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Abstract
Safety assessment is one critical issue for constructions of tunnels and requires a reliable and accurate stability analysis. At
present, a large number of researches in stability analyses of tunneling in rockmasses have been conducted; however, a lack of an
accurate and reliable design equation for the tunnel stability prediction is obvious. This paper presents a new design equation for
stability analyses of shallow unlined circular tunnels in rock masses obeying the Generalized Hoek-Brown failure criterion.
Because of the complexity of the problem’s nature, a closed-formed analytical solution of the problem is not possible to be
achieved. Hence, the computational framework of the finite element limit analysis is selected to numerically derive the upper and
lower bound solutions of the problem. A complete set of the dimensionless parameters covering the shallow cover-depth ratios of
tunnels, the normalized uniaxial compressive strength of intact rocks, and the Hoek-Brown material parameters are comprehen-
sively investigated. A new design equation for stability analyses of shallow unlined circular tunnels in rock masses is developed
by employing a nonlinear regression analysis to the numerically derived average bound solutions. It is found that the proposed
new design equation is highly accurate and provides a convenient and reliable tool for stability analyses of shallow unlined
tunnels in rock masses in practice.
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List of notations
σ1 the effective major principal stress
σ3 the effective minor principal stress
σci the uniaxial compressive strength of intact

rocks
GSI the Geological Strength Index of rocks
mi the frictional strength of intact rocks

DF the disturbance factor reflected by blast dam-
age and stress relaxation

D the diameter of circular tunnels
C the cover depth of circular tunnels
γ the constant unit weight of rocks
σs a uniform surcharge applied over the top rock

surface
σs/σci the normalized collapse surcharge
σci/γD the normalized uniaxial compressive strength
C/D the cover depth ratio of circular tunnels
q the constant vertical pressure applied on the

top plane of plane strain biaxial compression
Q the total vertical compressive load applied to

the footing
N the bearing capacity factor
B the full width of footing
Ai, Bi, Ei, Gi initial coefficients for design equation
ai, bi, ci, di, ei, fi,
gi

optimal constant coefficients for design
equation

yi average computed bound solution of σs/σci
fi approximate solution of σs/σci
n number of data
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R2 the coefficient of determination
Nc the factor representing the effect of the uniax-

ial compressive strength σci of intact rocks
Nγ the factor representing the effect of rock unit

weight γ

Introduction

At present, the population growth in an urban area occurs
considerably, and hence, the constructions of public infra-
structures and utilities have increased accordingly in order to
cope with the needs of public transportations to such rapid
expansion, especially the constructions of underground struc-
tures such as tunnels and subways. Tunnel safety is one very
crucial issue for tunnel excavations by an open-face conven-
tional tunneling and/or a tunneling boringmachine. Therefore,
it is important to assess the stability of tunnels in order to
prevent potential catastrophes during tunneling and to reduce
the impact of movements induced by tunneling on existing
structures. In this paper, the present study of the problem is
scoped with the stability analysis of shallow unlined circular
tunnels in rock masses.

In addition to laboratory and centrifuge tests on tunnels
(Kimura and Mair 1981; Chambon and Corté 1994; Kirsch
2010), the limit analysis (Chen and Liu 1990) is another meth-
odology that can be employed to study the stability of tunnels
using an analytical approach (Davis et al. 1980) or a
numerical-based finite element and mathematical optimiza-
tion known as finite element limit analysis (FELA) (Sloan
2013). The FELA technique has been conventionally
employed to investigate the stability of single tunnels in soils
by many researchers such as plane strain heading of tunnels
(e.g., Sloan and Assadi 1994; Augarde et al. 2003; Yang et al.
2016), unlined circular tunnels (e.g., Wilson et al. 2011;
Yamamoto et al. 2011a), unlined square tunnels (e.g., Assadi
and Sloan 1991; Sloan and Assadi 1991; Wilson et al. 2013;
Yamamoto et al. 2011b; Ukritchon and Keawsawasvong
2018a), and stability of retained soils with opening in under-
ground walls (e.g., Ukritchon and Keawsawasvong 2017a,
2019a). Note that those works were performed on soils obey-
ing on theMohr-Coulomb failure criterion. Since the failure of
rock masses cannot be accurately modelled the by Mohr-
Coulomb failure criterion owing to the lack of the dependency
of rock strength on the nonlinear minor principal
(compressive) stress, those existing solutions do not provide
an accurate solution for the stability of tunnels in rock masses.

The Hoek-Brown (HB) failure criterion (Hoek et al. 2002)
is generally accepted as a better model for estimating the
strength of rock masses, as compared with the Mohr-
Coulomb failure criterion. The model of the HB failure crite-
rion can capture essential failure aspects of many rock types
particularly for the dependency of shear strength of rock

masses on the nonlinearity of the minor principal
(compressive) stress. As a result, the HB failure criterion has
been widely used as the failure law of various stability prob-
lems in the field of rock engineering. For example, the studies
on bearing capacity and shaft resistance of foundations resting
or embedded in rock masses were reported by Serrano and
Olalla (1998a, 1998b), Merifield et al. (2006), Clausen
(2013), Serrano et al. (2014, 2015, 2016), Chakraborty and
Kumar (2015), Keshavarz et al. (2016), Keshavarz and Kumar
(2018), Kumar and Mohapatra (2017), and Ukritchon and
Keawsawasvong (2018b). In addition, many problems related
to underground openings, tunnels, and plane strain headings
have been solved using the HB failure criterion such as
Carranza-Torres and Fairhurst (1999), Carranza-Torres
(2004), Fraldi and Guarracino (2009), Senent et al. (2013),
Yang and Huang (2011, 2013), and Ukritchon and
Keawsawasvong (2019b, 2019c). The stability analyses of
rock slopes with the implementation of the HB failure criteri-
on are also investigated by Akin (2013), Deng et al. (2016), Li
et al. (2008, 2011), Shen et al. (2013), Yang et al. (2004), and
Belghali et al. (2017).

Regarding the abovementioned works, the solutions of
Carranza-Torres and Fairhurst (1999) and Carranza-Torres
(2004) are only applicable to very deep circular tunnels under
hydrostatic pressures while those of Fraldi and Guarracino
(2009) and Yang and Huang (2011, 2013) correspond to the
collapse of supported cavity roof of tunnels, which does not
consider the collapse of the entire circular shape of tunnels.
The work of Senent et al. (2013) is related to the stability
analysis of front face of circular tunnels with fully rigid sup-
ports while those of Ukritchon and Keawsawasvong (2019b,
2019c) pertain to stability analyses of square tunnels and plane
strain heading in rockmasses, respectively. Obviously, there is
a lack of studies on the stability of shallow unlined circular
tunnels in rock masses. The results of the present study are
useful in practice since the circular tunnel is a commonly used
shape in a practical underground excavation. In particular,
there is no design equation currently available in the literature
for a stability assessment of shallow unlined circular tunnels in
rock masses. Such design equation is desirable and valuable
for practicing engineers for performing the stability prediction
of underground excavations of circular tunnels in practice.

The aim of this paper is to develop and propose a
design equation for shallow unlined circular tunnels in
rock masses based on a parametric study using finite ele-
ment limit analysis (FELA) in which rock masses are
modelled by the Hoek-Brown (HB) failure criterion.
Both upper bound (UB) and lower bound (LB) FELA
calculations are performed to bracket the exact stability
solution of shallow unlined circular tunnels in HB mate-
rials while the influences of the tunnel cover-depth ratios,
the normalized uniaxial compressive strength of intact
rocks, and the HB material parameters (i.e., Geological
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Strength Index (GSI), and the mi parameter) are compre-
hensively investigated. The failure mechanisms of circular
tunnels are also presented to portray the effects of HB param-
eters on the stability of circular tunnels in rock masses. Based
on a nonlinear regression analysis, a closed-form approximate
design equation is developed for stability analyses of shallow
unlined circular tunnels in rock masses. The proposed design
equation is useful for practicing engineers to conveniently and
accurately assess the stability of tunnel excavations by an
open-face conventional tunneling and a tunneling boring
machine.

Problem definition and method of analysis

The present study adopts the failure of rock masses governed
by the Generalized Hoek-Brown (GHB) failure criterion
(Hoek et al. 2002), which are subsequently improved from
the original version proposed by Hoek and Brown (1980).
The historical review of the development of the GHB model
is summarized in Hoek (2004, 2007). The GHB model was
developed and updated using a large number of laboratory
triaxial tests including field tests of rocks while the effects of
highly fractured rocks were also incorporated into the model.
The GHB failure criterion controls the strength of rock masses
through a power law relationship between the major and mi-
nor principal stresses as:

−σ3 ¼ −σ1 þ σci −mb
σ1

σci
þ s

� �a

ð1Þ

where σ1 and σ3 are the effective major and minor principal
stresses (i.e., σ1 > σ3), respectively, in which the tension pos-
itive sign convention is adopted. σci is the uniaxial compres-
sive strength of intact rocks. TheGSI of a rock mass is used to
control the material parameters mb, s, and a through the fol-
lowing empirical relationships (Hoek 2004, 2007):

mb ¼ miexp
GSI−100
28−14DF

� �
ð2Þ

s ¼ exp
GSI−100
9−3DF

� �
ð3Þ

a ¼ 1

2
þ 1

6
e−

GSI
15 −e−

20
3

� �
ð4Þ

GSI is the most important parameter of the Hoek-Brown
failure criterion (Hoek et al. 2002) describing the quality of an
in-situ rock mass influenced by its structural discontinuities
and surface weathering conditions that give rise to GSI in the
range of 10–100. The cases of extremely poor rock masses
and intact rocks correspond toGSI = 10 and 100, respectively.
The DF parameter is the disturbance factor that reflects the
degree of disturbance to which the rock mass has been

subjected by blast damage and stress relaxation. The typical
range of DF is 0–1 in which undisturbed in-situ rock masses
have DF = 0 and extremely disturbed in-situ ones have DF =
1. The frictional strength of the intact rockmass is reflected by
the mi parameter while mb is the reduced parameter of mi by a
factor of an exponential function accounting for an effect of
strength reduction of the rock mass conditions defined byGSI
and DF. Thus, the GHB failure criterion generally requires
four input parameters, namely σci, GSI, DF, and mi, in order
to control the strength of in-situ rock masses.

The problem definition of the present study is shown in
Fig. 1 corresponding to an infinitely long shallow unlined
circular tunnel. The circular tunnel with a diameter (D) is
located with a cover depth (C) in a rock mass obeying the
GHB failure criterion. In this study, it is assumed that the
method of tunneling excavation does not introduce any sig-
nificant disturbance to the rock mass, and hence, the distur-
bance factorDF is set to be zero. Thus, the rock mass obeying
the GHB failure criterion has a set of strength parameters of
σci, GSI, and mi, and a constant unit weight of γ. A uniform
surcharge (σs) is applied over the top rock surface. The sur-
charge (σs) and the constant unit weight of rock (γ) result in
the active failure of rock masses around the circular tunnel
while this failure is resisted by the shear resistance of rock
masses attributed from σci, GSI, and mi. Thus, the stability
analysis of the problem is to determine the collapse surcharge
(σs) causing the active failure of tunnels. In this study, it can be
shown by the dimensionless technique (Butterfield 1999) that
the normalized collapse surcharge of shallow unlined circular
tunnels in rock masses under the active failure can be repre-
sented by a set of four dimensionless variables as:

σs

σci
¼ f

C
D
;
σci

γD
;mi;GSI

� �
ð5Þ

Fig. 1 Problem definition of infinitely long shallow unlined circular
tunnels in rock masses under plane strain condition
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where σs/σci is the normalized collapse surcharge, σci/γD is
the normalized uniaxial compressive strength, and C/D is the
cover-depth ratio of circular tunnels. Note that the mi and GSI
parameters are dimensionless by nature.

In the present study, the upper bound (UB) and lower
bound (LB) methods of finite element limit analysis (FELA)
under plane strain conditions with the model and computation
developed through the computer program OptumG2
(Krabbenhoft et al. 2015) are employed to compute the active
collapse of shallow unlined circular tunnels in rock masses.
The FELA has become a powerful and efficient tool that is
routinely employed to solve a variety of stability problems in
geotechnical and rock engineering by the recent authors’
works (e.g., Ukritchon and Keawsawasvong 2018b, 2019b,
2019c). This computational limit analysis is based on a per-
fectly plastic material with an associated flow rule, and em-
ploys the plastic bound theorems (Drucker et al. 1952), finite
element discretization, and mathematical optimization in or-
der to solve the UB and LB solutions of stability problems by
bracketing the true limit load from above and below. The
mathematical optimization employed in the method enables
it to be powerful and efficient as compared with manual cal-
culations of limit analysis. It should be noted that the UB and
LB FELA using OptumG2 have been successfully employed
to investigate various stability problems by the authors such as
Keawsawasvong and Ukritchon, 2016a, b, 2017a, b, c, d, e,
2019a) and Ukritchon and Keawsawasvong (2016, 2017a, b,
c, 2018c, d, 2019f) while an in-house FELA code of the au-
thors was also developed and applied (Keawsawasvong and
Ukritchon, 2019b; Ukritchon and Keawsawasvong, 2018a, b,
2019b, c, d, e; Ukritchon et al., 2018, 2019, 2020).

It is worth noting that the recent authors’ developments of
LB FELA for the stability of rock masses (Ukritchon and
Keawsawasvong, 2018b, 2019b, c) have a limitation in that
a modified Hoek-Brown failure criterion with the exponential
term a = 0.5 is employed. Thus, OputmG2 is adopted in the
present study as the failure of rock masses can be modelled
more correctly by the GHB criterion with any value of a
calculated from Eq. (4). In other words, there is no need to
assume the exponential term a = 0.5 in OptumG2.
Consequently, the numerical solutions of the problem can be
accurately computed. In addition, the investigation for the
stability of circular tunnels and the development of the new
design equation of the problem are performed in the present
study for the first time.

The followings summarize the calculations of UB and LB
FELA using OptumG2 employed in the present study.

For the calculations of UB FELA, the soil mass is
discretized by employing six-noded triangular elements
whose nodes are associated with unknown velocity compo-
nents that employ a quadratic interpolation within elements.
The upper bound solution of the problem is obtained by solv-
ing the optimization problem that minimizes the surcharge

(σs) (i.e., the objective function), and is subjected to the kine-
matically admissible velocity constraints including the com-
patibility and flow rule equations at triangular elements and
velocity boundary conditions. The surcharge (σs) is linked
with the unknown velocities of the problem through the prin-
ciple of virtual work by equating the rate of work done by
external loads with the internal energy dissipation at triangular
elements.

For the calculations of LB FELA, the soil mass is
discretized by employing three-noded triangular elements
whose nodes are associated with unknown stress components
that employ a linear interpolation within elements. In the low-
er bound mesh, stress discontinuities are introduced at shared
edges of adjacent triangular elements by enabling nodes to be
unique to elements. The lower bound solution of the problem
is obtained by solving the optimization problem that maxi-
mizes the surcharge (σs) (i.e., the objective function), and is
subjected to the statically admissible stress constraints includ-
ing equilibrium equations within triangular elements and
along stress discontinuities, stress boundary conditions, and
no violation of the GHB failure criterion.

It should be noted that the present study focuses on the
investigation for the stability of circular tunnels in rockmasses
and the development of a new design equation of the problem,
while the details of numerical modeling of UB and LB FELA
are not within the scope of the study. Readers are referred to
the details of the method of limit analysis in Chen and Liu
(1990) while those of numerical modelling of UB and LB
FELA can be found in Sloan (2013) and Krabbenhoft et al.
(2015).

It should be noted that different numbers of nodes per ele-
ments are used in UB and LB calculations, where the former
employs six-noded elements while the latter employs three-
noded ones. This is because the six-noded UB elements give
rise to a linear variation of strain field, and produce a more
accurate UB solution than using three-noded UB elements
(Sloan, 2013; Krabbenhoft et al., 2015). In other words,
three-noded UB elements generate a constant strain field that
performs less accurately as compared with six-noded ones.
Note that strict UB solutions can be computed by using both
six-noded and three-noded UB elements. The three-noded LB
element is the standard type of lower bound calculations that
produce a linear variation of stress field and a strict LB solu-
tion. Six-noded LB elements have never developed in the
research field of finite element limit analysis as they produce
a non-rigorous LB solution of stability problems.

For both UB and LB simulations, the mesh adaptivity (e.g.,
Ciria et al., 2008), which is another power feature in
OptumG2, is employed to compute the tight UB and LB so-
lutions. For each iteration, a number of elements are automat-
ically added in the zones that contain large plastic shear strain.
The differences between UB and LB solutions at any iteration
step are subsequently decreased by the mesh adaptivity
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feature, and hence, they converge to the true solution from
above and below, respectively. If the setting of mesh adaptiv-
ity is adequate enough, suitable accurate solutions can be
achieved. In all simulations otherwise stated, the setting of
mesh adaptivity employs the initial mesh of a certain element
that increases to a final mesh of a target element by five suc-
cessive iterations. The initial and target elements are chosen
approximately based on a trial-and-error study of some simu-
lations as mentioned later such that the differences between
UB and LB solution are within an acceptable limit of 5% or
better.

Verification

Even though the UB and LB FELA using OptumG2
(Krabbenhoft et al., 2015) have been successfully employed
to investigate various stability problems by several re-
searchers, their applications are mostly concentrated on
Tr e s c a and / o r Moh r -Cou l omb f a i l u r e c r i t e r i a
(Keawsawasvong and Ukritchon, 2016a, b, 2017a, b, c, d, e,
2019a; Ukritchon and Keawsawasvong, 2016, 2017a, b, c,
2018c, d, 2019f). It should be noted that their applications to
rock engineering problems are rather limited in the literature
(Xiao et al., 2018) while their verification using the HB failure
criterion is still not presented in that reference. To ensure the
performance of the adopted computational FELA, two prob-
lems including plane strain biaxial compression of rock

specimens and bearing capacity of rough strip footings on
weightless rocks are selected as the verification. Numerical
models of both problems are shown in Figs. 2a and 3b, re-
spectively. The first verification corresponds to the simulation
of plane strain biaxial compression of rock specimens. Only
one-quarter of the full model is employed due to the symmetry
of this problem (see Fig. 2a). The symmetrical left and bottom
planes of the domain are allowed to move only in the vertical
direction and only in the horizontal direction, respectively.
The constant lateral pressure (σh) is applied on the right plane
of the domain whereas the constant vertical pressure (q) is
applied on the top plane. Then, q is maximized and minimized
as the objective function of LB and UB simulations, respec-
tively, where q > σh. The rock specimen is weightless, and the
other input parameters of rock masses includeDF = 0,mi = 10
and 30, and GSI = 40, 60, 80, and 100. Note that the uniaxial
compressive strength (σci) of rock specimen is used to normal-
ized σh and q. In this verification, σh/σci is fixed as 2. In all
analyses of LB and UB FELA, the number of elements of
meshes is set to be approximately 100 elements.

The exact analytical solution for the problem can be de-
rived from Eq. (1) for the prediction of q/σci as:

q
σci

¼ σh

σci
þ mb

σh

σci
þ s

� �a

ð6Þ

In Table 1, the UB and LB solutions of q/σci obtained from
FELA are compared with the exact solutions. It is found that
excellent agreement can be achieved for all cases, where

 
(a) Plane strain biaxial compression of rock specimens 

 

 
 

(b) Strip footing 

Fig. 2 Numerical models of
problem verification for the
adopted FELA. a Plane strain
biaxial compression of rock
specimens. b Strip footing
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the percent of difference between UB, LB, average (Avg)
results, and the exact solutions is equal to zero for all cases.
It should be noted that the feature of self-adaptive mesh re-
finement is not used in the biaxial compression of rock spec-
imens since its exact solution is a constant state of stress and
strain field. Hence, only coarsemeshes are sufficiently enough
to compute the accurate solutions. Closer inspections of stress
and strain contours also confirm this observation. Since its
stress field of rock specimen is a constant type and its failure
mechanism is a uniform compression type with a uniform

lateral spreading, such results are very trivial and are omitted
for visual presentation.

The second verification corresponds to the bearing capacity
of rough rigid strip footings on weightless rock masses. Only
half of domain is selected in the analysis owing to the sym-
metry (see Fig. 2b). Only vertical movement is allowed at the
symmetrical left plane. The bottom plane is enforced to be no
movement in all directions while the right plane is constrained
to be free movement in the vertical direction. The compressive
load (Q) is applied under the footing. Beyond the edge of

Table 1 Verification of the
adopted FELA for the biaxial
compression of rock specimens

GSI mi = 10 mi = 30

UB LB Avg Exact
solution

%
Diff.

UB LB Avg Exact
solution

%
Diff.

q q q q q q q q

40 3.547 3.547 3.547 3.547 0.00 4.713 4.713 4.713 4.713 0.00

60 4.202 4.202 4.202 4.202 0.00 5.822 5.822 5.822 5.822 0.00

80 5.151 5.151 5.151 5.151 0.00 7.441 7.441 7.441 7.441 0.00

100 6.583 6.583 6.583 6.583 0.00 9.810 9.810 9.810 9.810 0.00

Diff. = difference

(a) Final adaptive mesh

(b) Stress contour of 1/ ci

Fig. 3 Example results of strip footings on rock masses with GSI = 50 and mi = 10. a Final adaptive mesh. b Stress contour of σ1/σci

4172 S. Keawsawasvong, B. Ukritchon



footing, the top surface is set to be free movement in both
vertical and horizontal directions. The Q load is maximized
and minimized as the objective function of LB and UB simu-
lations, respectively. The input material properties of rock
masses are as follows: DF = 0, mi = 10 and 30, GSI = 50.
The initial number of elements is about 10,000 elements,
and is then increased during five adaptive iterations, where
the target number of elements is set to be about 50,000 ele-
ments. The bearing capacity factor (N) of footing is also rep-
resented as a dimensionless parameter as follows:

N ¼ Q
Bσci

¼ q
σci

ð7Þ

where Q is the total vertical compressive load, B is the full
width of footing, σci is the uniaxial compressive strength of
intact rock, and q is the average pressure =Q/A.

Table 2 presents the comparison between all FELA results
and the existing solutions of Merifield et al. (2006). Note that
the computed bound solutions of each iteration during the mesh
adaptivity are also reported in the table. At the first iteration, the
percent of difference between the average bound solutions and
the existing ones is quite high. However, at the fifth iteration,
the excellent agreement between them can be observed, where
the percent of the difference is less than 1% confirming the
numerical accuracy of the simulations. Figure 3a shows the
example of the final adaptive mesh (at 5th iteration). It can be
seen that a number of elements significantly increase particu-
larly in the area of failure zone. The contour of the dimension-
less major principal stress σ1/σci is also presented in Fig. 3b. It is
found that the highest magnitude of the major principal stress
takes place under the footing, and the magnitude then decreases
when the contour is far from the edge of footing.

Results and discussions of circular tunnels

The set of dimensionless parameters for shallow unlined cir-
cular tunnels in rock masses is described in Eq. (5). The

shallow tunnels include the cover-depth ratio C/D = 1–5.
The other dimensionless variables of the problem, namely
mi, σci/γD, and GSI, are considered as follows. First, the fric-
tional strength of intact rock mass is studied in the range of
mi = 5–30 (as suggested byHoek, 2004, 2007). In practice, the
unit weight and uniaxial compressive strength for weak to
strong rocks have the practical ranges of γ = 22–30 kN/m3

and σci = 0.25–250 MPa indicating that the normalized uniax-
ial compressive strength σci/γD = 100–∞. Note that the case of
σci/γD =∞ corresponds to the case of rock masses that are
extremely strong, where uniaxial compressive strength of rock
is very large. Likewise, an extremely large value of σci/γD
also represents the theoretical case of weightless rock masses
(i.e., γ = 0). This special case has been widely employed as
one of setting inputs in various stability analyses of Hoek-
Brown materials by many previous works (e.g., Chakraborty
and Kumar, 2015; Kumar and Mohapatra, 2017; Merifield
et al., 2006; Ukritchon and Keawsawasvong, 2018b, 2019b,
c). Once the ranges of these dimensionless parameters are set
up (e.g., C/D = 1–5, σci/γD = 100–∞, and mi = 5–30), the

Fig. 4 Numerical model of an infinitely long shallow unlined circular
tunnel in a rock mass

Table 2 Verification of the adopted FELA for the bearing capacity of strip footings on rock masses

Adaptive iteration GSI = 50, mi = 10 GSI = 50, mi = 30

Present study Merifield et al. (2006) Present study Merifield et al. (2006)

UB LB Avg % Diff.a Avg UB LB Avg % Diff.a Avg
Nc Nc Nc Nc Nc Nc

1st iteration 1.134 0.774 0.954 8.32 1.037 2.973 1.405 2.189 11.94 2.467
3rd iteration 1.074 0.946 1.010 2.64 2.632 2.138 2.385 3.38

5th iteration 1.063 1.010 1.037 0.05 2.551 2.343 2.447 0.81

Diff. = difference
a The percentage difference of Nc between the present study and Merifield et al. (2006)
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feasible solutions of the problem can be successfully found by
limiting the range ofGSI = 40–100. IfGSI is less than 40, it is
not possible to numerically compute the limiting surcharge of
circular tunnel since the problem is initially failed by insuffi-
cient strengths of rock masses before applying any surcharge
on the ground surface.

The numerical model of an infinitely long shallow unlined
circular tunnel in a rock mass is shown in Fig. 4. Due to the
symmetry of the problem, only half of the domain is used in
numerical analyses (see Figs. 1 and 4). The boundary condi-
tion of the problem is defined such that the left plane of sym-
metry and the right plane are allow tomove only in the vertical
direction whereas the bottom plane is fixed in both vertical
and horizontal directions. The uniform surcharge σs is applied
downward on the rock surface. Tunnel pressure is not consid-
ered inside the tunnel, and hence, there is no constraint in any
direction along its circumferential free surface. In order to
avoid any error in the computed bound solutions due to the
problem size, the sizes of the domain are chosen to be so large
that there is no intersection of plastic shear zone at the right
and bottom boundaries. The UB and LB simulations of the
collapse surcharge at the rock surface above circular tunnels
are performed by minimizing and maximizing the loading
multiplier on σs for a given set of dimensionless parameters
as presented in Eq. (5), respectively.

Table 3 shows the convergence and sensitivity study of the
numerical modeling that examines two important factors af-
fecting the accuracy of self-adaptive refinement feature in
FELA, namely the target number of elements of 5000,
10,000, and 15,000 and the number of iterations of 3 and 5.
In this study, circular tunnels with C/D = 1, 5, σci/γD =∞, m-
i = 10, and GSI = 60 are simulated, while the initial number of
elements is fixed as 5000. Generally, the differences between
UB and LB solutions can be decreased by employing the
mesh adaptivity feature. It can be observed that the conver-
gence of the computed UB and LB solutions of σs/σci can be
generally found by increasing the target number of elements
and the number of adaptive iterations. In addition, both solu-
tions can be accurately improved by raising those two factors.

Based on the results in Table 3, five iterations of adaptive
meshing with the number of elements increasing from 5000
to 10,000 are employed in FELA simulations of circular tun-
nels in rock masses as this setting provides suitable accurate
UB and LB solutions with reasonable computational time.
Note that a setting of five adaptive iterations with 15,000
target elements is not selected because of its excessively long
computational time during simulations.

Table 4 summarizes 320 computed UB and LB solu-
tions of the normalized failure surcharge σs/σci of shallow
unlined circular tunnels in Hoek-Brown rock masses. For
all numerical results as reported in Table 4, the differences
between UB and LB solutions are bracketed within 5%
with respect to their averages. Figures 5, 6, 7, and 8 dem-
onstrate some selected solutions to portray the effect of
Hoek-Brown parameters on the stability of circular tun-
nels. It should be noted that all of computed results cannot
be presented by the graphical plots in Figs. 5, 6, 7, and 8
due to the limited space of the paper. Thus, only some
selected cases are graphically plotted in those figures. The
dash lines in Figs. 5, 6, 7, and 8 represent the solutions of
UB simulations whereas the solid lines illustrate those of
LB ones. In Fig. 5, the impact of cover-depth ratio C/D is
investigated, which plots it in the horizontal axis of the
figure while the normalized failure surcharge σs/σci is
plotted in the vertical axis. The GSI parameters in Fig.
5a, b, c, and d are equal to 40, 60, 80, and 100, respec-
tively, and the normalized uniaxial strength of rock σci/γD
is fixed to be equal to 1000. The contour lines in Fig. 5a–
d correspond to the mi variation of 10–30. It is found that
the tendency of all lines in Fig. 5 shows a nonlinear rela-
tionship between σs/σci and C/D. This implies that the
tunnels with a larger C/D ratio have a higher stability than
those with a smaller one. Figure 6 displays the influence
of GSI varying from 40 to 100 on the normalized failure
surcharge σs/σci, where σci/γD is fixed to be equal to 500,
and C/D is varied as 1, 2, 3, 4, and 5. In addition, Fig. 6a,
b, c, and d correspond to the cases of mi = 5, 10, 20, and
30, respectively. The exponentially nonlinear relationship

Table 3 Accuracy of self-
adaptive refinement strategy,
where σci/γD =∞, mi = 10, GSI =
60

Number of adaptive
iterations

Target number of
elements

C/D = 1 C/D = 5

LB UB %
Diff.

LB UB %
Diff.σs/σci σs/σci σs/σci σs/σci

3 5000 0.883 0.954 7.730 3.808 4.048 6.11

10,000 0.895 0.946 5.540 3.834 4.040 5.23

15,000 0.900 0.943 4.666 3.844 4.036 4.87

5 5000 0.892 0.946 5.876 3.844 4.043 5.05

10,000 0.903 0.942 4.228 3.887 4.030 3.61

15,000 0.907 0.940 3.573 3.901 4.024 3.10

Diff. = difference
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Table 4 Computed bound solutions of σs/σci for unlined circular tunnels in rock masses (pattern 1 is “slip line originates from the tunnel wall”, and
pattern 2 is “slip line originates below the tunnel base”)

σci/
γH

GSI mi C/H σs/σci (LB) σs/σci (UB) σs/σci (Avg) % diff Pattern

100 40 5 1 0.196 0.204 0.200 4.00 1

100 40 5 2 0.400 0.415 0.408 3.68 2

100 40 5 3 0.573 0.596 0.585 3.93 2

100 40 5 4 0.720 0.747 0.734 3.68 2

100 40 5 5 0.847 0.880 0.864 3.82 2

100 40 10 1 0.376 0.392 0.384 4.17 1

100 40 10 2 0.793 0.830 0.812 4.56 2

100 40 10 3 1.146 1.202 1.174 4.77 2

100 40 10 4 1.456 1.522 1.489 4.43 2

100 40 10 5 1.720 1.802 1.761 4.66 2

100 40 20 1 0.754 0.792 0.773 4.92 1

100 40 20 2 1.621 1.689 1.655 4.11 2

100 40 20 3 2.349 2.454 2.402 4.37 2

100 40 20 4 2.980 3.114 3.047 4.40 2

100 40 20 5 3.531 3.701 3.616 4.70 2

100 40 30 1 1.166 1.199 1.183 2.79 1

100 40 30 2 2.499 2.564 2.532 2.57 2

100 40 30 3 3.569 3.733 3.651 4.49 2

100 40 30 4 4.645 4.745 4.695 2.13 2

100 40 30 5 5.531 5.641 5.586 1.97 2

100 60 5 1 0.496 0.514 0.505 3.56 1

100 60 5 2 0.973 1.000 0.987 2.74 2

100 60 5 3 1.369 1.426 1.398 4.08 2

100 60 5 4 1.706 1.776 1.741 4.02 2

100 60 5 5 2.001 2.080 2.041 3.87 2

100 60 10 1 0.881 0.922 0.902 4.55 1

100 60 10 2 1.796 1.870 1.833 4.04 2

100 60 10 3 2.550 2.652 2.601 3.92 2

100 60 10 4 3.230 3.335 3.283 3.20 2

100 60 10 5 3.809 3.954 3.882 3.74 2

100 60 20 1 1.666 1.741 1.704 4.40 1

100 60 20 2 3.448 3.607 3.528 4.51 2

100 60 20 3 4.975 5.215 5.095 4.71 2

100 60 20 4 6.301 6.567 6.434 4.13 2

100 60 20 5 7.449 7.778 7.614 4.32 2

100 60 30 1 2.472 2.577 2.525 4.16 1

100 60 30 2 5.114 5.364 5.239 4.77 2

100 60 30 3 7.402 7.762 7.582 4.75 2

100 60 30 4 9.380 9.739 9.560 3.76 2

100 60 30 5 11.240 11.540 11.390 2.63 2

100 80 5 1 1.173 1.214 1.194 3.44 1

100 80 5 2 2.228 2.285 2.257 2.53 2

100 80 5 3 3.079 3.212 3.146 4.23 2

100 80 5 4 3.824 3.922 3.873 2.53 2

100 80 5 5 4.457 4.615 4.536 3.48 2

100 80 10 1 1.967 2.063 2.015 4.76 1

100 80 10 2 3.925 4.103 4.014 4.43 2
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Table 4 (continued)

σci/
γH

GSI mi C/H σs/σci (LB) σs/σci (UB) σs/σci (Avg) % diff Pattern

100 80 10 3 5.540 5.789 5.665 4.40 2

100 80 10 4 6.943 7.256 7.100 4.41 2

100 80 10 5 8.146 8.515 8.331 4.43 2

100 80 20 1 3.549 3.727 3.638 4.89 1

100 80 20 2 7.301 7.614 7.458 4.20 2

100 80 20 3 10.444 10.781 10.613 3.18 2

100 80 20 4 13.117 13.578 13.348 3.45 2

100 80 20 5 15.542 16.041 15.792 3.16 2

100 80 30 1 5.231 5.400 5.316 3.18 1

100 80 30 2 10.675 11.076 10.876 3.69 2

100 80 30 3 15.347 15.879 15.613 3.41 2

100 80 30 4 19.342 20.053 19.698 3.61 2

100 80 30 5 22.837 23.711 23.274 3.76 2

100 100 5 1 2.788 2.875 2.832 3.07 1

100 100 5 2 5.140 5.283 5.212 2.74 2

100 100 5 3 7.032 7.246 7.139 3.00 2

100 100 5 4 8.610 8.899 8.755 3.30 2

100 100 5 5 9.997 10.314 10.156 3.12 2

100 100 10 1 4.425 4.570 4.498 3.22 1

100 100 10 2 8.566 8.916 8.741 4.00 2

100 100 10 3 12.042 12.526 12.284 3.94 2

100 100 10 4 14.979 15.367 15.173 2.56 2

100 100 10 5 17.424 17.994 17.709 3.22 2

100 100 20 1 7.689 8.042 7.866 4.49 1

100 100 20 2 15.468 15.932 15.700 2.96 2

100 100 20 3 22.026 22.703 22.365 3.03 2

100 100 20 4 27.654 28.506 28.080 3.03 2

100 100 20 5 32.515 33.569 33.042 3.19 2

100 100 30 1 10.966 11.491 11.229 4.68 1

100 100 30 2 22.316 23.117 22.717 3.53 2

100 100 30 3 31.988 33.027 32.508 3.20 2

100 100 30 4 40.265 41.361 40.813 2.69 2

100 100 30 5 47.457 48.833 48.145 2.86 2

500 40 5 1 0.213 0.220 0.217 3.23 1

500 40 5 2 0.429 0.446 0.438 3.89 2

500 40 5 3 0.613 0.635 0.624 3.53 2

500 40 5 4 0.771 0.800 0.786 3.69 2

500 40 5 5 0.910 0.944 0.927 3.67 2

500 40 10 1 0.393 0.412 0.403 4.72 1

500 40 10 2 0.837 0.863 0.850 3.06 2

500 40 10 3 1.192 1.246 1.219 4.43 2

500 40 10 4 1.510 1.572 1.541 4.02 2

500 40 10 5 1.791 1.866 1.829 4.10 2

500 40 20 1 0.793 0.811 0.802 2.24 1

500 40 20 2 1.638 1.720 1.679 4.88 2

500 40 20 3 2.384 2.496 2.440 4.59 2

500 40 20 4 3.021 3.161 3.091 4.53 2

500 40 20 5 3.598 3.759 3.679 4.38 2
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Table 4 (continued)

σci/
γH

GSI mi C/H σs/σci (LB) σs/σci (UB) σs/σci (Avg) % diff Pattern

500 40 30 1 1.184 1.217 1.201 2.75 1

500 40 30 2 2.469 2.590 2.530 4.78 2

500 40 30 3 3.593 3.777 3.685 4.99 2

500 40 30 4 4.562 4.793 4.678 4.94 2

500 40 30 5 5.441 5.702 5.572 4.68 2

500 60 5 1 0.509 0.535 0.522 4.98 1

500 60 5 2 1.000 1.046 1.023 4.50 2

500 60 5 3 1.404 1.465 1.435 4.25 2

500 60 5 4 1.753 1.834 1.794 4.52 2

500 60 5 5 2.058 2.141 2.100 3.95 2

500 60 10 1 0.899 0.937 0.918 4.14 1

500 60 10 2 1.827 1.898 1.863 3.81 2

500 60 10 3 2.608 2.702 2.655 3.54 2

500 60 10 4 3.278 3.404 3.341 3.77 2

500 60 10 5 3.879 3.997 3.938 3.00 2

500 60 20 1 1.687 1.759 1.723 4.18 1

500 60 20 2 3.488 3.654 3.571 4.65 2

500 60 20 3 5.022 5.240 5.131 4.25 2

500 60 20 4 6.350 6.630 6.490 4.31 2

500 60 20 5 7.512 7.821 7.667 4.03 2

500 60 30 1 2.482 2.597 2.540 4.53 1

500 60 30 2 5.205 5.400 5.303 3.68 2

500 60 30 3 7.457 7.792 7.625 4.39 2

500 60 30 4 9.439 9.798 9.619 3.73 2

500 60 30 5 11.128 11.617 11.373 4.30 2

500 80 5 1 1.187 1.233 1.210 3.80 1

500 80 5 2 2.253 2.341 2.297 3.83 2

500 80 5 3 3.120 3.243 3.182 3.87 2

500 80 5 4 3.867 4.022 3.945 3.93 2

500 80 5 5 4.514 4.670 4.592 3.40 2

500 80 10 1 1.983 2.078 2.031 4.68 1

500 80 10 2 3.946 4.103 4.025 3.90 2

500 80 10 3 5.581 5.833 5.707 4.42 2

500 80 10 4 6.975 7.299 7.137 4.54 2

500 80 10 5 8.207 8.546 8.377 4.05 2

500 80 20 1 3.570 3.749 3.660 4.89 1

500 80 20 2 7.313 7.650 7.482 4.50 2

500 80 20 3 10.484 10.837 10.661 3.31 2

500 80 20 4 13.205 13.642 13.424 3.26 2

500 80 20 5 15.609 16.108 15.859 3.15 2

500 80 30 1 5.182 5.432 5.307 4.71 1

500 80 30 2 10.667 11.154 10.911 4.46 2

500 80 30 3 15.358 15.926 15.642 3.63 2

500 80 30 4 19.407 20.117 19.762 3.59 2

500 80 30 5 22.942 23.779 23.361 3.58 2

500 100 5 1 2.828 2.894 2.861 2.31 1

500 100 5 2 5.169 5.306 5.238 2.62 2

500 100 5 3 7.059 7.264 7.162 2.86 2
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Table 4 (continued)

σci/
γH

GSI mi C/H σs/σci (LB) σs/σci (UB) σs/σci (Avg) % diff Pattern

500 100 5 4 8.657 8.943 8.800 3.25 2

500 100 5 5 10.059 10.390 10.225 3.24 2

500 100 10 1 4.448 4.563 4.506 2.55 1

500 100 10 2 8.609 8.954 8.782 3.93 2

500 100 10 3 12.051 12.583 12.317 4.32 2

500 100 10 4 14.992 15.672 15.332 4.44 2

500 100 10 5 17.590 18.067 17.829 2.68 2

500 100 20 1 7.699 8.076 7.888 4.78 1

500 100 20 2 15.496 15.969 15.733 3.01 2

500 100 20 3 22.084 22.766 22.425 3.04 2

500 100 20 4 27.718 28.538 28.128 2.92 2

500 100 20 5 32.631 33.623 33.127 2.99 2

500 100 30 1 10.990 11.512 11.251 4.64 1

500 100 30 2 22.373 23.114 22.744 3.26 2

500 100 30 3 31.844 33.139 32.492 3.99 2

500 100 30 4 40.284 41.454 40.869 2.86 2

500 100 30 5 47.523 48.933 48.228 2.92 2

1000 40 5 1 0.214 0.223 0.219 4.12 1

1000 40 5 2 0.429 0.449 0.439 4.56 2

1000 40 5 3 0.619 0.640 0.630 3.34 2

1000 40 5 4 0.778 0.807 0.793 3.66 2

1000 40 5 5 0.918 0.953 0.936 3.74 2

1000 40 10 1 0.397 0.415 0.406 4.43 1

1000 40 10 2 0.829 0.867 0.848 4.48 2

1000 40 10 3 1.198 1.251 1.225 4.33 2

1000 40 10 4 1.518 1.580 1.549 4.00 2

1000 40 10 5 1.797 1.875 1.836 4.25 2

1000 40 20 1 0.782 0.815 0.799 4.13 1

1000 40 20 2 1.644 1.718 1.681 4.40 2

1000 40 20 3 2.392 2.505 2.449 4.62 2

1000 40 20 4 3.034 3.177 3.106 4.60 2

1000 40 20 5 3.611 3.769 3.690 4.28 2

1000 40 30 1 1.183 1.218 1.201 2.92 2

1000 40 30 2 2.483 2.594 2.539 4.37 2

1000 40 30 3 3.603 3.777 3.690 4.72 2

1000 40 30 4 4.581 4.806 4.694 4.79 2

1000 40 30 5 5.453 5.706 5.580 4.53 2

1000 60 5 1 0.513 0.536 0.525 4.39 1

1000 60 5 2 1.005 1.050 1.028 4.38 2

1000 60 5 3 1.412 1.470 1.441 4.02 2

1000 60 5 4 1.758 1.833 1.796 4.18 2

1000 60 5 5 2.059 2.147 2.103 4.18 2

1000 60 10 1 0.901 0.941 0.921 4.34 1

1000 60 10 2 1.822 1.902 1.862 4.30 2

1000 60 10 3 2.614 2.705 2.660 3.42 2

1000 60 10 4 3.289 3.410 3.350 3.61 2

1000 60 10 5 3.872 4.004 3.938 3.35 2

1000 60 20 1 1.697 1.763 1.730 3.82 1
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Table 4 (continued)

σci/
γH

GSI mi C/H σs/σci (LB) σs/σci (UB) σs/σci (Avg) % diff Pattern

1000 60 20 2 3.494 3.657 3.576 4.56 2

1000 60 20 3 5.026 5.236 5.131 4.09 2

1000 60 20 4 6.359 6.602 6.481 3.75 2

1000 60 20 5 7.516 7.850 7.683 4.35 2

1000 60 30 1 2.499 2.599 2.549 3.92 2

1000 60 30 2 5.162 5.369 5.266 3.93 2

1000 60 30 3 7.439 7.756 7.598 4.17 2

1000 60 30 4 9.429 9.812 9.621 3.98 2

1000 60 30 5 11.174 11.594 11.384 3.69 2

1000 80 5 1 1.191 1.224 1.208 2.73 1

1000 80 5 2 2.255 2.341 2.298 3.74 2

1000 80 5 3 3.122 3.249 3.186 3.99 2

1000 80 5 4 3.873 4.020 3.947 3.72 2

1000 80 5 5 4.522 4.686 4.604 3.56 2

1000 80 10 1 1.998 2.080 2.039 4.02 1

1000 80 10 2 3.950 4.118 4.034 4.16 2

1000 80 10 3 5.592 5.832 5.712 4.20 2

1000 80 10 4 6.972 7.292 7.132 4.49 2

1000 80 10 5 8.212 8.566 8.389 4.22 2

1000 80 20 1 3.573 3.752 3.663 4.89 1

1000 80 20 2 7.328 7.676 7.502 4.64 2

1000 80 20 3 10.480 10.836 10.658 3.34 2

1000 80 20 4 13.175 13.645 13.410 3.50 2

1000 80 20 5 15.591 16.096 15.844 3.19 2

1000 80 30 1 5.141 5.386 5.264 4.65 2

1000 80 30 2 10.683 11.119 10.901 4.00 2

1000 80 30 3 15.343 15.950 15.647 3.88 2

1000 80 30 4 19.455 20.108 19.782 3.30 2

1000 80 30 5 22.993 23.745 23.369 3.22 2

1000 100 5 1 2.828 2.891 2.860 2.20 1

1000 100 5 2 5.177 5.287 5.232 2.10 2

1000 100 5 3 7.062 7.281 7.172 3.05 2

1000 100 5 4 8.670 8.940 8.805 3.07 2

1000 100 5 5 10.060 10.369 10.215 3.03 2

1000 100 10 1 4.454 4.582 4.518 2.83 1

1000 100 10 2 8.609 8.994 8.802 4.37 2

1000 100 10 3 12.069 12.570 12.320 4.07 2

1000 100 10 4 15.036 15.398 15.217 2.38 2

1000 100 10 5 17.591 18.050 17.821 2.58 2

1000 100 20 1 7.789 8.078 7.934 3.64 1

1000 100 20 2 15.507 15.990 15.749 3.07 2

1000 100 20 3 22.093 22.767 22.430 3.00 2

1000 100 20 4 27.717 28.544 28.131 2.94 2

1000 100 20 5 32.622 33.626 33.124 3.03 2

1000 100 30 1 10.997 11.483 11.240 4.32 2

1000 100 30 2 22.389 23.120 22.755 3.21 2

1000 100 30 3 32.057 33.071 32.564 3.11 2

1000 100 30 4 40.345 41.406 40.876 2.60 2
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Table 4 (continued)

σci/
γH

GSI mi C/H σs/σci (LB) σs/σci (UB) σs/σci (Avg) % diff Pattern

1000 100 30 5 47.497 48.939 48.218 2.99 2

∞ 40 5 1 0.232 0.224 0.228 3.51 1

∞ 40 5 2 0.437 0.452 0.445 3.37 2

∞ 40 5 3 0.623 0.647 0.635 3.78 2

∞ 40 5 4 0.785 0.812 0.799 3.38 2

∞ 40 5 5 0.924 0.958 0.941 3.61 2

∞ 40 10 1 0.400 0.418 0.409 4.40 1

∞ 40 10 2 0.833 0.869 0.851 4.23 2

∞ 40 10 3 1.198 1.255 1.227 4.65 2

∞ 40 10 4 1.525 1.589 1.557 4.11 2

∞ 40 10 5 1.804 1.880 1.842 4.13 2

∞ 40 20 1 0.791 0.814 0.803 2.87 1

∞ 40 20 2 1.645 1.729 1.687 4.98 2

∞ 40 20 3 2.396 2.512 2.454 4.73 2

∞ 40 20 4 3.046 3.178 3.112 4.24 2

∞ 40 20 5 3.617 3.779 3.698 4.38 2

∞ 40 30 1 1.189 1.224 1.207 2.90 2

∞ 40 30 2 2.479 2.598 2.539 4.69 2

∞ 40 30 3 3.610 3.784 3.697 4.71 2

∞ 40 30 4 4.588 4.817 4.703 4.87 2

∞ 40 30 5 5.467 5.722 5.595 4.56 2

∞ 60 5 1 0.514 0.539 0.527 4.75 1

∞ 60 5 2 1.007 1.053 1.030 4.47 2

∞ 60 5 3 1.416 1.477 1.447 4.22 2

∞ 60 5 4 1.768 1.841 1.805 4.05 2

∞ 60 5 5 2.075 2.153 2.114 3.69 2

∞ 60 10 1 0.903 0.942 0.923 4.23 1

∞ 60 10 2 1.833 1.905 1.869 3.85 2

∞ 60 10 3 2.617 2.712 2.665 3.57 2

∞ 60 10 4 3.299 3.413 3.356 3.40 2

∞ 60 10 5 3.887 4.030 3.959 3.61 2

∞ 60 20 1 1.698 1.771 1.735 4.21 1

∞ 60 20 2 3.497 3.644 3.571 4.12 2

∞ 60 20 3 5.039 5.243 5.141 3.97 2

∞ 60 20 4 6.377 6.651 6.514 4.21 2

∞ 60 20 5 7.528 7.846 7.687 4.14 2

∞ 60 30 1 2.479 2.597 2.538 4.65 2

∞ 60 30 2 5.154 5.400 5.277 4.66 2

∞ 60 30 3 7.464 7.800 7.632 4.40 2

∞ 60 30 4 9.449 9.899 9.674 4.65 2

∞ 60 30 5 11.163 11.630 11.397 4.10 2

∞ 80 5 1 1.191 1.220 1.206 2.41 1

∞ 80 5 2 2.257 2.351 2.304 4.08 2

∞ 80 5 3 3.140 3.218 3.179 2.45 2

∞ 80 5 4 3.883 4.036 3.960 3.86 2

∞ 80 5 5 4.517 4.692 4.605 3.80 2

∞ 80 10 1 1.987 2.083 2.035 4.72 1

∞ 80 10 2 3.949 4.124 4.037 4.34 2
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between GSI and σs/σci is observed in Fig. 6. An increase
of GSI results in a nonlinearly increase of σs/σci. Such
results can be referred to the exponential function used
in the model of the HB failure criterion as expressed in
Eqs. (2)–(4). The effect of mi is demonstrated in Fig. 7
that plots mi as the horizontal axis, where Fig. 7a, b, c,
and d represent the cases of GSI = 40, 60, 80, and 100,
respectively. All data in Fig. 7 are based on the constant
value of σci/γD =∞, and each line in the figure shows the
C/D variation of 1–5. A linearly increasing relationship
between σs/σci and mi is observed, which can be ex-
plained by the effect of the frictional strength of the intact
rock mass expressed by mi. Hence, an increase in mi

results in a higher σs/σci of circular tunnels. Figure 8
shows the influence of σci/γD on σs/σci, where Fig. 8a,
b, c, and d represent the cases of C/D = 1, 2, 4, and 5,
respectively. Note that mi is equal to 20 for all curves in
Fig. 8, and each line represents the GSI value varying
from 40 to 100. It can be observed that the influence of
σci/γD on σs/σci is very small comparing with the other
dimensionless parameters. In practice, the unit weight of
rock masses ranging from 22 to 30 kN/m3 has almost no
effect on the failure surcharge over circular tunnels pro-
vided that σci/γD, mi, GSI, and C/D remain constant.

The effect of C/D on the final adaptive meshes (5th
iteration) representing the plastic shear zone of circular

Table 4 (continued)

σci/
γH

GSI mi C/H σs/σci (LB) σs/σci (UB) σs/σci (Avg) % diff Pattern

∞ 80 10 3 5.602 5.833 5.718 4.04 2

∞ 80 10 4 6.985 7.308 7.147 4.52 2

∞ 80 10 5 8.243 8.575 8.409 3.95 2

∞ 80 20 1 3.589 3.754 3.672 4.49 1

∞ 80 20 2 7.324 7.642 7.483 4.25 2

∞ 80 20 3 10.443 10.831 10.637 3.65 2

∞ 80 20 4 13.209 13.649 13.429 3.28 2

∞ 80 20 5 15.602 16.108 15.855 3.19 2

∞ 80 30 1 5.176 5.431 5.304 4.81 2

∞ 80 30 2 10.688 11.150 10.919 4.23 2

∞ 80 30 3 15.400 15.932 15.666 3.40 2

∞ 80 30 4 19.332 20.135 19.734 4.07 2

∞ 80 30 5 22.904 23.766 23.335 3.69 2

∞ 100 5 1 2.795 2.899 2.847 3.65 1

∞ 100 5 2 5.172 5.294 5.233 2.33 2

∞ 100 5 3 7.075 7.271 7.173 2.73 2

∞ 100 5 4 8.675 8.955 8.815 3.18 2

∞ 100 5 5 10.058 10.385 10.222 3.20 2

∞ 100 10 1 4.431 4.566 4.499 3.00 1

∞ 100 10 2 8.630 8.971 8.801 3.87 2

∞ 100 10 3 12.062 12.546 12.304 3.93 2

∞ 100 10 4 15.031 15.420 15.226 2.55 2

∞ 100 10 5 17.605 18.062 17.834 2.56 2

∞ 100 20 1 7.781 8.087 7.934 3.86 1

∞ 100 20 2 15.500 15.996 15.748 3.15 2

∞ 100 20 3 22.071 22.761 22.416 3.08 2

∞ 100 20 4 27.697 28.530 28.114 2.96 2

∞ 100 20 5 32.643 33.635 33.139 2.99 2

∞ 100 30 1 10.931 11.475 11.203 4.86 2

∞ 100 30 2 22.392 23.145 22.769 3.31 2

∞ 100 30 3 32.016 33.159 32.588 3.51 2

∞ 100 30 4 40.204 41.439 40.822 3.03 2

∞ 100 30 5 47.565 48.929 48.247 2.83 2
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tunnels in rock masses with GSI = 60, mi = 20, and σci/
γD = 500 is shown in Fig. 9a, b, c, and d corresponding
to C/D = 1, C/D = 2, C/D = 4, and C/D = 5, respectively.
In general, the failure zone resembles a circular shape
that covers the tunnel and extends to the rock surface.
An increase in C/D results in the expansion of the cir-
cular failure zone around the tunnel as well as the ex-
pansion of that below its base. Closer inspections of all
results of adaptive meshes reveal that there are two
kinds of failure mechanism of circular tunnels in rock
masses, namely (i) pattern 1: slip line originates from
the tunnel wall (e.g., Fig. 9a) and (ii) pattern 2: slip line
originates below the tunnel base (e.g., Fig. 9b–d). Note
that the former corresponds to shallow tunnels with
C/H = 1 while the latter corresponds to deeper ones with
C/H ≥ 2. These failure modes are also noted in the last
column of Table 4.

Table 5 shows a comparison of the σs/σci solutions
between circular and square tunnels in rock masses.
Note that the former is the present study while the
latter is based on the recent study of Ukritchon and
Keawsawasvong (2019b) using only simulations of LB
FELA. In general, the normalized failure pressure σs/σci
of circular tunnels is relatively larger than that of square
tunnels approximately by 20–70%. A higher stability of
circular tunnels over square ones is mainly attributed an
arching effect of stress distributions in circular tunnels.
A similar finding was also reported in the previous
FELA study of Yamamoto et al. (2011b) for tunnels in
cohesive-frictional soils. In Table 5, a closer inspection
reveals that a lower C/D ratio tends to give a higher
solution ratio between circular and square tunnels. In
addition, GSI and mi parameters also affect the differ-
ence of LB solutions between two tunnels. Large

Fig. 5 Influence of C/D on σs/σci of circular tunnels with σci/γD = 1000: a GSI = 40, b GSI = 60, c GSI = 80, and d GSI = 100
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differences of the solution ratios between circular and
square tunnels can be observed for smaller GSI and
higher mi values.

Design equation for circular tunnels in rock
masses

A curve fitting method is employed to develop an approxi-
mate expression for a collapse pressure over shallow unlined
circular tunnels in rock masses. Based on Eq. (5) and the
presented results in the preceding section, the normalized fail-
ure pressure σs/σci depends on a set of dimensionless param-
eters, namely cover-depth ratio C/D, Geological Strength
Index GSI, Hoek-Brown mi parameter, and normalized uniax-
ial compressive strength σci/γD of intact rocks. Since the dif-
ferences between the computed UB and LB solutions are
small within 5% of their average as shown in the previous

section, their average values are taken as the approximate
solution of the problem. The authors perform several trial-
and-errors of a curve fitting technique on the average comput-
ed bound solutions of the problem in order to determine an
appropriate mathematical expression. It is found that σs/σci
can be well correlated with a quadratic function of C/D, a
cubic function of GSI, a linear function of mi, and a linear
function of γD/σci, as shown below:

σs

σci
¼ A1 þ A2

C
D

� �
þ A3

C
D

� �2

ð8aÞ
σs

σci
¼ B1 þ B2 GSIð Þ þ B3 GSIð Þ2 þ B4 GSIð Þ3 ð8bÞ

σs

σci
¼ E1 þ E2 mið Þ ð8cÞ

σs

σci
¼ G1 þ G2

γD
σci

� �
ð8dÞ

Fig. 6 Influence of GSI on σs/σci of circular tunnels with σci/γD = 500: a mi = 5, b mi = 10, c mi = 20, and d mi = 30
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where Ai, Bi, Ei, and Gi are coefficients from curve fitting
method if a set of remaining dimensionless parameters are
selected.

Combining all mathematical functions in the preceding
equations, a new design equation for the normalized failure
surcharge σs/σci of shallow unlined circular tunnels in rock
masses is proposed as:

σs

σci
¼ F1 þ F2mi−F3

γD
σci

� �
ð9aÞ

F1 ¼ GSI b1 þ b2
C
D
þ b3

C
D

� �2
" #

þ GSI2 c1 þ c2
C
D
þ c3

C
D

� �2
" #

ð9bÞ

F2 ¼ e1 þ e2
C
D
þ GSI f 1 þ f 2

C
D
þ f 3

C
D

� �2
" #

þ GSI2 g1 þ g2
C
D

� �
þ GSI3 d2

C
D

� �
ð9cÞ

F3 ¼ a1 þ a2
C
D

ð9dÞ

where ai, bi, ci, di, ei, fi, and gi are constant coefficients.
The optimal value of the constant coefficients (ai, bi, ci, di,

ei, fi, and gi) is solved by performing a least square method
(Sauer, 2014; Walpole et al., 2002) that minimizes the sum of
squares of the deviation (i.e., the error) in σs/σci between the
computed average bound solutions and the approximate solu-
tions (i.e., the predictions), as shown below.

Minimize error2
� 	 ¼ Minimize ∑

n

i¼1
yi− f ið Þ2

� �
ð10Þ

Fig. 7 Influence of mi on σs/σci of circular tunnels with σci/γD =∞: a GSI = 40, b GSI = 60, c GSI = 80, and d GSI = 100
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where yi is the average computed bound solution, fi is the
approximate solution of σs/σci from Eq. (9a), and n is the
number of data.

The accuracy of the proposed new design equation can be
verified using the coefficient of determination, R2 (Sauer,
2014; Walpole et al., 2002) as:

R2 ¼ 1−
SSres
SStot

ð11Þ

w h e r e SStot ¼ ∑
n

i¼1
yi−yð Þ2, SSres ¼ ∑

n

i¼1
yi− f ið Þ2, a n d

y ¼ 1
n ∑

n

i¼1
yi .

Employing the least square method to the proposed expres-
sion in Eq. (9a) and the total number of average bound solu-
tions of 320, the optimal value of the constant coefficients (ai,
bi, ci, di, ei, fi, and gi) is found, as summarized in Table 6.
Figure 10 illustrates the comparison of σs/σci between the

predictions of the proposed new design equation and the av-
erage bound solutions. It can be observed that good agreement
between them is well observed, where the coefficient of de-
termination (R2) was 99.98%. Thus, the proposed new design
equation in Eq. (9a) is reasonably accurate in predicting the
failure surcharge of shallow unlined circular tunnels in rock
masses.

The proposed design equation in Eq. (9a) can be rewritten
as another mathematical form that reflects the uniaxial com-
pressive strength of intact rocks and their unit weight as:

σs ¼ Ncσci−N γγD ð12aÞ
Nc ¼ F1 þ F2mi ð12bÞ
Nγ ¼ F3 ð12cÞ

It should be noted that the Nc factor represents the effect of
the uniaxial compressive strength of intact rock σci, which is a
function of C/D, GSI, and mi, as shown in Fig. 11. The Nγ

Fig. 8 Influence of σci/γD on σs/σci of circular tunnels with mi = 20: a C/D = 1, b C/D = 2, c C/D = 4, and d C/D = 5
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factor represents the effect of rock unit weight γ, which de-
pends on only C/D, as shown in Fig. 12. It can be observed
that the predictions of the failure surcharge over shallow un-
lined circular tunnels in rock masses can be conveniently per-
formed using the proposed design equation in Eq. (12a).

Even though good agreement between the proposed design
equation and the computed numerical solutions is observed,
the proposed equations have some limitations that are associ-
ated with assumptions of the numerical modelling. First, the
applications of the proposed equations should be strictly ap-
plied within the selected ranges of dimensionless parameters,
namely C/D = 1–5, GSI = 40–100, mi = 5–30, and σci/γD =
100–∞ since they are based on a curve fitting technique that
seems to work well only for interpolations. Second, rock
masses should be homogenous and should not have any dis-
tinct bedding plane since their homogenous and isotropic fail-
ure behaviors are assumed in the numerical modeling. Last,
the results cannot be applied to circular tunnels that are affect-
ed by damage and stress relaxation since the DF parameter

accounting for those effects is neglected in the present study
(i.e., DF = 0).

Conclusions

In this paper, the stability of shallow unlined circular tunnels
in rock masses is investigated by employing the upper and
lower bound finite element limit analysis. For the first time,
the present study performs a comprehensively numerical in-
vestigations of the full set of dimensionless parameters of the
problem including cover-depth ratio C/D of 1–5, Geological
Strength Index GSI of 40–100, Hoek-Brown mi parameter of
5–30, and the normalized uniaxial compressive strength σci/
γD of 100–∞. Powerful and efficient computational finite el-
ement limit analysis with adaptive meshing procedure is
employed in order to compute accurate bound solutions of
the problem. In all cases, the present study can accurately
bracket the true solution of the problem by upper and lower

Fig. 9 Final adaptive meshes for
the cases ofGSI = 60,mi = 20, σci/
γD = 500: a C/D = 1, b C/D = 2, c
C/D = 4, and d C/D = 5
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bound solutions within 5% with respect to their average
values. It is found that the normalized failure surcharge σs/
σci over shallow unlined circular tunnel has a nonlinear rela-
tionship between C/D and GSI, and a linear relationship be-
tween mi and γD/σci. The predicted failure mechanism of
shallow unlined circular tunnels resembles a circular zone that
spreads laterally and deeply into rock masses as C/D in-
creases. When C/D is equal to or greater than 2, it is observed
that the circular failure zone develops below the invert of
tunnels. A new design equation of the failure surcharge of
the problem is proposed using a least square method of the
computed average bound solutions. The performance of the
proposed new design equation is accurately achieved and is

verified by good agreement between the predictions and com-
puted average bound solutions, where the coefficient of deter-
mination is very high of 99.98%. The proposed design equa-
tion provides a new accurate tool for practical stability analy-
ses of shallow unlined circular tunnels in rock masses obeying
the Hoek-Brown failure criterion. In practice, the failure sur-
charge can be conveniently and accurately predicted by using
the proposed new tunnel stability factors Nc and Nγ. The in-
fluences of the cover-depth ratio of tunnels, the uniaxial com-
pressive strength of intact rocks, Geological Strength Index,
and the mi Hoek-Brown parameter on the failure surcharge of
the problem are reflected in the new tunnel stability factors.
The future works relating to this paper can be performed by

Table 5 Comparison of the
solutions between circular and
square tunnels

σci/
γH

GSI mi C/H Circular tunnels Square tunnels (LB)cr/
(LB)sq

Present study Ukritchon and Keawsawasvong
(2019b)

σs/σci
(LB)cr

σs/σci
(UB)cr

σs/σci (LB)sq

100 60 5 1 0.496 0.514 0.336 1.476

100 60 5 2 0.973 1.000 0.714 1.364

100 60 5 3 1.369 1.426 1.062 1.289

100 60 5 4 1.706 1.776 1.373 1.243

100 60 5 5 2.001 2.080 1.641 1.219

100 60 30 1 2.472 2.577 1.463 1.689

100 60 30 2 5.114 5.364 3.556 1.438

100 60 30 3 7.402 7.762 5.291 1.399

100 60 30 4 9.380 9.739 6.631 1.414

100 60 30 5 11.240 11.540 7.549 1.489

100 100 5 1 2.788 2.875 2.038 1.368

100 100 5 2 5.140 5.283 3.913 1.314

100 100 5 3 7.032 7.246 5.574 1.262

100 100 5 4 8.610 8.899 7.082 1.216

100 100 5 5 9.997 10.314 8.328 1.200

100 100 30 1 10.966 11.491 6.909 1.587

100 100 30 2 22.316 23.117 16.059 1.390

100 100 30 3 31.988 33.027 24.288 1.317

100 100 30 4 40.265 41.361 31.355 1.284

100 100 30 5 47.457 48.833 37.420 1.268

Table 6 Optimal value of the constants for the new design equation of σs/σci for unlined circular tunnels in rock masses using nonlinear regression

a1 a2 b1 b2 b3 c1 c2 c3 d1

0.6649 1.1415 0.02254 − 0.03034 0.4432 × 10−2 − 0.2317 × 10−3 0.4186 × 10−3 − 0.5789 × 10−4 1.056 × 10−6

a1 e1 e2 f1 f2 f3 g1 g2

0.6649 0.08065 − 0.1368 − 0.3936 × 10−2 0.9536 × 10−2 − 0.1555 × 10−3 0.2903 × 10−4 − 0.1483 × 10−3

4187Design equation for stability of shallow unlined circular tunnels in Hoek-Brown rock masses



studying the effect of the disturbance factorDF or the effect of
water seepage through circular tunnels. In addition, the

stability of the present problem can be studied in three-
dimensional coordinate system, which is more realistic in
practice.
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