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Abstract
Landslide susceptibility map (LSM) provide useful tool for decisionmakers in hazard mitigation concerns. In the present paper, a
novel hybrid block-based neural network model (HBNN) for the purpose of producing high-resolution LSMwas developed. This
hybrid approach was found through the mixture of expert modular structures and divide-and-conquer strategy incorporated with
genetic algorithm (GA). The introduced HBNN then was applied on southern part of Guilan province (north of Iran) using 14
causative factors covering topographic and geomorphologic features, and geological and tectonical factors as well as hydrology,
land data, and climate conditions. The landslide inventory map was provided using a synergy work from monitored events,
interpretation of aerial photographs, and carried out geotechnical investigations in the area as well as field surveys. To insight, the
predictability of proposed HBNN was compared with two developed models using multilayer perceptrons (MLPs) and gener-
alized feed forward neural network (GFFN). The generated LSM was validated using receiver operating characteristic (ROC)
curves, statistical error indices, and sensitivity and weight analyses as well as monitored landslides. Based on the compared
metrics, HBNN with 86.52% and 90.15% in prediction and success rate as well as 89.36% for precision-recall curve demon-
strated more consistent tool for future landslide susceptibility zonation. This implies on capability of developed HBNN in
producing higher resolution and more reliable LSM for urban and land-use planners.
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Introduction

Landslides as one of the most frequent occurred natural
geo-disasters are subsequence of several determining and

triggering factors (Popescu 1994). This nonlinear destruc-
tive mass movement and slope failure phenomenon (Wang
et al. 2020; Sidle and Ochiai 2006) cause great losses on
human lives, natural resources, and social-economic
(Abbaszadeh Shahri et al. 2019; Chen et al. 2019). The
data from the Centre for Research on the Epidemiology
of Disasters show that landslides cover at least 17% of all
fatalities of worldwide natural hazards (Lacasse and Nadim
2009). Moreover, it has been highlighted that the financial
aspects of this complicated geo-hazard phenomenon have
been much more than the fatalities (Guzzetti et al. 1999;
Listo and Carvalho Vieira 2012). Iran due to high seismic-
ity as well as specific geologic, morphologic, climatic, and
tectonic settings is also distinguished as landslide-prone
area in the world. This claim can be approved by 162
deaths, 176 destroyed houses, and 170 damaged roads as
a consequence of approximately 2600 monitored land-
slides by the year 2000 (Akbarimehr et al. 2013). The re-
ported annually average losses (e.g., Table 1) imply that
producing more accurate landslide susceptibility map
(LSM) as an essential objective for engineers, planners,
and governmental decision makers needs to be undertaken
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for risk assessment and hazard mitigation as well as
selecting appropriate and safer areas to execute develop-
ment schemes (Abbaszadeh Shahri et al. 2019; Cotecchia
et al. 2016). However, such assessments in slow-moving
landslides because of their complex mechanisms are a se-
rious challenge (Greif and Vlcko 2012).

The LSM due to various interlinked causative and trigger-
ing factors can be evaluated using different techniques
(Fig. 1). However, no general agreement for a unified method
is available (Abbaszadeh Shahri et al. 2015). Furthermore, it is

not well clarified which combination of causative factors
would produce the best susceptibility map while applying all
available factors also may reduce the accuracy of results. The
resolution and precision of LSM is influenced by adapted
modeling approach and corresponding assumptions as well
as quality of data and landslide inventory map (Hussin et al.
2016). It has been confirmed that quantitativemethods (Fig. 1)
due to more accurate results are typically preferable
(Abbaszadeh Shahri et al. 2019). However, choosing an opti-
mal method from the wide range of available techniques is

Table 1 Some of the reported annually losses of occurred landslides

Reference Country Fatalities Damage cost Comments

Sidle and Ochiai (2006) Canada 5 1.4 billion USD ---
Italy 25–50 2.6–2.5 billion USD

USA 88 1.6–3.2 billion USD

Brazil 140–150 ---

Nepal 186 19.6 million USD

Bai et al. (2012) China 140–150 2 billion Euro ---

Abbaszadeh Shahri et al. (2019) Sweden Variable 200 million SEK www.SGU.se

Chalkias et al. (2014) world 32,322 --- 2620 landslide during 2004–2010

Cotecchia et al. (2016) Europe --- 1700 million USD During the twentieth century

Grahn and Jaldell (2017) Europe Variable --- in various time intervals

Mohammady et al. (2012) Iran Variable 12.7 billion USD ---

Akbarimehr et al. (2013) Iran 162 --- 2600 landslides by the year 2000

Fig. 1 A brief overview on
applied methods in producing
LSM
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difficult and in practical-oriented problems the results need to
be carefully evaluated.

In the literatures, producing of LSM with different accura-
cies using logistic regression (Conoscenti et al. 2015; Raja
et al. 2017; Polykretis and Chalkias 2018; Luo et al. 2019),
probabilistic methods (Wang and Rathje 2015; Hong et al.
2018a), weight of evidences (Liu and Duan 2018; Ding
et al. 2017; Polykretis and Chalkias 2018), bivariate statistical
models (Hussin et al. 2016; Mandal and Mandal 2018), evi-
dential belief function (Ding et al. 2017), information theory
(Tsangaratos et al. 2017), random forests (Dou et al. 2019;
Zhang et al. 2017; Sun et al. 2020), multivariate models
(Felicísimo et al. 2013; Conoscenti et al. 2015), certainty fac-
tor (Hong et al. 2017; Chen et al. 2016), analytical hierarchy
process (AHP) (Chen et al. 2016; El Jazouli et al. 2019;
Pawluszek and Borkowski 2017), frequency ratio (Ding
et al. 2017; Nicu 2018), statistical index (Liu and Duan
2018; Razavizadeh et al. 2017), index of entropy (Hong
et al. 2017; Bui et al. 2018), deterministic analysis (Jelínek
and Wagner 2007), fuzzy logic (Roy and Saha 2019), neuro-
fuzzy (Chen et al. 2017b; Chen et al. 2019), artificial neural
networks (ANNs) (Abbaszadeh Shahri et al. 2019; Aditian
et al. 2018; Polykretis and Chalkias 2018), support vector
machine (SVM) (Bui et al. 2016; Lin et al. 2017; Conoscenti
et al. 2015), and decision tree (Chen et al. 2017a; Hong et al.
2018b; Zhang et al. 2017; Due et al. 2019) has widely been
highlighted. However, large size of models is time consuming
to learn while small networks may be trapped into local min-
ima. Hybridizing is one of the methods that can significantly
assist to increase the power, capacity, and predictability of the
intelligence model (Abbaszadeh Shahri et al. 2020a; Asheghi
et al. 2019), but using such systems for the purpose of LSM
has rarely been designed or reported (Bui et al. 2017).

In last few decades, large numbers of triggered catastrophic
landslides by rainfall or seismic shakes with considerable hu-
man and socio-economy losses have been monitored in north-
ern Iran. Such evidences reveal the necessity of producing
capable LSM to delineate and distinguish landslide-prone
areas. Among 79 recorded large landslides prior to 1900, 16
events were in the north of Iran (Berberian 1994).
Furthermore, a number of 120 to 140 triggered landslides
related to Manjil-Roudbar earthquake (1990) (Ishihara et al.,
1992; Shoaei and Sassa 1993) show the importance of this
phenomenon in Guilan province.

In this paper the challenge of finding feasible solution for
large-scale LSM was overcome using a novel hybrid block
neural network structure (HBNN) incorporated with genetic
algorithm (GA). This strategy based onmixture of experts and
task splitting can effectively speed up the training process and
skip the corresponding drawbacks (e.g., over fitting, slow
training, converge to local minima), and thus is capable to
support bigger networks. Accordingly, a practical-oriented
LSM in 10 m × 10 m resolution pixel size for southern part

of Guilan province (north of Iran) was created. The bias ef-
fects on results were avoided by a two-stage training of mix-
ture of experts. The superior accuracy performance of intro-
duced HBNN then was approved in comparison with two new
ANN-based models using multilayer perceptrons (MLPs) and
generalized feed forward neural network (GFNN) subjected to
different analytical indices and error monitoring criteria. The
importance of applied causative factors on generated LSM
also was figured out using sensitivity and weight analyses.
Therefore, it was concluded that the predictability of devel-
oped models in distinguishing prone areas can effectively be
used by decision makers to minimize or control the damage to
people, property, and infrastructure.

Study area

The study area with 2640 km2 geographically is suited in
southern part of Guilan province in north of Iran (Fig. 2a)
between 342,000 to 390,000 Easting and 4,055,000 to
4,110,000 Northing coordinates (Fig. 2b). The Guilan prov-
ince is characterized with a humid subtropical climate and
highest amount of rainfall (1400–1900 mm). Mountainous
terrains are the predominant morphology in this province
which mostly is covered by dense forests, pastures, and crop-
lands. In recent years, changes of land cover/use and in par-
ticular deforesting of this area due to development of urbani-
zation and industrial plans as an environmental concern have
been highlighted (Poorzady and Bakhtiari 2009). The avail-
able alluvial plains in Guilan due to considerable annual pre-
cipitations and wide-scale sizes of streams (domestic to re-
gional) are greatly appropriate for agriculture and vegetations.
However, the available rivers may cause irreparable damages.
This territory tectonically lies in a high active seismic belt
between Alborz Mountains and the Caspian Sea that not only
has been suffering from earthquake and flood disasters but
also impacted by many large, adversely and costly landslides
(Fig. 2a). The information on previously occurred landslides is
accessible through the National Geoscience Database
(NGDIR) and Geological Survey of Iran (GSI) as well as
various archived documents. The generated digital elevation
model (DEM) shows that the altitude of study area varies
between 15 and 2810m.Morphology of the area demonstrates
lagoon formation structures due to rapid sea-level rise as well
as plains, hills, and approximately deep valleys.

Construction of thematic database

Applied causative factors

In this study 14 potential causative factors consisting of dif-
ferent variable types (class, ordinal, continuous, and
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categorical) were considered. The employed factors in the
form of thematic layers then were classified into topographic
and geomorphologic features (slope angle, aspect, curvature,
elevation, topography, road), geological factors (lithology,
soil type, erosion), hydrology and hydrogeology parameters
(water body, river, watercourse), and land data (land use, land
cover, normalized difference vegetation index (NDVI)),
tectonical characteristics (fault), and climate conditions
(precipitation).

Slope angle is one of the main used parameters in produc-
ing susceptibility map, but in nearly vertical conditions, land-
slides are scarce or absent (Gomez and Kavzoglu 2005).
Aspect as the compass direction of slope faces is involved to
investigate the relationship between slope orientation and
landslide occurrence (Abbaszadeh Shahri et al. 2019).
Topographic curvature represents the rate of slope or aspect
change in a particular direction. It can reflect the erosion rate
to have a basic idea of geomorphology (Yesilnacar and Topal
2005) and also controls the effect of both surface run-off and
gravitational stresses on shallow slides (Costanzo et al. 2012).
The altitude due to connecting with several geologic and geo-
morphological processes as well as influence on biophysical
parameters and anthropogenic activities can cause slope fail-
ure (Gritzner et al. 2001; Gomez and Kavzoglu 2005).
Transportation networks (roads and railways) are associated
with different factors (e.g., dynamic loads, excavation, hydrol-
ogy, and stress changes) that can contribute to landslide oc-
currence. Lithology, soil type, and erosion as other important
factors should effectively be grouped (Dai et al. 2001;

Abbaszadeh Shahri et al. 2015; Ghaderi et al. 2019; Zhang
et al. 2020). Soil type and corresponding thickness are widely
used as conditioning factors in slope stability and landslide
analyses (e.g., Wang et al. 2020; Abbaszadeh Shahri 2016;
Abbaszadeh Shahri et al. 2019). Landslide susceptibility also
is affected by land use, land cover, and NDVI (Gomez and
Kavzoglu 2005). It was approved that the faults also have
significant effect on landslide occurrence (Sen et al. 2015).

All employed causative factors have been gathered from
validated and relevant governmental resources. The DEM
with 10 m × 10 m resolution was created from digital
1:25,000 topographic map with 10-m contour intervals pre-
pared by the National Cartographic Center of Iran and the
Forest, Range and Watershed Management Organization.
Acco rd ing ly , us ing DEM the topograph i c and
geomorphologic thematic layers including slope, aspect,
curvature, and elevation were produced. The created DEM
then was compared with proposed enhance processing
procedure by Abbaszadeh Shahri et al. (2019) and ground-
truthing to assess more accurate NDVI classification.
Thematic layers representing the lithology and faults for the
study area were generated on the basis of provided informa-
tion by GSI and international institute of earthquake engineer-
ing and seismology (IIEES). The rainfall and erosion layers
were processed using acquired data from meteorological or-
ganization of Iran (irimo.ir) and Ministry of Jihad-e
Agriculture respectively. Hydrological and hydrogeological
factors including rivers, water courses, and water bodies were
digitalized from the corresponding maps and included in the

Fig. 2 (a) Recorded landslides in Iran (reproduced from NGDIR) and (b) location of study area in Guilan province
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database. Land cover and NDVI were extracted from
Landsat8 Operational Land Imager (OLI) using an object-
based classification method as well as defined procedure by
Saadat et al. (2011), and then verified by both archived docu-
ments of field surveys and governmental maps. A complete
transportation network was derived and digitized from
Ministry of Roads and Urban Development. In Figs. 3 and
4, the processed thematic layers of study area with 10 m ×
10 m resolution grid cells and corresponding percentage of
pixels in each defined class are reflected.

Index-overlay analysis is one of the most used approaches
to solve multicriteria problemmodeling. Using this procedure,
the systematic differences in ranges of the input layers is com-
bined in a single analysis. The process is carried out by
assigned values, where each grid cell in each thematic layer
must relatively be reclassified into a preference scale. The
reclassification of assigned value in index-overlay procedure

indicates the categories of the parameters depending on the
relative significance of each layer for triggering landslides.
These values are then normalized with respect to the highest
attribute of the corresponding causative factor to form the
input data for the artificial intelligence models in text or
ASCII format. The datasets according to sub-division ap-
proach (Abbaszadeh Shahri et al. 2019) were then randomly
separated into three classes for training (55%), testing (25%),
and validation (20%). The area was characterized with 26.4
million pixels to be run through modeling.

Landslide inventory map

Accurate mapping of occurred events is an essential tool to de-
scribe the relationship between the landslide distribution and the
conditioning factors. A high-quality landslide inventory map for
the study area was provided using synergy works between

Fig. 3 The processed thematic layers of applied conditioning factors in
producing landslide susceptibility map (A) aspect, (B) curvature, (C)
erosion, (D) elevation, (E) distance to faults, (F) distance to rivers, (G)

slope, (H) distance to roads, (I) land use, (J) lithology, (K) NDVI, (L)
precipitation, (M) soil type, and (N) land type
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relevant resources, i.e., images (satellite/ aerial photographs),
documented reports, monitored/recorded landslides, field inves-
tigations, and some regional geotechnical data of carried out
projects. To identify probable historical landslides, different
criteria such as images, digital maps (topographic, cartographic,
DEM), morphology characteristics subjected to breaks (e.g., in
forest canopy and bare soils), and feature changes (e.g., head and
side scarps, flow tracks, soil, and debris deposits below a scar)
were also analyzed. As a result, a total of 79 landslides was
distinguished andmapped (Fig. 5). Subsequently, the recognized
events were randomized into training, testing, and validation sets
(55%, 25%, 20%) and thereafter classified and sorted based on
their modes of occurrence. The occurred landslides in this area
depend on the type of geologic material are encompassed fall,
topple, slide, spread, and flow modes. According to assembled
information from scar locations and reported documents, the
events were predominantly shallow, planar, or rotational failures.

Applied method to produce and delineate
LSM

Generalized feed forward neural network

The ANN is a powerful computerized layout of the human
brain structure which can be learned to emulate nonlinear
behavioral models. The output of a neuron (y) is a combined
set of weights (W) and biases (b) as:

y ¼ f W :XT þ b
� � ¼ f w1x1 þ w2x2 þ…þ wnxn þ bð Þ ð1Þ

where X = {x1, x2,…, xn} denotes the input vectors. f is the
applied activation function on the aggregated signal in the
output.

The result of kth neuron in output layer (Zk) using response
of jth unit in hidden layer (yj) and corresponding primary input
(xi) then is expressed as:

y j ¼ f X j
� � ¼ f woj þ ∑

I

i¼1
wijxi

� �
ð2Þ

Zk ¼ f Y kð Þ

¼ f wok þ ∑
J

j¼1
wjky j

 !
→for layer l in the tth iteration y lð Þ

j

¼ ∑
p

i¼0
y l−1ð Þ
j tð Þwl

ji tð Þ
� �

ð3Þ

where woj and wok are the bias weights for setting the
threshold values. Xj and Yk represent temporary results before
using the activation function, f, which should be applied in the
hidden and output layers.

In generalized feed forward neural network (GFFN)
(Fig. 6), the connecting system can jump over one or more
layers. This ability is because of embedded generalized
shunting neuron (GSN) that not only utilizes adaptive nonlin-
ear filters but also provides higher flexibility in computational

Fig. 3 (continued)
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Fig. 5 DEM of landslide
inventory map indicating
randomized training, testing, and
validation data

Fig. 4 Distribution of classified
datasets in thematic layers based
on the total number of pixels in
study area
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power than multilayer perceptrons (MLPs) (Arulampalam and
Bouzerdoum 2002; Ghaderi et al. 2019; Abbaszadeh Shahri
et al. 2020b). In such topology, all input is summed and
passed through an activation function like a perceptron neuron
to produce the output as:

y j ¼
bj þ f ∑

i
wjiI j þ wjo

� �

aj þ g ∑
i
cjiI i þ cjo

� � ¼ bj þ f w jI þ wjo
� �

aj þ g cjI þ cjo
� � ð4Þ

where Ij and Ii represent the inputs to the ith and jth neu-
rons. aj is passive decay rate of the neuron (positive constant).
wji and cji express the connection weight from the ith inputs to
the jth neuron. aj and bj, then g and f refer to constant biases
and activation functions respectively.

Proposed HBNN model

The learning ability of complex data can be influenced by
different internal ANN characteristics (e.g., number of neu-
rons, layer arrangements, training algorithms, learning rate,
activation function). Large ANN models are suitable for more
complicated processes but take a long time to learn, while
small networks may be trapped into a local error minimum
or not learned from the training data. Assigning the split task
to different sub-network modules then is considered an effec-
tive approach to find feasible solution in large-scale problems
(Jacobs and Jordan 1993; Sharma et al. 2003). By integration

of this idea and divide-and-conquer strategy, a new hybrid
block neural network structure (HBNN) incorporated with
genetic algorithm (GA) for complex LSM task was proposed.
Referring to literature, the performance of GFFN is more ef-
ficient than MLPs (Ghaderi et al. 2019; Asheghi et al. 2019;
Arulampalam and Bouzerdoum 2002; Abbaszadeh Shahri
et al. 2020a, b). This implies that using GFFN instead of
MLPs can increase the capability of HBNN. As presented in
Fig. 7, the proposed topology consists of input block, layers of
hidden blocks, and an additional decision block comprising
GFFN in all sub-networks. The used thematic layers then were
categorized as per input blocks. Each block as a basic process-
ing element corresponds to a network with input/output nodes.
The inputs randomly are connected to only one of the hidden
layers to pass the output to decision block. The number of
inputs and outputs of the block is determined by the system,
but the optimum internal network characteristics can be select-
ed independent of the overall architecture using GA (Fig. 8).
To specify the topology of HBNN, the number of blocks in the
input layer (nib) is determined through the dimension of input
vectors (l) and the number of inputs per block (ni) as:

nib ¼ l
ni

� 	
ð7Þ

Following the modular structure (Dailey and Cottrell
1999), each block in the input layer can have either k or

[logk2 ] outputs subjected to:

Fig. 6 Topology of GFNN
classifier and performance of
GSN in producing output
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ni > k
nih > logk2



ð8Þ

where k and nih reflect the numbers of output classes (i.e.,
one output neuron for each class) and inputs in each hidden
block respectively. At least the outputs of two hidden blocks
are used as an input for decision block to mark the end of

hidden blocks of the network (Fig. 7). If nih in a given hidden
block is lower than or equal to twice of the number of inputs of
one hidden block, then the dataset is directly considered input
of the decision block (Fig. 7). Accordingly, the inputs of de-

cision network can be obtained using (m × k) or m × [ logk2�,
where the number of network outputs (no) is determined by:

Fig. 8 Simplified flow diagram of
developed HBNN and training
procedure of expert and block
networks (n and J denote the
number of epochs and neurons in
hidden layer)

Fig. 7 The architecture of
proposed HBNN
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no ¼ logk2 k ¼ power of 2
logk2
� �þ 1 k≠tpower of 2



ð9Þ

The optimum number of hidden units can be speci-
fied using different methods such as trial-error proce-
dure (Abbaszadeh Shahri 2016), constructive technique
(Kwok and Yeung 1997), pruning algorithms (Reed
1993), integrating the trial-error procedure with con-
structive technique (Ghaderi et al. 2019), and alternating
the simultaneous internal network characteristics
(Abbaszadeh Shahri et al. 2020b). It is also initially
can be set to n or some combination of n and no such

as
ffiffiffiffiffiffiffiffiffiffi
ni:no

p� �
, niþno

2 m < 2nif g or 2 niþnoð Þ
3 which systemat-

ically should be changed to find the best performance.
Using this strategy, developing fully connected layers

and possible corresponding drawbacks (e.g., over fitting,
slow training, converge to local minima) is skipped and
thus the ability of the model in supporting bigger net-
works is enhanced. In this paper for training process, a
vector-based method was applied not only to minimize
the possible drawbacks but also to specify the required
parameters of blocks and associated processing elements
(Fig. 8). Using proposed procedure by Asheghi et al.
(2019), each block was trained for the entire vector
neurons to explore the optimum individual internal char-
acteristics. Following mixture of expert networks
(Jacobs and Jordan 1993; Hodge et al. 1999), the archi-
tecture of each block was organized to fuse appropriate
decision. Correspondingly, the outputs of each block are
mediated by an integrating unit that is not permitted to
feed information back. Selecting appropriate combina-
tion of blocks for training is decided by integrating unit
to form the final output. The outcome of decision block
is based on the embedded experts in hidden blocks not
directly from the input data and thus provides signifi-
cant advantages over the single network and facilitates
to build larger scale network models. This also causes
to speed up training times and reduce the number of
required training exemplars. The training process is ter-
minated using two-stage criteria using root mean square
error (RMSE) and the number of epochs (t). If RMSE
as the priority is not achieved, then t (set for 10,000)
will consider. The weights of each neuron based on the
applied training algorithm then should be adopted ac-
cording to previous values and correction term. The
applied learning rate on training algorithm specifies the
task time. Small learning rates take long processing time
whereas in high values then the adaptation diverges and
the weights are unusable. The GA as a heuristic search
and optimization method (Mitchell 1996) was applied
on the output of training process to optimize weights
and biases of the GFFN and minimize the fitness

function ( 1N ∑
N

i¼1
ti−oið Þ 2Þ for N training datasets over

successive generations (ti and oi denote the target and
training output). The results of GA can be represented
by string of weights and biases to the objective function
as encoding parameters of the solution. Accordingly, the
length of the weight-bias vector (L) consisting of a sin-
gle input variable with n neuron in hidden layer is 3 ×
n + 1, where the length of the input vector to the GA
fitness function is consequently set to L. Refer to
Fig. 9, such optimization requires multiple times of
training to find the settings with the lowest error. This
implies that training process like MLPs covers the out-
put of hidden layer, error investigation, weight updates,
and final predicted outputs. However, several modifica-
tions in formulations were carried out. The main signif-
icant progress is the mixed final output of two-stage
training process for both experts and decision block.
Moreover, in this structure variance and prior probabil-
ity were used not only for weight update procedures but
also to provide more precise results. The training pro-
cess is carried out in two stages, first the embedded
experts and then the decision block. This implies that
the selected appropriate training algorithm by expert
networks further is mediated by weight adjustments in
decision block. Therefore, the landslide susceptibility as
the output of the ith expert network (LSi) is computed
using weighted sum of the hidden layers by:

LSi ¼ ∑
m

gm ∑
j
wmj f mj

 !
ð10Þ

where fmj denotes the applied activation function on ith
block with j unit number in the layer. Accordingly, the land-
slide susceptibility in decision block (LSd) subjected to N
number of expert blocks as weighted sum of the outputs of
all experts is calculated as:

LSd ¼ ∑
N

i¼1
giLSi ¼ ∑

N

1¼1

exp Odið Þ
∑
N

j¼1
exp Odj
� �

2
6664

3
7775LSi ð11Þ

whereOd,i expresses the output of decision block subject to
activation function of expert i. gi represents assigned weight
by the decision block to the output of ith expert. The gi values
are nonnegative and sum to 1.

The weights of decision and expert blocks (wd, wi) are
updated using:
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Δwd ¼ ηd

gi
σi
exp − do−LSið Þ2

2σ2i

h i

∑
k

j¼1

g j

σ j
− do−LSið Þ2

2σ2i

h i
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{prior probability

−gi

0
BBBBBB@

1
CCCCCCA
XT ;Δwi

¼ ηi

gi
σi
exp − do−LSið Þ2

2σ2i

h i

∑
k

j¼1

g j

σ j
− do−LSið Þ2

2σ2i

h i
zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{prior probability

LSd−odið ÞXT ð12Þ

where ηd and ηi denote the learning rate of decision and
expert blocks respectively. do reflects the desired response of
the ith expert and σ2

i shows the variance of expert i subjected
to Gaussian random variable with zero mean.

Consequently, the predicted landslide susceptibility for the
entire network (LS) subjected to recombination of mixed out-
puts is calculated by:

LS ¼ ∑
i
giLSi ð13Þ

The information of each terrain pixel of stacked thematic
layers can reflect unique physical environmental conditions
and expected degree for landslide susceptibility where higher
cell values represent more susceptibility (Abbaszadeh Shahri
et al. 2019). The landslide susceptibility for each cell (LSpix)
using n neurons in the hidden layers is then calculated as:

LSpix ¼ f ∑
n

r¼1
wir f ∑

m

j¼1
vrju j þ br

� !
þ cy

 !
ð14Þ

where wir and vrj are adjusted weights, uj and y represent
m × 1 input and output vector layers, and br and cy are neuron
biases in the hidden and output layers.

Analysis of system results

Hybridizing with GA and two-stage training and
implementing different internal characteristics assist to not
only avoid the possible over fitting and get stuck in local
minima but also prevent bias effects in final results. For ex-
ample, in training process it was observed that replacing the
gradient descent by the momentum optimizer with step size
0.001 minimizes the chances for trapping in local minima.
Moreover, in this paper error improvement of each examined
models in 3 runs was monitored to be ensured nor over fitted
neither trapped in local minima. Error improvement refers to
network performance predictability during the last and/or each
iteration. Therefore, it can detect the situation when network is
not improving, and further training is unavailing. The pro-
posed HBNN aims to speed up training times and reduce the
number of required training exemplars, and this was the rea-
son why 55%, 25%, and 20% of randomized datasets were
assigned for training, testing, and validation process. Such
randomizations have previously been used to enhance the
learnability of different models (e.g., Ghaderi et al. 2019;
Asheghi et al. 2019; Abbaszadeh Shahri 2016; Abbaszadeh
Shahri et al. 2019; 2020b). The sum of squares and cross-
entropy functions were considered and tested for output errors
respectively. Following the described training procedure, the
expert models even in similar structure but different internal
characteristics were found through calculated RMSE. A sam-
ple of 10 carried out efforts to find optimum HBNN topolo-
gies and monitored error improvements in 2000 epochs are

Fig. 9 Error improvement of the
presented model in Table (2) for
2000 epochs (a) and evolution
trends of each block structure
using GA (b)
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reflected in Table 2 and Fig. 9A respectively. A value of 0.7
was considered for learning rate. Structure evolution of blocks
based on chromosome population size for crossover and mu-
tation probabilities is given in Fig. 9B. The produced LSM
using optimum HBNN then is created and classified using
natural breaks criteria (Fig. 10). The area with the absence of
landslide or with 0 in slope was classified as very low to low
susceptible areas.

To insight about the improved predictability of optimum
HBNN, two MLP and GFFN models subjected to the same
randomized datasets and defined training procedure were de-
veloped. Here, a sample of testing procedure using the varia-
tion of the network RMSE based on the number of neurons
subjected to different training algorithms is presented
(Fig. 11). The numbers of neurons in minimum observed
RMSE then were managed in different layers to find the opti-
mum topology. Examining numerous models (> 1100 struc-
tures) showed that 14-23-2 and 14-10-12-2 can be accepted as
the optimalMLP and GFFN topologies (Fig. 11, Table 3). The
produced LSMs using these optimum topologies are reflected
in Fig. 12.

Discussion and validation

Applied intelligence models for producing LSM address chal-
lenging problems by mostly relying on structural dependen-
cies. The presented HBNN is a generic task split approach for
regression/classification to capture large models to produce
structured output data based on deep neural networks. This
model is different from traditional networks, where the pro-
vided object activities using index-overlay procedure

incorporate the inputs dependencies learning, the output de-
pendencies, and the supervised task in the same framework.
The results of the introduced HBNN, MLP and GFFN based
models were verified using validation datasets, different area
under curves (success and prediction rate, precision-recall) as
well as sensitivity and weight analyses.

Applying validation datasets

To examine the accuracy of produced LSMs, the validation
datasets were fed to optimum structures. In case of landslide,
true/false positive rate (TPR/ FPR) define how many correct/
incorrect positive results occur among all available positive/
negative pixels during the validation process. It was observed
that in HBNN 23 of 26 landslides and 28 of 30 non-landslide

Table 2 Sample of trained structures to find the optimum topology for each block

HBNN model Number of
neurons in input
block

No. of best run AF TA Number of
neurons in
hidden block

Decision block AF TA No. of best run R2 Final RMSE

Up Down Up Down

A 5 5 1 Log DB 4 6 9 Log DB 2 0.80 0.394

B 6 5 1 Thy CGD 7 8 8 Log CGD 1 0.87 0.310

C 7 7 2 Log MO 5 5 10 Thy MO 1 0.79 0.442

D 6 8 3 Log L-M 7 7 8 Log L-M 2 0.68 0.564

E 6 6 2 Thy MO 7 5 8 Thy MO 3 0.93 0.231

F 9 6 2 Thy QP 6 8 6 Log QP 1 0.83 0.436

G 7 9 3 SA CGD 8 4 10 Thy MO 2 0.64 0.607

H 10 10 3 Thy MO 7 8 5 Log CGD 1 0.90 0.252

I 6 9 1 Log DB 9 6 11 SA QP 3 0.70 0.544

J 8 8 3 Thy MO 6 7 8 Log L-M 3 0.85 0.338

AF, activation function; TA, training algorithm; DB, delta bar; CGD, conjugate gradient descent; L-M, Levenberg-Marquardt; MO, momentum; QP,
quick propagation; Log, logistic; Thy, tangent hyperbolic; SA, softmax axon)

Fig. 10 Produced LSM using developed HBNN
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pixels were classified correctly. In cased of GFNN and MLP
these values were (19/26 and 25/30) and (16/26 and 22/30)
respectively. This indicates acceptable performance of the
HBNN.

Area under the curves

In intelligence classifiers, performance measurement as an
essential task can be evaluated and counted on area under
curves of the receiver operating characteristic (AUCROC) met-
rics. ROC is a probability curve and illustrates the diagnostic
ability of the classifier based on threshold variations whereas
AUC represents degree or measure of separability and can be
interpreted as the capability of model in distinguishing be-
tween classes. Therefore, AUCROC reflects model strength
percentage and corresponding accuracy performance, where
the higher the AUCROC, the higher the accuracy and model
strength.

Accordingly, the capability of susceptibility models was
compared using success and prediction rate as well as preci-
sion recall curves. The success/prediction rate curves were
plotted using cumulative percentage of landslide occurrence
against the landslide susceptibility index rank (cumulative ar-
ea percentage) of the training/validation data (Fig. 13A).
Considering thumb rules (e.g., 90–100: excellent; 80–90:

good; 70–80: fair; 60–70: poor; and 50–60: fail), 90.15%
and 86.52% in the AUC of HBNN for success and prediction
rate were observed and followed by GFFN (83.84%/82.27%)
and MLP (81.5%/79.24%) respectively. The success of pre-
diction also can be figured out by precision-recall ROC curve
(Powers 2011) using the number of truly turned results
(precision) and corresponding tradeoff between different
thresholds (recall). Therefore, both high precision and recall
express that most of the results are labeled correctly.
Accordingly, high recall but low precision returns most of
predictions comparing to training are labeled incorrect and
vice versa. As presented in Fig. 13B, the AUCROC for
HBNN (89.36%) showed more accuracy than GFFN
(83.24%) and MLP (80.5%). Referring to Hand (2009), the
interpreted AUCROC imply on the benefit of HBNN in pro-
viding appropriate tool to select possibly optimal models.

Sensitivity and weight analyses

The robustness of the developed models was also analyzed
using sensitivity and weight analyses. Such analyses can be
used to distinguish output uncertainty, determine possible re-
lationships between input-output parameters, model calibra-
tion by removing less important inputs, and subsequently re-
duce the computational effort (Asheghi et al. 2020). In this

Fig. 11 The variation of network
error based on number of neurons
subjected to different training
algorithms and corresponding
optimum structure of GFFN (A)
and MLP (B)

Table 3 The characteristics of selected optimum structures to produce LSM

Model TA RMSEmin Neuron Topology Layer AF Network correlation

Hidden Output Train Test Validate

MLP CGD 0.386 23 14-23-2 Log Thy 0.89 0.87 0.90

GFNN MO 0.279 22 14-10-12-2 Thy Thy 0.90 0.91 0.91
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study the results of sensitivity cosine amplitude method
(CAM) and weight analysis subjected proposed procedure
by Zhou (1999) were applied and are reflected in Fig. 14. To
ensure the efficiency and correctness of estimated weights, the
ten training attempts were also checked for possible depen-
dence of the final weights on the initial randomized selection.
The observed similar values between initial random and final
weights indicate that the initials did not have large effects on
the final weights and thus both CAM and weight analyses
represent similar trends.

According to Fig. 14, aspect and curvature were introduced
as the least effective factors whereas soil type and slope
showed the highest effect on LSM. However, the low differ-
ences between precipitation and lithology with soil type and
slope demonstrated the high influence of these factors on oc-
curred landslides. The results showed that most of the oc-
curred landslides fall in the region with 553–856 mm precip-
itations which cover high density forest and alfisols with high
erosion intensity. These results confirm the expected signifi-
cant role of lithology-related parameters and precipitation as
previously discussed. In the study area, steep slopes are

abundantly found and the great tendency of landslides in such
circumstances indicates why slope exhibits one of the highest
weighted values. According to produced LSM using HBNN
(Fig. 10), most of the area has been covered between 12.15°
and 18.45° slope, whereas most of the landslides occurred on
slopes between 18.45° and 27°. However, in the study area
very few events also due to complex triggering factors have
occurred on slopes of less than 5.8° or more than 27°. Due to
high seismicity of this region and triggered slope movements,
high importance for slope in weight and sensitivity is expect-
able. Furthermore, interlinking of slope and elevation also can
increase the weight of slope. The contributions of the distance
to roads and rivers (water areas, and watercourses) can be
interpreted as their presence or availability in the entire study
area while the rivers due to higher densities showed more
influence on LSM. In the case of tectonical features due to
significant power of faults more importance than river and
road is anticipated. This interpretation can also be made for
the observed variation in land cover. According to investiga-
tions, minor contributions of elevation, aspect, and curvature
in this area are reasonable. The results of sensitivity analysis

Fig. 12 LSM of the study area
and percentage of classified
susceptibility levels using GFFN
(A) and MLP (B)

Fig. 13 Evaluating the accuracy
metrics of developed models
using AUC plots of success/
prediction rate (A) and precision-
recall (B)
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through the statistical models can be used to achieve physical
interpretation on the landslide possibility and the recognized
important causative factors. As an example, the modulation
effects of landslide-slope and then landslide-precipitation can
be intensified through factor multiplication. Therefore, an in-
tegrated three multivariate landslide hazard-warning model is
organized that can be examined by triggering factors. Results
lead that the eroded or vegetized steep terrain-influenced rain-
fall can better identify hazard-warning locations. Combination
of factor modules for the hazard warning can also mirror true
environmental conditions, yieldingmore representative model
results.

Concluding remarks

Integrating statistical techniques and different soft computing
approaches with GIS is recognized as powerful and flexible
tools to overcome the difficulties in modeling the complex
nonlinear system of landslide and interlinked triggering caus-
ative factors.

In this study, a novel hybrid intelligence block neural net-
work (HBNN) structure incorporated with GA for the purpose
of producing high-resolution and more reliable LSMwas pro-
posed. The approach was developed using mixture of expert
modular structures with an extra decision block and divide-
and-conquer strategy. Reducing the number of variable pa-
rameters to find a good solution and presenting tractable net-
work are the main reasons for dividing the problem into sub
physically meaningful tasks. This issue in HBNN was imple-
mented to overcome the challenge of speed up training pro-
cess and network size in large number of informative pixels.
To increase the applicability and develop the generalization of
model, the internal characteristics were organized by GFFN
and trained using two-stage process for both expert networks
and blocks. The results of training procedures, monitored error
improvements and evolution trends of each block showed that
a model with minimum RMSE (0.223) subjected to 14-(6-

6)-(7-5)-8-2 structure corresponding to causative
factors-(number of neurons in input block)-(number of neu-
rons in hidden blocks)-number of neurons in decision block-
output under MO training algorithm and Thy activation func-
tion can be selected as optimum candidate. This model then
was applied on southern part of Guilan province (north of
Iran) to produce a high-resolution LSM. The improvement
of HBBN thenwas comparedwith two neural networkmodels
using MLP and GFFN. A detailed discussion on performance
metrics including AUC of success and prediction rates as well
as precision-recall accompanying with sensitivity and weight
analyses is presented. The accuracy and validity of models
also were controlled using validation landslide locations.
Calculated weights and sensitivity analyses exhibited similar
trend and pointed the highest importance for soil type, slope,
and lithology. According to results of sensitivity and weight
analyses, in the high elevation regions with lack of data, the
recognized key factors for LSM can be selected. Hence, the
development of a scenario for future planning of risk mitiga-
tion is achieved in an efficient manner. The results showed
6.84% and 9.91% enhancement in HBBN with respect to
GFFN and MLP respectively. Moreover, HBNN with
90.15% and 86.52% AUC in success and prediction rates
demonstrated 9.59% and 7% as well as 8.41% and 4.6% im-
provements than MLP and GFFN respectively. The interpre-
tation of these metrics as well as observed minimum RMSE
implied on significant priority of HBNN than MLPs and
GFFN, where the landslides can be predicted with higher
probabilities.

As the produced LSM covers a much larger area than any
previous assessments in the region, it can be a beneficial and
cost-effective screening tool for risk mitigation and identify-
ing prone areas. Furthermore, the capability of intelligent hy-
brid models in mapping large areas can be considered by
urban planners in developing new comprehensive plans for
cities. In produced map new areas were identified which are
previously not known to be susceptible, potentially because of
a more rural location away from more densely populated
areas.
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