel time plane)

3557A case study of seismic forward prospecting based on the tunnel seismic while drilling and active seismic...



geological analysis, areas with clear positive or negative re-
flections in these figures represent an interface of a fractured
zone.

Between 224 + 356 and 224 + 326 and between 224 + 315
and 224 + 285, however, two distinct reflection arches can be
observed. Fracture zones in the surrounding rock may there-
fore be discovered in this area. Additionally, between 224 +
272 and 224 + 250 and between 224 + 220 and 224 + 195, two
weaker reflection zones indicate smaller fracture zones. In the
regions between 224 + 286 and 224 + 272, 224 + 246 and
224 + 220, and 224 + 250 and 224 + 220, no obvious central-
ized reflections are visible. However, this is not clear evidence
that there are no microfractures in these sections.

Similar results were obtained using the active seismic
method, although there are some small distinctions. Between
224 + 356 and 224 + 328 and between 224 + 296 and 224 +
268, there are two clear reflection zones, indicating two frac-
tured zones in these areas. Other areas exhibit relatively in-
conspicuous reflections, potentially indicating abnormal
structures. The imaging results and a geological interpretation
for the two methods are listed in Tables 2 and 3.

Along with these results, detailed geological engineering
reports and maps, as well as daily site reports, were examined.
Previous geological studies report that the rock surrounding
the tunnel face is rated IV, and that a large fractured zone may
be encountered after tunneling a further 50 m. The
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Fig. 4 Observation system used
for the active seismic method in
the Gaoligongshan Tunnel. a
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Installation locations. c Source
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surrounding rock in this area is rated V (Fig. 2). A fractured
zone, joints, fracture development, and local fall-blocks were
observed in the rocks surrounding the tunnel face. There is no
clear indication that the quality of the rock ahead of the tunnel
face will improve, in agreement with the preliminary geolog-
ical survey (Fig. 2).

These observations and the imaging results of both survey
methods together indicate that (a) there is a high probability
that there are two fractured zones at approximately 224 + 350
and 224 + 310 ahead of the tunnel face, and (b) the rock mass
elsewhere appears to be of poor integrity.

Recommendations for tunneling construction

The interpretation of the imaging results and geological re-
ports suggests that the predicted fractured zone could have a
negative impact on the TBM tunneling, and that there are
security risks associated with crossing this area, including ma-
chine blockage and tunnel collapse. Reasonable measures,
such as adjusting the driving scheme and strengthening the
support mechanisms, should be taken to ensure safety.

As such, we have made the following recommendations to
the construction company:

(a) Reduce tunneling speed because of poor integrity of the
rock ahead of the tunnel face.

(b) Employ concrete reinforcements in the tunnel section
where the fragmented zone of the fault is expected.
This can prevent or reduce the deformation of the sur-
rounding rock.

(c) Upgrade/strengthen the tunnel supports by erecting more
steel arches (reducing the spacing to 90 cm), laying mesh
reinforcement (to prevent falling rock), and spraying
concrete onto the fragmented zone, while tunneling in
the area where the fractured zone is predicted. This
should reduce the duration that the surrounding rock is
exposed, and will form a stable support system.

Result validation

In line with our predictions, the range of weathering and frac-
ture zones was encountered during subsequent tunnel excava-
tion. The construction company had upgraded the tunnel sup-
port system based on our recommendations, and no major
incidents occurred as the TBM passed through the area.
Once the excavation of this area was complete, a geological
sketch map for the main tunnel in the positive direction of the
tunnel-axis was created. This map was compared to the imag-
ing results of the two methods, as shown in Fig. 8.

There were several fall-block areas and a collapse area (2m×
4 m) at 224 + 370 and 224 + 355, respectively; corresponding
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photographs are shown in Fig. 9a and b. However, the volume of
these geologic bodieswas so small that theywere not observed in
our imaging results. Between 224 + 350 and 224 + 330, fractured
zones were the major geological features (Fig. 8c). These coin-
cide with the positions of the clear reflections shown in the im-
aging results (Fig. 8a and b). Between 224 + 325 and 224 + 290,
a similar fractured zone was described by the map (Figs. 8c and
9c). The imaging survey results indicate a reflection in this re-
gion, but there is a discrepancy between the actual position and
the predicted position, with the latter being further back.
Furthermore, while tunneling at 224 + 250, a fracture was found
running through the dome (Fig. 9d).

There are a number of possible causes of these discrepan-
cies. First, the pilot tunnel has a certain impact on the final
images, particularly for the data collected by the geophones on
the wall closest to the pilot tunnel. Some of the energy from
the source may propagate between the main tunnel and the
pilot tunnel several times, which would disrupt the waves and
interfere with the resulting image if it is not taken into account.
Another possible cause is the low dominant TSWD signal
frequency (60–90 Hz), which may have resulted in a resolu-
tion that was insufficient to detect the narrow gap between the
interfaces. Furthermore, artificial interference from environ-
mental factors at the site during the process of active seismic
prospecting may have caused inaccuracies.

Discussion

Following the analyses of the survey results, we determined
that the SNR of the signals recorded by the geophones and the
quality of the imaging results were affected by the pilot tunnel.
To quantify the effect of the advance pilot tunnel, a numerical
simulation was employed to model seismic records for differ-
ent situations. These included models both with and without a
pilot tunnel, as well as different sources and geophone

positions for the TSWD and active seismic methods.
Appropriate analyses were then performed to identify tech-
niques to guide practical detection work in the future and
produce more accurate predictions for projects with an ad-
vance pilot tunnel.

Numerical simulation methods

The two-dimensional finite difference time domain (2D
FDTD) method with absorbing boundary conditions was
employed. On the basis of the excavation results, we
established a model for our numerical simulation (Fig. 10a
and b), measuring 200 m and 100 m in the x and y directions,
respectively. The relative positions and diameters of the main
and pilot tunnels were based on the Gaoligongshan project.
Three abnormal areas with low seismic velocities were includ-
ed in our model. These areas were 15 m, 30 m, and 5 m wide
and were based on the geological record after excavation. The
velocities of the different areas in the model are shown in
Fig. 10d. For clarity, we have denoted the side of the main
tunnel furthest from the pilot tunnel as the left side, and the
side closer to the pilot tunnel as the right side.

Simulation of the active seismic method

The observation setup for the active seismic method is shown
in Fig. 10b. To record more reflection data, we installed twen-
ty geophones on both walls at 2-m intervals. The geophones
were arranged in a straight line with A1–A20 on the left wall
and with A21–A40 on the right wall. The distance between
the source point and the tunnel face was 45 m (Fig. 10b). A
400-Hz Ricker wavelet was used as the source for the numer-
ical model because the master frequency of the actual test
source was approximately 400 Hz (Fig. 11b).

To assess the effect of the pilot tunnel on the seismic data,
two additional models without abnormal zones, one with a

Table 2 Imaging results and geological interpretation using the TSWD method

Position Imaging results Geological interpretation

224+356–224+326 Large-scale distinct reflection arc Fault-affected zone 30 m wide or a distinct geological interface with collapse

224+315–224+285 Wide anomalous zone Weathered zone in surrounding rock with poor integrity

224+272–224+250 Small anomalous zone Fractured zone with poor integrity

224+220–224+195 Anomalous zone Weathered zone

Table 3 Imaging results and geological interpretation using the active seismic method

Position Imaging results Geological interpretation

224+356–224+330 Clear and serried reflection zone Fractured zone with extremely broken surrounding rock

224+296–224+268 Weaker reflection zone Weathered zone with poor surrounding rock
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pilot and a main tunnel and the other with only a pilot tunnel,
were used in the forward modeling program (Fig. 12a and d).
These models had velocities approximately equal to the first
model. From these, we obtained the interference wave pro-
duced by the pilot tunnel, which was then used to determine
the effective signals from the fractured zones by subtraction
(Fig. 12). The effect of the abnormal zones on the seismic data
was similarly determined. The data from the model with only
the tunnel and pilot tunnel were subtracted from the data from
the model with the tunnel, pilot tunnel, and abnormal zones.
The maximum amplitude was extracted for every trace in
these recordings, so that they could be used as reference am-
plitudes for such signals (Fig. 13).

In subsequent recordings, we removed the interference
from the original data to isolate the data from the abnormal

zones for analysis. When the source was on the left wall, the
arrival time of the reflection from the fractured zone was clear-
ly recorded by the sensors on the left wall. The amplitude of
the effective signals from the fractured zones is much larger
than the amplitude of the interference wave produced by the
pilot tunnel (Fig. 13a). Thus, the pilot tunnel has little impact
on the quality of the original data under these conditions. The
data from the right wall indicate that the wave from the frac-
tured zone and the interference wave are distinct. It was thus
possible to filter out the interference signal with the tau-p
filtering method. The results are shown in Fig. 14c.

When the source was set on the right wall, we observed
clear reflections from the fractured zone at 0.05 s, 0.07 s, and
0.1 s (Fig. 15). The amplitude of the signal from the fractured
zone was again greater than the amplitude of the interference
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wave (Fig. 13c). The data from the sensors on the right wall
indicated that the interference signal was nearly hyperbolic,
but with a different direction than when the source was set up
on the left wall, which was caused by the different positions of
the source (Fig. 15b). Furthermore, although there was signif-
icant wave propagation in the rock between the main tunnel
and the pilot tunnel, the waves could be obstructed as reflec-
tions repeatedly oscillated between the main tunnel and the
pilot tunnel. This process could obscure the signal from the

fractured zone such that it could no longer be extracted
(Fig. 15b).

Simulation of the TSWD method

The data recording for the TSWD method is shown in
Fig. 10a. Geophone placement was the same as for the simu-
lations of the active seismic method. An additional pilot sen-
sor (A0) was placed on the center of the tunnel face. Unlike
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the active seismic method, the source points were combined
with the tunnel face. To simulate the TSWD method realisti-
cally, the pilot signals that were recorded in the field test,
shown in Fig. 11a, were employed as the sources for the sim-
ulation. To simulate multiple cutters working together, we

deployed sources every 2 m along the tunnel face, resulting
in continuous, disordered signals.

The simulation results (Fig. 16) were used to illustrate dif-
ferences in data recorded by the sensors on either side of the
tunnel. The geophones placed on the left wall (Fig. 16c)
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Fig. 12 Process of obtaining interference and primary signals. a
Obtaining the primary signals. b Primary signals from the recording on
the right wall with the source point on the right wall. c Interference signals

from the recording on the right wall with the source point on the right
wall. d Obtaining the interference signals
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clearly recorded waves reflected by the fractured zone,
allowing the interface to be outlined based on their arrival time
and the background velocity.

In contrast, the geophones on the right wall (Fig. 16d) record-
ed many fragments of hyperbolic seismic events, in addition to

reflections of the primary wave between the main tunnel and the
pilot tunnel. These hyperbolic events were made clearer by
subtracting the primary wave (Fig. 16d). Interestingly, we were
unable to completely subtract the primary wave at 0.01 s
(Fig. 16a and c). This could be a result of influence from the
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Fig. 14 Numerical simulation results for the active seismic method with the source point on the left wall. Recording from a the left wall, b the right wall,
and c the right wall after tau-p filtering
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Fig. 15 Numerical simulation results for the active seismic method with the source point on the right wall. Recording from a the left wall and b the right
wall
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cross-correlation operation. Additionally, the amplitudes of the
primary wave and the interference wave were approximately the
same after cross-correlation and were similar to the recording in
Fig. 14b. Hence, the samemethod, tau-p filtering, was employed
to remove the interference wave.

Summary of simulation results

For the active seismic method, our results demonstrate that
seismic recordings from the left wall mirrored the vertical fault
zone interfaces, independent of the source location. When the
sources were set on the left wall, the wave reflected by the fault
zone was quite clear and the effect of the pilot tunnel was
minimal, resulting in a comparatively accurate image. The sig-
nal recorded from the right wall, however, was relatively poor,
as a result of interference from the pilot tunnel. The effect was
even worse when the source was on the right of the tunnel face.
For the TSWD method, the recording from the left wall was
fairly clear after cross-correlation, while the recording from the
right wall required tau-p filtering to remove the interference
wave. This may be an effective method, but it has not been
confirmed using field data.

To provide more accurate prospecting results and prevent
accidents or complications that result in expensive standstills,
therefore, source points could be set up on the left wall to min-
imize the effect of an interference wave. Furthermore, more geo-
phones should be employed on the left wall to collect more data
with a higher SNR, while relatively fewer geophones should be
positioned on the right wall to limit interference from the pilot
tunnel. If the spatial position of geological interfaces must be
determined, a large number of geophones on both walls should

be used. Additionally, for data collected from the right wall, tau-p
filtering, or other filtering techniques, during processing will
yield more accurate results.

Resolution evaluation

The TSWD method and the active seismic method are based
on the principle of elastic waves, similar to seismic tomogra-
phy technology (Shang et al. 2018). The primary difference
between the two methods is the master frequency, and hence a
different resolution. Generally we use 1/4 wavelength as
the theoretical resolution. As mentioned above, the dominant
TSWD signal frequency is 60–90 Hz, and the resolution in
theory is 5.6–8.3 m at a seismic velocity of 2000 m/s. For the
active seismic method, the master frequency is 400 Hz and the
resolution in theory is 1.25 m. Both methods can detect and
locate a single discontinuity. For rock joints (Shang et al.
2012) that are concentrated and widely distributed over a cer-
tain region, the position of an abnormal body can be deter-
mined with this method. If there are two interfaces, both at a
distance between 1 and 5 m, the active source method can
detect both interfaces in theory, while TSWD can only detect
one. Thus, interfaces can be more comprehensively detected
by applying both the active seismic and TSWD methods
together.

Conclusion

Building deep, long tunnels, or tunneling in mountainous ter-
rain, with TBMs remains challenging.Machine blockages and
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Fig. 16 TSWDnumerical simulation results. Original recordings from a the left wall and b the right wall. Recording after removing the primary wave for
c the left wall and d the right wall
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tunnel collapse events are persistent threats. Using combined
seismic prospecting methods would help engineers mitigate
some of these hazards. In this study, TSWD and active seismic
methods were used in combination to predict geological con-
ditions during tunnel construction. Two large fractured zones
were successfully predicted with the technique. On the basis
of recommendations made from our data, the Caiyun TBM
successfully tunneled through the two areas.

The influence of a pilot tunnel on seismic signals was in-
vestigated with numerical simulations. The results demon-
strated that geophones on the tunnel wall further from the pilot
tunnel receive clear primary signals, while geophones on the
wall nearer the pilot tunnel received more interference created
by the pilot tunnel. While designing an observation system,
more geophones should thus be coupled to the far wall than on
the near wall. Additionally, the active seismic source should
also be positioned on the wall further from the pilot tunnel. It
is necessary to verify this proposed improved observation sys-
tem with data from post-excavation studies in the future.
Furthermore, advanced methods such as reverse time migra-
tion and deep-learning inversion can also be used to improve
detection quality in the future studies (Li et al. 2020; Liu et al.
2020b).
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