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Abstract
Rock mass quality assessment has a vital influence on the excavation of tunnels and caverns in rock mass. For this purpose,
extensive field studies, including records of measure-while-drilling data and rockmass quality scores (RQS) from the observation
reports of tunnel faces, have been conducted. In order to predict RQS, three optimized artificial neural network (ANN) models
based on genetic algorithm (GA), particle swarm optimization (PSO), and imperialist competition algorithm (ICA) were devel-
oped. Six parameters of measure-while-drilling (MWD) data and their corresponding RQS constituted 1270 datasets, which were
set as input and output of ANN, respectively. The traditional multiple linear regression (MLR), multiple nonlinear regression
(MNR) statistical model, and ANNmodel were developed as comparative models. Comparison results reveal that PSO-ANN and
ICA-ANN models are capable of predicting RQS with higher reliability than the MLR, MNR, ANN, and GA-ANN models.
Results indicate that PSO-ANN and ICA-ANN models can be used to predict RQS; however, the PSO-ANN model has better
performance.
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Introduction

The assessment of rock mass quality is one of the main issues
that affect the support design and operation cost of tunnel
engineering (Lowson and Bieniawski 2013; Rehman et al.
2018). Inaccurate evaluation may cause the failure of support,
and even lead to irreparable disasters such as water and mud
gushing (Lu and Liu 2009; Li et al. 2017; Han et al. 2020) and
sudden collapse of a tunnel (Shin et al. 1999). Accurate, ef-
fective, and objective rock mass quality assessment can re-
duce the cost and improve safety for tunnel engineering
(Wang et al. 2020b).

In recent decades, the most commonly employed rockmass
quality assessment system is the rock quality designation
(RQD) system (Deere 1964), Norwegian geotechnical

institute Q-system (Q) (Barton et al. 1974), rock mass rating
(RMR) system (Bieniawski 1973), and geological strength
index (GSI) system (Hoek and Brown 1997). In Japan, the
Japan Highway Public Corporation (JH) system, which is
based on the RMR system, is commonly used to quantitatively
evaluate the rock mass quality (Masahiro et al. 1999; Akagi
et al. 2001; Yuji et al. 2006). Similar to other assessment
systems (e.g., Q-system, RMR system, and GSI system),
when the JH system is utilized, the rock mass quality score
(RQS), the scores of tunnel face observation items (e.g., com-
pressive strength, weathering, and spacing of joints), is uti-
lized to evaluate and grade the rock mass quality. Although
these proposed assessment systems are extensively employed
in rock engineering and tunnel engineering, the objectivity of
the evaluation is insufficient due to subjective judgments that
are based on the engineer’s experience observation items
(Palmstrom 2005; Rahmati et al. 2014; Zolfaghari et al.
2015; Wang et al. 2020a).

Over the last decades, with the development of measure-
while-drilling (MWD) technology, this technology can be
used to predict and evaluate rockmass quality in broad tunnel-
ing projects (Lear and Dareing 1990; Nilsen 2015; Navarro
et al. 2018). Aoki et al. (1999) proposed to use MWD data to
evaluate the geological conditions of different drilling depths.
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Yue et al. (2004) used the MWD data to study decomposition
grades in the ground, and confirmed that there is a certain
relationship between the drilling speed and decomposition.
Zhou et al. (2011) developed an unsupervised method to pre-
dict rock types based on MWD data, who verified that the
method is effective in rock type recognition. Leung and
Scheding (2015) adopted a modulation-specific energy to
overcome the low specificity and high variability of existing
MWD methods. Considering hundreds of thousands or more
MWD data, the more efficient prediction method of fitting
these MWD data to a rock mass quality index should be fur-
ther developed.

With the development of artificial neural network (ANN)
technology, the application of ANN in rock mass quality pre-
diction has been successful (Sousa et al. 2012). Xu et al.
(2007) used a back-propagation neural network to assess the
rock mass quality. The RMR values were estimated by
Hussain et al. (2016), who compared ANN technology with
multiple regression technology. Karlaftis (2018) proposed an
ANNmodel to classify rockmasses using data from tunnels in
Greece. The results demonstrated that the ANN can place a
rock mass in the classification ratings very quickly and with
very high accuracy with a smaller number of input variables.
The applicability of ANN technology for an automatic online
classification of rock mass was explored by Erharter et al.
(2019). This research obtained a final classification accuracy
of 74.4%.

ANN is one of the most innovative research fields in the
field of science and engineering, with strong nonlinear map-
ping ability (Mohamad et al. 2012; Momeni et al. 2015).
However, slow learning speed and easy to fall into local min-
ima are some defects of ANN (Armaghani et al. 2018, 2019).
Applications of population-based evolutionary algorithms,
such as genetic algorithm (GA), particle swarm optimization
(PSO), and imperialist competitive algorithm (ICA), are help-
ful to overcome these shortcomings. Using these algorithms to

optimize artificial neural network can solve complex engi-
neering problems and become a research hotspot
(Hasanipanah et al. 2017; Khandelwal et al. 2017; Liu et al.
2020).

Although the feasibility of traditional rock mass quality
assessment system has been identified, research on the devel-
opment of more objective, intelligent, and efficient evaluation
methods require further study. The purpose of this research is
to introduce hybrid ANN technologies, including GA-ANN,
PSO-ANN, and ICA-ANN, to predict the RQS (a rock mass
quality index used in Japan) using the MWD data obtained
from the new Nagasaki tunnel (east) of the West Kyushu line
of the high-speed railway project in Japan. A conventional
regression model and simple ANN model are developed.
Subsequently, three hybrid ANNs are established and com-
pared with the developed regression model and ANN model.
Through comparative analysis, the best model to predict RQS
value is selected. This method can evaluate rock mass quality
accurately, effectively, and objectively.

Case study and dataset collection

Case study

A case study of the new Nagasaki tunnel in Japan was carried
out. Excavation of the tunnel, which connects Nagasaki City
and Isahaya City in southeastern Nagasaki province and cen-
tral Nagasaki province, respectively, commenced in
March 2013. As shown in Fig. 1, the MWD data of this study
were obtained from the Nagasaki tunnel (east), with a length
of 3.885 km, and adjacent to it is the new Nagasaki tunnel
(west), with a length of 3.575 km. The New Austrian
Tunneling Method was employed. The stratum exposed by
this tunnel is mainly volcanic rock. The type of rock passing
from west to east is propylite andesite, hornblende andesite,

Fig. 1 Locations of the new
Nagasaki tunnel (east) high-speed
railway
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tuff breccia, pyroxene andesite, and tuff breccia. Among them,
propylite andesite accounts for the largest proportion, about
3 km. The geological condition of the surrounding rock is
poor, and the measured compressional wave velocity (P wave)
ranges from 2.5 to 3.5 km/s.

During tunnel excavation, the JH method based on the
observation report of tunnel face was adopted to evaluate the
rock mass exposed by the tunnel. This method uses ten rock
parameters of total state, self-stability, intact rock strength,
weathering, joint proportion, spacing of joints, joint aperture,
distribution of joints, ground water inflow, and ground water
deterioration to evaluate the rock mass quality. As shown in
Table 1, when using the JH method for rock mass classifica-
tion, all observation items are configured with four values
from 1 to 4. The sum of each item value is the final rock rating
score, which is called the RQS value. The larger RQS value
represents the worse geological conditions of the tunnel and
the higher support strength is required.

At the same time of tunnel excavation, the MWD data of
drilling in advance working face were recorded. Figure 2
shows the drilling equipment and data collection equipment.
The parameters of MWD data include the penetration rate
(PR), hammer pressure (HP), rotation pressure (RP), feed
pressure (FP), hammer frequency (HF), and specific energy
(SE). The MWD data and the corresponding RQS constitute
one dataset.

Dataset collection and analysis

In the process of tunneling, a total of 1270 datasets were
collected in the new Nagasaki tunnel (east). To model and
predict the RQS value, six parameters of MWD data were
considered the input parameters. The RQS value was calcu-
lated form the observation report of the tunnel face. As shown

in Table 2, descriptive statistics of parameters in the datasets
were carried out. Their visual statistic distribution is provided
in Fig. 3. The statistical results show that the values are exten-
sively distributed. In addition, the correlation between each
MWD parameter and their corresponding RQS was investi-
gated. Figure 4 shows the distribution trend of each MWD
parameter and RQS value along the tunnel chainage. The co-
efficient of determination (R2) of each MWD parameter and
the corresponding RQS were calculated, as shown in Fig. 5.
As shown in Figs. 4 and 5, a positive correlation exists among
RQS and PR, HP, HF, and FE, while a negative correlation
exists for RP and FP. The correlation between RQS and FP is
better than that of other parameters; however, a low correla-
tion factor (R2 = 0.395) is obtained. These results show a low
correlation between MWD data and the RQS. The proportion
of the R2 value obtained by calculating each MWD parameter
in the total R2 value obtained by all parameters is taken as the

Table 1 Grading configuration of each item of rock masses

Item Description Evaluation score

1 2 3 4

1 Total state Stable Rock fall Pressed Collapse or outflow

2 Self-stability Able Gradual instability Unable, primary support Unable, pre-support

3 Intact rock strength, MPa > 100 20–100 5–20 < 5

4 Weathering Unweathered Slightly weathered Moderately weathered Highly
weathered

5 Joint proportion < 5% 5–20% 20–50% > 50%

6 Spacing of joints > 1 m 0.2–1 m 50–200 mm < 50 mm

7 Joint aperture Highly closed Moderately closed Slightly closed Unclosed

8 Morphology of joints Random square Columnar Layered Psammitic

9 Ground water inflow None Slight Moderate Heavy

10 Ground water deterioration Uncorroded Slightly deteriorated Moderate deteriorated Heavily deteriorated

Data-recording device

Drilling rig

Fig. 2 Drilling rig and data-recording device
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influence weight for each MWD parameter on the estimation
of RQS. Through calculation, parameters PR, HP, RP, FP,
HF, and SE respectively obtain weight values of 0.26, 0.01,
0.11, 0.36, 0.05, and 0.20. The results show that parameter FP
has the greatest influence on the estimation of RQS, while
parameter HP has the least. At the same time, a correlation
analysis between input parameters was carried out. The corre-
lation results of the parameters evaluated by power, exponen-
tial, and linear equations are shown in Fig. 6. Considering the
evaluation index of R2, the equation is evaluated. Figure 6
shows a high correlation between PR and SE; however, not
too much R2 value (R2 = 0.739) is obtained. These results
show that the correlation between the parameters is low.
Therefore, using all of the MWD parameters to develop pre-
diction model requires further study. The above analysis
shows that the prediction ability of the model developed with
a single MWD parameter is weak, and the modeling analysis
of multiple MWD parameters needs to be carried out. In the
following sections, the attempt to apply an advanced hybrid
ANN technology to develop the RQS prediction models by
multiple MWD parameters will be carried out.

To reduce the influence of the order of magnitude, the
datasets were normalized by following equation:

X norm ¼ x−xmin

xmax−xmin
ð1Þ

where Xnorm and x are normalized data and measured data,
respectively. xmin and xmax are the minimum value and maxi-
mum value, respectively, of x. The established datasets were
divided into training set and testing set, to establish and eval-
uate the created networks. In order to train these datasets,
Swingler (1996), Looney (1996), and Nelson and
Illingworth (1991) proposed 80%, 75%, and 70–80% of the
whole datasets as training sets respectively. In this study, the
ratio of training set and testing set was set to 8:2, which means
that there are 1016 datasets for training prediction models and
254 datasets for testing the predictability of the developed
prediction model.

Methods

MLR and MNR

Multiple regression analysis is a statistical analysis method
that considers one variable a dependent variable and at least
two other variable independent variables to establish a linear
or nonlinear mathematical relationship among multiple vari-
ables (Knofczynski andMundfrom 2008).Multiple regression
techniques are commonly used to predict the dependent vari-
able by the independent variables. The multiple linear regres-
sion (MLR) equation is , Y = b1x1 + b2x2 +⋯ + bnxn + cwhere
bi is a regression coefficient, xi is the independent variable, Y is
the dependent variable, and c is the intercept. The form of
multiple nonlinear regression (MNR) equation is generally
determined by the relationship between each independent var-
iable and dependent variable.

ANN

ANN was invented by McCulloch and Pitts (McCulloch and
Pitts 1943), who show that, in principle, ANNs can calculate
any arithmetic or logic function. The work of these researchers
is often regarded as the origin of the field of ANN. Rosenblatt
(1958) invented a perceptron network and associated learning
rules and demonstrated its ability of pattern recognition, which
marked the first practical application of ANN. The successful

Table 2 Distribution statistics of
dataset parameters Parameter Description Symbol Mean Min Max Std. dev

Input Penetration rate PR 1.00 0.08 4.44 0.62

Hammer presser HP 14.88 9.41 16.80 0.90

Rotation pressure RP 4.45 0.50 12.50 1.46

Feed pressure FP 3.87 0.90 8.70 1.31

Hammer frequency HF 32.14 0.00 60.00 13.70

Specific energy SE 285.49 34.90 3281.00 212.01

Output Rock mass quality score RQS 23.86 16.00 31.00 4.53

PR HP RP FP HF SE RQS

10-1

100

101

102

103

Input and output parameters

R
an

g
e

Fig. 3 Distribution of the parameters of the input data and output data
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application of a neural network generated substantial interest
in the research of the ANN. However, subsequent research
showed that the performance of the basic perceptron network
was limited. ANNs became a research hotspot in the late
1980s as information processing structures that were inspired
by a biological neural organization structure and operation
mode. An ANN is a system composed of several nodes (neu-
rons). These basic nodes are connected and work in parallel to
complete certain processing tasks. ANNs can automatically
derive general rules by provided pairs of input and output
signals. Using this rule, an ANN can generate prediction out-
put for previously unused signals.

The traditional nonlinear regression technique is a highly
fitting method for general nonlinear functions, which is based
on the nonlinear structure of each element that is linearly com-
bined. As a “universal approximation” technology, ANN is
proved to be an “ Input-Hidden-Output “ hierarchical struc-
ture, which enables it to fit almost all functions (including
nonlinear functions) (Hornik 1991; Back and Chen 2002;

Monjezi et al. 2013). The nonlinear fitting ability of ANN is
mainly attributed to the ability to express the properties of
each element and the organizational structure between ele-
ments. In this research, a typical three-layer neural network
is adopted to developed ANN models (Fig. 7). Figure 7 also
shows the processing flow of ANN, including training stage
and testing stage. In the training stage, the input and output of
training dataset are input to the input layer of ANN in pairs.
Then, the relationship between the training datasets was
established by one training algorithm. The remainder of the
dataset was applied as a testing dataset. The error back-
propagation algorithm is employed as the training algorithm.
This algorithm includes two passes: feed-forward pass and
backward propagation pass. In the feed-forward pass, the out-
put value of network and the weight and biases of network
nodes are random. In the process of the backward propagation
pass, the actual values of the outputs are subtracted from the
calculated values in a previous pass to generate an error signal.
The signal propagates backward to the input layer. According
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to this signal, the weight and biases are adjusted until the set
condition is reached.

GA

The GA was developed by Holland (1992) to find the optimal
solution based on the theory of natural evolution. The genetic
operation of a GA consists of selection, crossover, and mutation.
The GA has many advantages, such as no limit of derivation and
function continuity, and better global optimization ability.
Despite the advantages of the GA, it has numerous problems.
These problems include difficult operator parameter selection,
slow search speed, and dependence on initial population selec-
tion. However, GAs continue to be extensively employed in
approximating nonlinear optimization (Yang 2010). In the first
stage of the general process of GA, the problem solutions are
encoded (e.g., binary encoding or real encoding). In the second
stage, the loop process is executed by randomly generating chro-
mosomes. In the final stage, the fitness of each chromosome is

calculated. Two individuals are selected from the population for
crossover and mutation based on the fitness and selection prob-
ability. A crossover operator is used to randomly select two
chromosomes of the selected individuals to produce the next
generation. A mutation operator is utilized to randomly select
the chromosomes of the new generations for the mutation oper-
ation. The cycle is repeated until the stop condition is satisfied
(Dybowski et al. 1996; Nasseri et al. 2008).

PSO

PSO, which is also a heuristic algorithm, is an evolutionary
computing technology that was proposed by Kennedy and
Eberhart (1995). Particle position and velocity are the core op-
erators of PSO. The motion of particle is the process of individ-
ual search. The movement velocity of each particle is adjusted
according to the historical optimal position of all particles and
the historical optimal position of each particle. The optimal
solution that each particle individually searches is referred to
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as the personal best (pbest), and the optimal individual extre-
mum of all particles is the current global best (gbest). The ve-
locity and particle position were updated (Eqs. (2) and (3)). The
optimal solution is obtained by cyclic iteration.

vnew ¼ wvþ c1r1 pbest−pð Þ þ c2r2 gbest−pð Þ ð2Þ
pnew ¼ pþ vnew ð3Þ
where vnew, v, pnew, p, and w are the new velocity, current
velocity, new position, current position, inertia weight, respec-
tively. r1 and r2 are random numbers that are usually chosen
between [0, 1]. c1 is a positive constant, which is referred to as
the coefficient of self-adjustment, and c2 is a positive constant,
which is referred to as the coefficient of the social component.
pbest and gbest are the best locations for individuals and the best
locations for all particles. PSO has been widely used in civil
engineering, traffic engineering, and other engineering fields.
A detailed description of PSO and its application in different
subjects are provided in the literature (Shi and Eberhart 1998;
Gandomi et al. 2013; Nouiri et al. 2018).

ICA

Inspired by the colonial competition mechanism of imperial-
ism, Atashpaz-Gargari and Lucas (2007) proposed a new
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intelligent optimization algorithm, imperialist competitive al-
gorithm (ICA), in 2007. Different from GA, PSO, and other
swarm intelligence algorithms inspired by biological behav-
ior, ICA is an optimization method inspired by social behav-
ior. ICA is also a population-based optimization algorithm.
ICA divided the country into several empires. Within each

empire, ICA brought the colonies closer to the imperialist
countries through assimilation mechanism. Empire competi-
tion mechanism is an important operator of ICA algorithm.
One or more weakest empires are annexed by the strongest
empires through empire competition mechanism. Through the
annexation of the empire, the exchange of information be-
tween the empires is completed. A more detailed description
of the ICA and its application in different subjects is provided
in the literature (Gazafroudi et al. 2014; Moayedi and Jahed
Armaghani 2018).

Predictive models

MLR and MNR models

MLR and MNR prediction models were developed to corre-
late the RQS by the input parameters of PR, HP, RP, FP, HF,
and SE of the training datasets. Equations (4) and (5) show the
developed MLR and MNR model, respectively. The evalua-
tions of these two models with testing datasets will be carried
out in the “Results and discussion” section.

RQS ¼ 13:082þ 1:845PR

þ 1:034HP−0:142RP−1:717FP

þ 0:032HF−0:001SE ð4Þ

Fig. 8 Flowchart of the optimized artificial neural network by the genetic
algorithm

Table 4 RQS prediction
performance index results of the
GA-ANN for different population
size

No. Population size GA-ANN Rank value Total

Training Testing Training Testing

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 25 0.801 1.975 0.786 2.191 3 3 4 6 16

2 50 0.840 1.787 0.792 2.179 12 12 10 10 44

3 75 0.800 1.991 0.771 2.259 2 2 1 1 6

4 100 0.844 1.765 0.791 2.186 14 14 9 9 46

5 150 0.822 1.882 0.787 2.196 8 7 6 5 26

6 200 0.813 1.924 0.782 2.243 5 5 3 2 15

7 250 0.837 1.804 0.808 2.083 11 11 13 13 48

8 300 0.844 1.770 0.818 2.036 13 13 14 14 54

9 350 0.831 1.825 0.788 2.230 10 10 7 3 30

10 400 0.822 1.879 0.807 2.086 7 8 12 12 39

11 450 0.805 1.970 0.787 2.188 4 4 5 7 20

12 500 0.797 2.003 0.781 2.212 1 1 2 4 8

13 550 0.816 1.913 0.789 2.187 6 6 8 8 28

14 600 0.823 1.859 0.800 2.130 9 9 11 11 40
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RQS ¼ 112:553−0:983 ln PRð Þ
þ 0:004e0:471HP−2:165ln RPð Þ−1:514FP
þ 0:030HF−69:971SE0:037 ð5Þ

In this study, the coefficient of determination (R2), root
mean square error (RMSE), and variance account for (VAF)
indices were calculated to evaluate the prediction capacity of
the developed models, as adopted by Yilmaz (2009) and
Kayabasi (2012):

R2 ¼ 1−
∑
n

i−1
y−y0ð Þ2

∑
n

i¼1
y−y

� �2 ð6Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
∑
n

i¼1
y−y0ð Þ2

s
ð7Þ

VAF ¼ 1−
var y−y0ð Þ
var yð Þ

� �
ð8Þ

where y is the ith measured value, y´ is the ith predicted value,
y is mean value of the y, and n is the number of datasets. High
R2 and VAF values and low RMSE values indicate that the
prediction performance is superior. If the R2 is 1, the RMSE is
0, and the VAF is 100, the model performance will be
excellent.

ANN models

The prediction ANN model was proposed in this section. As
previously mentioned, the Levenberg-Marquardt was
employed as a training algorithm. Difficulty in establishing
ANN model is encountered in selecting the number of hidden
layer and nodes.

Many researchers reported that one hidden layer is usually
enough to solve most problems. Therefore, the number of
hidden layers in this study was set to one. The number of input

and output layer nodes was set to 6 and 1, respectively. The
prediction performance of ANN is mainly affected by the
number of hidden nodes (Kanellopoulos and Wilkinson
1997; Gao 1998;Monjezi et al. 2011) to evaluate the influence
of the number of hidden layer nodes on the performance of the
ANN model. As shown in Table 3, 26 single hidden layer
neural network models and 1–80 hidden layer nodes were
constructed. Index R2 and RMSE were used to evaluate the
prediction performance of the developed models. However, it
is difficult to determine the optimal model. Zorlu et al. (2008)
proposed a simple sorting selection method to deal with the
above difficulties in selecting the optimal model. The princi-
ple of this ranking method is that the highest score means the
best performance. For example, R2 values of 0.542, 0.621,
0.663, 0.724, 0.767, 0.759, 0.759, 0.760, 0.770, 0.796,
0.771, 0.815, 0.825, 0.790, 0.833, 0.819, 0.807, 0.766,
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Fig. 9 Performance comparison
of the GA-ANN models with the
different number of generations

Fig. 10 Flowchart of the particle swarm optimization algorithm
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0.727, 0.788, 0.802, 0.803, 0.810, 0.797, 0.832, and 0.811
were obtained for the training datasets of models 1–26, as
shown in Table 3. The ratings of the models were assigned
1, 2, 3, 4, 10, 5, 7, 8, 11, 18, 6, 20, 21, 12, 25, 24, 13, 14, 9, 23,
15, 17, 19, 22, 26, and 16, respectively. This method was also
used to evaluate RMSE results. Table 3 showed the final
sorting results. Results revealed that the network model no.
15, which had one hidden layer with the neural network ar-
chitecture of 6-15-1, was considered the optimum model for
RQS prediction. According to the results in this table, model
no. 15 representing the network structure of 6-15-1 was se-
lected as the best prediction mode. Additional discussions
regarding the optimum developed model (among 5 runs) is
given in the “Results and discussion” section. It is noted that
different hybrid models of the neural network structure were
developed based on 6-15-1.

GA-ANN models

In this section, the hybrid model GA-ANN was established.
Figure 8 shows the flowchart. The establishment process of
hybrid GA-ANN prediction model for RQS is detailed in the
following section.

GA parameters

Themain parameters of GA are population size (Spop), number
of generations (Ngen-GA), mutation probability, and crossover
probability. The main task of developing hybrid GA-ANN
model is to determine these parameters. The mutation proba-
bility proposed by Momeni et al. (2014) was set to 25%, and
the crossover probability was set to 70%. The roulette method
was used as the selection method of crossover operation.

Table 5 Effect of the swarm size
on the hybrid PSO-ANN in
predicting RQS

No. Swarm size PSO-ANN Rank value Total

Training Testing Training Testing

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 25 0.821 1.878 0.782 2.238 6 7 5 5 23

2 50 0.807 1.952 0.760 2.331 1 1 1 1 4

3 75 0.833 1.822 0.805 2.105 11 10 10 10 41

4 100 0.839 1.793 0.777 2.313 13 13 4 2 32

5 150 0.824 1.878 0.776 2.274 8 8 3 3 22

6 200 0.819 1.899 0.795 2.169 4 4 7 7 22

7 250 0.809 1.943 0.792 2.172 2 2 6 6 16

8 300 0.832 1.820 0.817 2.041 9 12 12 12 45

9 350 0.845 1.751 0.802 2.113 14 14 8 8 44

10 400 0.833 1.822 0.812 2.068 10 11 11 11 43

11 450 0.834 1.824 0.820 2.017 12 9 14 14 49

12 500 0.821 1.884 0.803 2.112 7 6 9 9 31

13 550 0.820 1.891 0.775 2.261 5 5 2 4 16

14 600 0.819 1.906 0.817 2.018 3 3 13 13 32
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Fig. 11 Performance comparison
of the PSO-ANN models with the
different number of generations
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Value of the Spop

Different GA-ANN models with population sizes between 25
and 600 were established to determine the best Spop value, as
shown in Table 4. It should be noted that these models were all
developed with 6-15-1 neural network structure with the max-
imum generation of 100. Similar to the “ANN”model section,
the simple sorting method was used to filter out the best Spop.
The results show that the model no. 8 has the optimal predic-
tion performance. As a result, the best Spop value was selected
as 300.

Value of the Ngen-GA

A number of GA-ANN models were established to determine
the most appropriate Ngen-GA with the maximum number of
1000 and Spop values of 25–600. Other parameters of GA-
ANN used in these models were set as the parameters deter-
mined in the previous steps. As shown in Fig. 9, after 700
generations, the RMSE value no longer continues to decline
and remains constant. Thus, a value of 700 was chosen as the
optimum Ngen-GA.

Network modeling

Using the best parameters obtained in the above steps, the
final hybrid GA-ANN model was established, and 5 times of
training were carried out. The performance index values ob-
tained of the development models are shown in Table 8.
Further comparative analysis will be performed in the
“Results and discussion” section.Fig. 12 Flowchart of the imperialist competitive algorithm

Table 6 RQS prediction
performance index results of the
hybrid ICA-ANN for the different
number of countries

No. No. of country ICA-ANN Rank value Total

Training Testing Training Testing

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 50 0.816 1.913 0.801 2.114 5 5 7 8 25

2 75 0.836 1.801 0.778 2.255 9 10 2 2 23

3 100 0.794 2.019 0.784 2.190 1 2 4 3 10

4 150 0.826 1.867 0.816 2.025 6 6 10 13 35

5 200 0.831 1.833 0.802 2.120 7 7 8 7 29

6 250 0.859 1.667 0.813 2.049 13 13 9 10 45

7 300 0.805 1.967 0.784 2.185 3 3 3 4 13

8 350 0.831 1.819 0.817 2.028 8 8 13 12 41

9 400 0.796 2.020 0.791 2.175 2 1 5 5 13

10 450 0.844 1.758 0.816 2.042 12 12 12 11 47

11 500 0.837 1.809 0.816 2.050 10 9 11 9 39

12 550 0.813 1.929 0.768 2.295 4 4 1 1 10

13 600 0.840 1.786 0.794 2.173 11 11 6 6 34
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PSO-ANN models

Similar to the GA, several researchers have successfully
employed the PSO to optimize ANN (Hoballah and Erlich
2009; Vasumathi and Moorthi 2012; Moayedi et al. 2019).
In this section, the optimal parameters of the hybrid PSO-
ANN model will be determined. Figure 10 shows the flow-
chart of the hybrid PSO-ANN algorithm.

PSO parameters

For PSO algorithm, the main parameters are the coefficient of
velocity equation, number of particles (Npar), number of

generations (Npar-PSO), c1, c2, and w. It should be emphasized
that in the establishment of all PSO-ANN models, the values
of c1, c2, and w were all set to c1 = c2 = 2 and w 0.25 recom-
mended by Kennedy and Eberhart (1997) and Clerc and
Kennedy (2002).

Value of the Npar

Several PSO-ANN models were established with a
range of Npar from 25 to 600 to select the optimal
Npar value, as presented in Table 5. The architecture
of 6-15-1 and maximum generation of 100 were uti-
lized, and the performance indices of R2 and RMSE

Table 7 RQS prediction
performance index results of the
hybrid ICA-ANN for the different
number of imperialists

No. No. of imperialist ICA-ANN Rank value Total

Training Testing Training Testing

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 50 0.818 1.919 0.785 2.196 4 4 1 1 10

2 60 0.833 1.809 0.802 2.146 11 11 10 6 38

3 70 0.820 1.895 0.810 2.068 5 5 14 14 38

4 80 0.833 1.820 0.802 2.100 10 10 11 12 43

5 90 0.854 1.704 0.834 1.940 16 16 16 16 64

6 100 0.796 2.011 0.797 2.147 1 1 4 5 11

7 110 0.824 1.879 0.808 2.075 6 6 13 13 38

8 120 0.853 1.714 0.820 2.041 15 15 15 15 60

9 130 0.852 1.718 0.797 2.182 14 14 5 2 35

10 140 0.830 1.830 0.799 2.126 8 9 7 9 33

11 150 0.836 1.805 0.803 2.116 12 12 12 10 46

12 160 0.840 1.783 0.795 2.156 13 13 3 4 33

13 170 0.814 1.932 0.790 2.179 2 2 2 3 9

14 180 0.825 1.864 0.801 2.114 7 7 9 11 34

15 190 0.832 1.836 0.799 2.141 9 8 8 7 32

16 200 0.814 1.921 0.798 2.130 3 3 6 8 20
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Fig. 13 Performance comparison
of the ICA-ANN models with the
different numbers of decades

2296 J. Liu et al.



were employed to assess the developed models. As
discussed in the previous sections, the performance in-
dexes of the established models were sorted. According

to Table 5, model no. 11 with 450 particles obtained
the highest sorting value. As a result, 450 was deter-
mined to be the best Npar value.

Table 8 RQS prediction
performance index results of the
MLR, ANN, GA-ANN, PSO-
ANN, and ICA-ANN models

Method Stage Model no. R2 RMSE VAF Rank value Total

R2 RMSE VAF

MLR Training 1 0.543 3.024 0.543 1 1 1 1

Testing 1 0.621 2.964 0.615 1 1 1 1

MNR Training 1 0.583 2.889 0.583 1 1 1 1

Testing 1 0.659 2.800 0.654 1 1 1 1

ANN Training 1 0.835 1.817 0.835 3 4 4 11

2 0.835 1.819 0.835 4 3 3 10

3 0.825 1.881 0.825 1 1 1 3

4 0.829 1.850 0.829 2 2 2 6

5 0.836 1.814 0.835 5 5 5 15

Testing 1 0.825 1.997 0.824 3 3 3 9

2 0.840 1.888 0.840 5 5 5 15

3 0.786 2.232 0.779 2 2 2 6

4 0.758 2.341 0.755 1 1 1 3

5 0.833 1.945 0.833 4 4 4 12

GA-ANN Training 1 0.830 1.863 0.828 3 3 3 9

2 0.839 1.792 0.839 5 5 5 15

3 0.833 1.828 0.833 4 4 4 12

4 0.827 1.864 0.826 2 2 2 6

5 0.820 1.899 0.820 1 1 1 3

Testing 1 0.828 1.960 0.827 3 3 2 8

2 0.816 2.038 0.814 1 1 1 3

3 0.840 1.905 0.839 5 5 5 15

4 0.827 1.980 0.827 2 2 3 7

5 0.833 1.932 0.833 4 4 4 12

PSO-ANN Training 1 0.836 1.815 0.835 2 2 3 9

2 0.875 1.584 0.875 5 5 5 12

3 0.868 1.629 0.867 4 4 4 15

4 0.830 1.843 0.830 1 1 2 3

5 0.866 1.638 0.829 3 3 1 6

Testing 1 0.846 1.871 0.829 1 1 1 3

2 0.862 1.782 0.861 5 5 5 9

3 0.855 1.814 0.852 4 4 4 15

4 0.849 1.834 0.849 3 3 3 6

5 0.848 1.864 0.845 2 2 2 12

ICA-ANN Training 1 0.873 1.592 0.873 4 4 4 12

2 0.852 1.723 0.852 2 2 2 6

3 0.876 1.574 0.876 5 5 5 15

4 0.862 1.661 0.862 3 3 3 9

5 0.839 1.796 0.839 1 1 1 3

Testing 1 0.857 1.812 0.855 5 5 5 15

2 0.852 1.816 0.852 3 3 3 9

3 0.845 1.868 0.844 2 2 2 6

4 0.853 1.814 0.853 4 4 4 12

5 0.840 1.899 0.840 1 1 1 3
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Value of the Npar-PSO

Different models with a fixed number of generations of 1000
and Npar in the range of 25–600 were developed to choose the
optimum Npar-PSO. Figure 11 shows that the values of the
RMSE do not change after the Npar-PSO value of 800.
Therefore, the optimum Npar-PSO was set to 800 in this study.

Network modeling

Similarly, the PSO-ANN model was developed with ANN
architecture of 6-15-1 and the obtained optimum parameters
of PSO and was also trained five times. The performance

index values of the final model are recorded in Table 8. The
developed PSO-ANN model will be evaluated further in the
“Results and discussion” section.

ICA-ANN models

The hybrid ICA-ANN model was also established to pre-
dict RQS. The hybrid ICA-ANN algorithm flowchart is
shown in Fig. 12. The establishment process of the hybrid
PSO-ANN prediction model will be discussed in the fol-
lowing sections.

ICA parameters

The main parameters of the ICA are the number of countries
(Ncou), number of imperialists (Nimp), number of decades
(Ndec), β (number greater than 1), θ (random number), and ξ
(positive number less than 1). As previously mentioned, be-
fore establishing the hybrid model, the parameters β, θ, and ξ
were selected as 1.5, π/4, and 0.2, respectively, according to
the recommendations in the literature (Ahmadi et al. 2013;
Marto et al. 2014). The remaining parameters of the Ncou,
the Nimp, and the Ndec are determined in the following
sections.

Value of Ncou

To select the optimal Ncou, different ICA-ANN models were
developed with a range ofNcou from 50 to 600, as presented in
Table 6. The ANN architecture of 6-15-1 and maximum de-
cade of 100 were employed. Table 6 records the ranking re-
sults of the prediction performance indexes of the established
prediction models. The results show that model no. 10, which
represents 450 countries, has the largest ranking value. Thus,
450 was selected as the best Ncou value.

Value of Nimp

In this section, different ICA-ANN models were constructed
with Nimp ranging from 50 to 200 and Ncou of 450. Table 7

Table 9 Results of total
rank values of all stages
of the developed final
models

Method Model no. Total rank

MLR 1 1

MNR 1 1

ANN 1 20

2 25

3 9

4 9

5 27

GA-ANN 1 17

2 18

3 27

4 13

5 15

PSO-ANN 1 10

2 30

3 24

4 13

5 13

ICA-ANN 1 27

2 15

3 21

4 21

5 6

Table 10 Results of the best
performance indices of the
developed final models

Method No. Training Testing Weight

R2 RMSE VAF R2 RMSE VAF R2 of testing

MLR 1 0.543 3.024 0.543 0.621 2.964 0.615 0.133

MNR 1 0.583 2.889 0.583 0.659 2.800 0.654 0.141

ANN 5 0.836 1.814 0.835 0.833 1.945 0.833 0.178

GA-ANN 3 0.833 1.828 0.833 0.840 1.905 0.839 0.180

PSO-ANN 2 0.875 1.584 0.875 0.862 1.782 0.861 0.185

ICA-ANN 1 0.873 1.592 0.873 0.857 1.812 0.855 0.183
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Fig. 14 The coefficient of
determination of measured and
predicted RQS values of five
developed final models for
training and testing datasets. a
MLR. b MNR. c ANN. d The
GA-ANN. e PSO-ANN. f ICA-
ANN
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shows that the no. 5 model representing Nimp = 90 has the
highest sorting value. Therefore, 90 was set as the best Nimp

value.

Value of the Ndec

As shown in Fig. 13, different models were developed to
determine the best Ndec value with the fixed Ndec values of
1000 and the Ncou values between 50 and 600. The results
show that the RMSE values of all models do not continue to
decline after Ndec = 800. Therefore, 800 was determined as the
best Ndec value of ICA-ANN prediction model.

Network modeling

As before with the developments of the GA-ANN and PSO-
ANN models, the final ICA-ANN model was developed with
the ANN architecture of 6-15-1 and determined optimal ICA
parameters. The final ICA-ANN model was also trained five
times. The performance index results of development models
are shown in Table 8. All final prediction models established
above will be discussed in next section.

Results and discussion

In this section, the final model previously developed will be
compared to select the model with the highest predictive
performance. In the last stage of the developing models,
except MLR and MNR models, other models were trained
five times to predict the RQS. The indices of R2, RMSE, and
VAF are utilized to assess the performance of these devel-
oped models.

Table 8 displays the obtained results of the developed
models. Determining the optimal model is not easy because
the results are similar. The method of ranking, as previously
mentioned, was employed to select the optimal model in the
same way. The total rank of all developed models is indicated
in Table 9. The results show that ANNmodel no. 5, GA-ANN
model no. 3, PSO-ANN model no. 2, and ICA-ANN model
no. 1 have a total rank of 27, 27, 30, and 27, respectively,
which indicates the optimal performance. For a certain train-
ing dataset, note that only one prediction formula can be fitted
using the MLRmethod. Therefore, only one prediction model
of the MLR was developed in this study.

Table 10 shows the best performance index results of the
6 final prediction models of MLR, MNR, GA-ANN, PSO-
ANN, and ICA-ANN. The results revealed that the perfor-
mance level of the regression models can be increased from
approximately 0.60 (for MLR and MNRmodels) to approx-
imately 0.83 (for ANN models) based on R2 by developing
the ANN model. The performance level of the ANN model
can be increased based on R2 by developing a hybrid model,

i.e., PSO-ANN and ICA-ANN from approximately 0.83
(for ANN models) to approximately 0.86 (for PSO-ANN
and ICA-ANN models). The measured and predicted RQS
values of RQS obtained by the five optimal models are
shown in Fig. 14. The comparison between measured RQS
and predicted RQS using all five models with testing
datasets are shown in Fig. 15. In addition, the weight of
prediction effect of each model (Table 10) is obtained by
calculating the proportion of R2 value obtained by each
model at the test stage in the total R2 value of all models.
It should be noted that the test stage is an important part of
the evaluation of the prediction performance, and it should
be emphasized that the test stage is an important part of the
evaluation of the prediction effect and the change trend of
the three evaluation indexes (R2, RMSE, and VAF) is basi-
cally the same. Therefore, only the R2 value of the test stage
is considered when calculating the weight value of each
model. Table 10 shows that MLR, MNR, ANN, GA-ANN,
PSO-ANN, and ICA-ANN obtain weight values of 0.133,
0.141, 0.178, 0.180, 0.185, and 0.183 respectively. The re-
sults reveal that the hybrid models of PSO-ANN and ICA-
ANN are better than the MLR, MNR, ANN, and GA-ANN
models. When both the training dataset and the testing
dataset are considered, R2 values of 0.875 and 0.862 and
R2 values of 0.873 and 0.857 for the PSO-ANN technique
and ICA-ANN technique, respectively, indicate that the
PSO-ANN model has slightly higher performance com-
pared with other models.

The comparison results of learning rates of ANN, GA-
ANN, PSO-ANN, and ICA-ANN algorithms were shown in
Fig. 16. ANN obtains the lowest RMSE value of 0.292
when epochs are about 160 steps. However, GA-ANN,
PSO-ANN, and ICA-ANN got the lowest RMSE values
when epochs are 80 steps, which are 0.212, 0.193, and
0.201, respectively. The results show that GA, PSO, and
ICA can improve the learning rate of ANN and get better
training effect.
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Fig. 16 Comparison of learning rates of ANN, GA-ANN, PSO-ANN,
and ICA-ANN algorithms at the training stage

2301Optimized ANN model for predicting rock mass quality ahead of tunnel face using measure-while-drilling data



Furthermore, a statistical analysis of tunnel faces with
large prediction error was carried out to reveal the reasons
for low prediction performance, as shown in Table 11.
Measured and predicted RQS, prediction error, and the
number of corresponding testing datasets in the top 10 with
large prediction error of the five final optimal models are
recorded in this table. Tunnel faces 1–6 of testing datasets
433, 27, 652, 152(155), 503, and 324 achieved low predic-
tion performance in at least three prediction models. The
detailed geological description site photos of tunnel faces
1–6 are shown in Fig. 17. As displayed in Fig. 17, these
tunnel faces have the geological characteristics of relatively
developed cracks and ground water heavy deterioration. For
example, many large cracks exist in the tunnel faces 1–6;
large sheeting zones exist in tunnel faces 1, 4, 5, and 6; and
water inrush deterioration is relatively serious in tunnel
faces 3–5. The findings conclude that the MWD data of a
single borehole cannot sufficiently characterize the com-
plex rock mass quality. Therefore, when the complex rock
mass is continuously exposed in the tunnel excavation, the
application of more than one borehole for advance detection
is suggested to improve the prediction accuracy.

Finally, it should be noted that the best prediction model is
determined as PSO-ANN hybrid model, and the correspond-
ing ANN structure is 6-15-1. In this structure, all six variables
were taken as input variables. According to the results of rel-
ative influence of each input variable on RQS in the “Dataset
collection and analysis” section, the weight values of 0.26,
0.01, 0.11, 0.36, 0.05, and 0.20 were obtained for PR, HP,
RP, FP, HF, and SE respectively. In practical application, the
weight values can be used to determine the final required input
variables.

Table 11 Predicted large error values (top ten) of testing stages of the
developed final models

Method Testing
dataset no.

Measured
RQS

Predicted
RQS

Error Tunnel
face no.

MLR 997 16 24.14 8.14

5 19 26.06 7.06

524 27 20.10 6.90

9 19 25.88 6.88

482 21 27.81 6.81

155 30 23.38 6.62 4

433 25 18.50 6.50 1

166 30 23.74 6.26

523 27 20.87 6.13

15 19 24.72 5.72

MNR 5 19 27.88 8.88

9 19 27.14 8.14

524 27 19.91 7.09

997 16 22.81 6.81

523 27 20.25 6.75

11 19 25.73 6.73

27 19 25.41 6.41 2

15 19 25.36 6.36

529 27 20.84 6.16

ANN 433 25 34.57 9.57 1

652 25 16.88 8.12 3

759 23 16.73 6.27

503 28 22.01 5.99 5

27 19 24.64 5.64 2

559 29 24.06 4.94

152 30 25.20 4.80 4

728 22 17.35 4.65

329 26 30.51 4.51

1095 21 25.08 4.08

GA-ANN 433 25 17.18 7.82 1

112 27 20.62 6.38

27 19 24.32 5.32 2

425 23 27.73 4.73

927 16 20.67 4.67

529 27 22.34 4.66

324 24 28.41 4.41 6

652 25 20.68 4.32 3

991 16 20.27 4.27

890 19 15.08 3.92

PSO-ANN 503 28 20.11 7.89 5

759 23 16.74 6.26

27 19 24.92 5.92 2

991 16 21.35 5.35

652 25 19.66 5.34 3

560 29 23.69 5.31

1009 21 16.16 4.84

121 26 21.90 4.10

Table 11 (continued)

Method Testing
dataset no.

Measured
RQS

Predicted
RQS

Error Tunnel
face no.

497 28 24.05 3.95

324 24 27.91 3.91 6

ICA-ANN 152 30 22.06 7.94 4

433 25 17.10 7.90 1

652 25 18.44 6.56 3

27 19 24.52 5.52 2

503 28 23.52 4.48 5

1219 25 20.57 4.43

324 24 28.08 4.08 6

154 30 25.96 4.04 4

1221 25 21.02 3.98

779 24 20.16 3.84
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Conclusion

The accurate/objective prediction of the rock mass quality
score (RQS) utilizing measure-while-drilling (MWD) data
is one of the greatest challenges in tunneling operations. An
advantage of artificial neural network (ANN) methods is
that they can address complex multivariate nonlinear map-
ping problems. However, it is required to overcome the
shortcomings of slow training speed and minimum layout
through optimization ANN, so as to produce more reliable
results in the prediction of RQS. Therefore, three optimiza-
tion algorithms of the genetic algorithm (GA), particle
swarm optimization (PSO), and imperialist competition al-
gorithm (ICA) were employed to develop hybrid models of
GA-ANN, PSO-ANN, and ICA-ANN to predict the RQS
value. For this purpose, 1270 datasets, including six
measure-while-drilling parameters of penetration rate
(PR), hammer pressure (HP), rotation pressure (RP), feed
pressure (FP), hammer frequency (HF), and specific energy
(SE), were acquired from the new Nagasaki tunnel (east) of
theWest Kyushu Line high-speed railway in Japan and con-
sidered input parameters, while their corresponding RQS
were considered output parameters. To compare the perfor-
mance of the hybrid models, MLR and ANN models were
also developed to predict the RQS.

Three performance indexes R2, RMSE, and VAF are used
to compare the developed prediction model. The results show
that the developed PSO-ANN and ICA-ANN models have
higher accuracy and efficiency than other models. However,
among the two hybrid models, the PSO-ANN hybrid model

has slightly higher performance in predicting RQS. The re-
sults of R2 = 0.875 and 0.862, RMSE = 1.584 and 1.782, and
VAF = 0.875 and 0.861 for the training dataset and testing
dataset, and the results of R2 = 0.873 and 0.857, RMSE =
1.592 and 1.812, and VAF = 0.873 and 0.855 for the training
dataset and testing dataset were obtained for the PSO-ANN
model and ICA-ANN model, respectively.

Note that the models established in this paper are specific to
the West Kyushu Line of the high-speed railway region, and
the parameters of the final prediction model need to be mod-
ified according to their conditions for other regions and other
tunnel construction methods. Based on the hybrid ANN algo-
rithm proposed in this paper, the research on the influence of
different combinations ofMWDparameters on prediction per-
formance needs to be further explored.
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