
ORIGINAL PAPER

Prediction of rockburst risk in underground projects developing
a neuro-bee intelligent system

Jian Zhou1
& Mohammadreza Koopialipoor2 & Enming Li1 & Danial Jahed Armaghani3

Received: 16 May 2019 /Accepted: 26 March 2020
# Springer-Verlag GmbH Germany, part of Springer Nature 2020

Abstract
The prediction of the risk of rockbursts in burst-prone grounds is turned into a challenging and vital mission for most under-
ground projects that attract great interest from engineers and researchers. In this study, a hybrid technique, the artificial neural
network (ANN) and artificial bee colony (ABC), neuro-bee model, was considered to create the sophisticated relationship
between the risk of rockbursts in burst-prone grounds and its influencing factors. The establishment and validation of ANN
models were implemented via a data set extracted from previous works, and the database covers 246 reliable rockburst cases. Six
influencing factors were selected as input variables. Five-fold cross validation were adopted to tune hyper-parameters of ABC-
ANN models, and the performance of ANN models was evaluated by correlation coefficient (R2) and root mean square error
(RMSE). Observational experiment results indicated that the ABC-ANN algorithm can be utilized as an effective tool for
predicting the risk of rockbursts in burst-prone grounds. The R2 and RMSE values between the predicted and actual rockburst
values were 0.9656 and 0.1281, respectively. Sensitivity analyses implemented by the response surface method revealed that the
maximum tangential stress of the cavern wall and the elastic strain index parameters have a greater effects on rockburst compared
with other input parameters. As a result, the proposed hybrid method outperforms the other models for rockburst prediction in
terms of the prediction accuracy and the generalization capability.
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Introduction

Rockburst is one of the dynamic and geological disasters that
occurs in underground hydropower caverns, tunnels, and hard
rock mines. The phenomenon of rockbursts is attributable to

the abrupt release of potential energy in the rock mass under
some certain condition (Cook 1965; Kaiser et al. 1996; Wang
et al. 2006; Gong et al. 2018; Zhou et al. 2018). The occur-
rence of rockbursts usually causes immeasurable damage to
equipment and/or infrastructure and may even lead to fatalities
due to the fact that rockbursts occur suddenly and intensely
(Zhou et al. 2016a, 2016b). In contrast with the past, the geo-
technical activities usually are carried out under the great-
depth condition, and with the increase of geotechnical activi-
ties, the occurrence of rockburst is likely to become more
frequent and severer (Zhou et al. 2016a, 2018; Tao et al.
2017, 2019; Wang et al. 2018a, 2018b, 2019a, 2019b).
Consequently, the prediction of rockburst with high accuracy
is imperative for disaster prevention and control.

In spite of much research on rockburst mechanics in the
past decades, the approach to rockburst prediction is still
based on empirical results and lacks well-rounded theory
based on fundamental mechanics. Although the accurate pre-
diction of rockburst is a complicated technique in the process
of excavation, many valuable achievements on this task have
been reported in the past several decades by many researchers
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aiming at different aspects such as the triggering mechanism,
the micro-gravity method, the rebound method, the microseis-
micity method, the drilling-yield test, the electromagnetic ra-
diation method, and the probabilistic methods (Zhou et al.
2012, 2018; Afraei et al. 2018). Far-reaching rockburst re-
search has been carried out in South Africa, Australia,
Canada, China, and many other countries (Kaiser et al.
1996; Ortlepp 2005; Zhou et al. 2018). These corporate
achievements have enormously enriched the comprehension
of rockbursts. Moreover, various types of empirical criteria
(i.e., Turchaninov criterion, Barton criterion, Russense criteri-
on, Hoek criterion, strain energy storage index, and burst po-
tential index) for estimating and predicting rockbursts have
been developed since the 1960s and often applied in practice,
as summarized in Zhou et al. (2012, 2018). These criteria have
been examined with laboratory tests and local monitoring data
to investigate the mechanical responses of rockbursts.
Nevertheless, the phenomenon of rockburst is site-specific to
a large extent and lies on many factors such as the strength of
rock mass, the geometry shape of the underground opening,
the magnitude and direction of in situ stresses and excavation
methods (Li et al. 2017c). It is, therefore, rather troublesome to
unify feasible rockburst criteria for accuracy estimation of the
potential of rockbursts.

Besides the aforementioned work, various techniques for
rockburst prediction have been implemented by means of
different statistical machine learning approaches since the
seminal work of Feng and Wang (1994), as tabulated in
Table 1. These studies apply linear classification techniques
such as discriminant analysis (Gong and Li 2007; Zhou et al.
2010) and logistic regression classifier (Li and Jimenez
2018); nonlinear classification approaches such as neural net-
works (Feng and Wang 1994; Xia-ting et al. 1998) and sup-
port vector machine (Zhao 2005), classification trees and
rule-based models such as classification and regression trees
(Zhou et al. 2016a) and decision tree (DT)–based C4.5 algo-
rithm (Faradonbeh and Taheri 2018), and hybrid models such
as Zhou et al. (2012) combined support vector machines with
the heuristic algorithms (i.e., GA and PSO) for the establish-
ment of the classification model of long-term rockburst for
underground projects. Adoko et al. (2013) proposed a
rockburst intensity prediction model integrating fuzzy infer-
ence system with adaptive neuro-fuzzy inference systems.
Recently, a data set of 246 rockburst incidents was sorted
out by Zhou et al. (2016a) for establishing rockburst classifi-
cation model using ten supervised learning methods. Lin et al.
(2018) proposed a cloud model with a rough set to predict
rockbursts. Although many rockburst prediction models have
already been depicted and analyzed by several authors (Feng
and Wang 1994; Xia-ting et al. 1998; Shi et al. 2010; Adoko
et al. 2013; Liu et al. 2013; Zhou et al. 2012, 2016a, 2016b,
2018), there no exists a comprehensive model which can
perform well aiming to different problems of rockbursts

according to the “No Free Lunch” theorem. Every approach
has its advantages and disadvantages. For support vector ma-
chine (SVM), for example, it can be used to classify complex
nonlinear data, performs well with high dimensional small
data sets, but is time-consuming, difficult to interpret, and
restricted to pairwise classification (Zhao 2005; Zhou et al.
2016a). As for artificial neural network (ANN), it works well
with nonlinear relationship; no assumptions are required on
probability density and distribution but it is susceptible to
irrelevant features, high computational time, over-fitting,
and prone to sub-optimal local minima (Guo et al. 2019;
Koopialipoor et al. 2019e). In addition, the over-fitting con-
dition tends to occur once the hidden layers or nodes are
determined mistakenly (Koopialipoor et al. 2018d; Zhou
et al. 2018; Armaghani et al. 2019; Zhou et al. 2019a).
Adaptive neuro-fuzzy inference system (ANFIS) combined
of artificial neural networks and fuzzy inference systems but
it costs excessive computational time and is not transparent.
Therefore, it still poses enormous challenge for understand-
ing, predicting, and controlling rockbursts in underground
openings (Zhou et al. 2016a). On the other hand, a large
number of models for predicting the rockburst can provide
valuable and useful information for work in mining and geo-
logical engineering. During these years, more and more re-
searchers have set about ensemble learning techniques, which
integrate the outputs of few basic classification techniques to
generate a composite output, in order to enhance classifica-
tion accuracy (Trevor et al. 2009; Zhou et al. 2019c; Li et al.
2020; Koopialipoor et al. 2017, 2018b). However, for the
domain of rockburst classification, few scholars take ensem-
ble methods into consideration; thus, it is imperative to im-
plement more in-depth and extensive research in this area.

To compensate the research in this area blank, this paper
investigates the suitability of a hybrid artificial bee colony-
based neural network for the prediction of rockbursts in un-
derground geotechnical engineering. To achieve this goal, 246
data from the events of this phenomenon were collected in
deep tunnels and mines. After initial analysis, using artificial
intelligence, relationships between different variables were
identified. At the end, these models were used to evaluate
the phenomenon of rockburst.

Methodology

Artificial neural network

ANN, as a popular intelligence mathematical technique, was
proposed by McCulloch and Pitts (1943) and exhibited the
capacity to mimic the complex nonlinear relationship between
input and output variables based on different environment.
Inspired by the working mechanism of the brain, the ANN
can be considered an effective parallel processing architecture
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which consists of at least one hidden layer, inputs, and out-
puts. It has the strong power to handle fuzzy information,
whose functional relations are concealed (Mandal and Singh
2009; Koopialipoor et al. 2018a). In ANN systems, by train-
ing the previous experiences and samples, the models are
established, that is to say, according to different training data,
the patterns used for gathering the neurons and the outputs are
mutative. For the ANNs, the fundamental units are neurons,
which determine the organization networks. These neurons
build up the layer and contextual layers connect with each
other by interconnection weights. Among the many ANN pat-
terns, feed-forward back-propagation (BP) is feasible and has
been applied successfully by some scholars (Engelbrecht
2007; Koopialipoor et al. 2019a; Zhou et al. 2020). Each neu-
ron consists of different inputs and these inputs generate an
output during a training process. In the network, the neurons
are fully associated with each other, and an output of each unit

element is employed as an input for the next unit element.
Multiple neurons build up the layers, where the first layer
transmits the information to the next layer during the process
of training and the last layer generates network response. The
layers between input and output layers are named hidden or
intermediate layers (Haykin and Network 2004). Among all
the algorithms in ANN, the BP is the most popular to interpret
the modification behavior of network (Koopialipoor et al.
2019c; Le et al. 2019; Zhao et al. 2019; Zhou et al. 2020).
The BP algorithm are generally keeping with the error correc-
tion learning law where the propagating of errors is respon-
sible for the adjustment of the weights of the connections
to minimize the sum of the mean squared error in the
output layer. In other words, the learning propagation is
comprised of two phases: forward phase and back phase.
For the forward phase, the transmission of layer inputs
provides a series of outputs. As for the forward stage,

Table 1 Summary of pre-existing supervised machine learning techniques work on rockburst classification with influence factors and accuracy values
(modified from Zhou et al. 2018)

Algorithm/technique Input parameters Accuracy Data Authors (year)

Mahalanobis distance discriminant analysis σθ/σc, σc/σt, Wet 100% 15 Gong and Li (2007)

Bayes discriminant analysis σθ/σc, σc/σt, Wet 100% 21 Gong et al. (2010)

Fisher linear discriminant analysis σθ/σc, σc/σt, Wet 100% 15 Zhou et al. (2010)

Fisher linear discriminant analysis H, σθ, σc, σt, σθ/σc, σc/σt, Wet 48.4–55.9% 246 Zhou et al. (2016a)

Quadratic discriminant analysis H, σθ, σc, σt, σθ/σc, σc/σt, Wet 48.4–60.9% 246 Zhou et al. (2016a)

Partial least-squares discriminant analysis H, σθ, σc, σt, σθ/σc, σc/σt, Wet 45.3–57.5% 246 Zhou et al. (2016a)

SVM σθ, σc, σt, Wet 100% 16 Zhao (2005)

SVM H, σθ, σc, σt, σθ/σc, σc/σt, Wet 51.7–67.2% 246 Zhou et al. (2016a)

GSM-SVM H, σθ, σc, σt, σθ/σc, σc/σt, Wet 66.67–88.9% 132 Zhou et al. (2012)

GA-SVM H, σθ, σc, σt, σθ/σc, σc/σt, Wet 66.67–80% 132 Zhou et al. (2012)

PSO-SVM H, σθ, σc, σt, σθ/σc, σc/σt, Wet 66.67–90% 132 Zhou et al. (2012)

ANFIS σθ, σc, σt, σθ/σc, σc/σt, Wet 66.5–95.6% 174 Adoko et al. (2013)

ANN σθ, σc, σt, Wet 100% 10 Feng and Wang (1994)

ANN H, σθ, σc, σt, σθ/σc, σc/σt, Wet 50–67.5% 246 Zhou et al. (2016a)

Adaptive boosting σθ, σθ/σc, σc/σt, Wet 87.8–89.9 36 Ge and Feng (2008)

k-nearest neighbors H, σθ, σc, σt, σθ/σc, σc/σt, Wet 53.2–67.2% 246 Zhou et al. (2016a)

Gradient boosting machines H, σθ, σc, σt, σθ/σc, σc/σt, Wet 61–76.6% 246 Zhou et al. (2016a)

Gradient boosting machines E1, E2, E3, E4, PPV 61.22% 254 Zhou et al. (2016b)

Naive Bayes H, σθ, σc, σt, σθ/σc, σc/σt, Wet 53.9–67.2% 246 Zhou et al. (2016a)

DT σθ, σc, σt, Wet 73–93% 132 Pu et al. (2018)

Logistic regression H, σθ, σc, σt, Wet 80.2–90.9% 135 Li and Jimenez (2018)

Bayesian network H, σθ, σc, σt, Wet 91.75% 135 Li et al. (2017a)

GA and extreme learning machine σθ, σc, σt, Wet 100% 30 Li et al. (2017b)

Emotional neural network (ENN) σθ, σc, σt, Wet 85.19% 134 Faradonbeh and Taheri (2018)

Gene expression programming (GEP) σθ, σc, σt, Wet 85.16% 134 Faradonbeh and Taheri (2018)

DT-based C4.5 algorithm σθ, σc, σt, Wet 81.48% 134 Faradonbeh and Taheri (2018)

Cloud model with rough set σθ, σc, σt, σθ/σc, σc/σt, Wet 71.05% 246 Lin et al. (2018)
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synaptic weights will be achieved. Two statistical indica-
tors including the root mean square error (RMSE) and
coefficient of determination (R2) have been suggested as
the quality measures to benchmark the performance of the
aforementioned model results.

Artificial bee colony

In nature, many species live depending on a colony have dem-
onstrated great efficient productivity. Without any supervised
coordination mechanism, their behaviors are spontaneous and
methodical. Take the honey bee colonies for example, a cir-
culation of foraging practice needs to be manipulated by
employed, onlooker, and scout bees (Badem et al. 2018;
Ghaleini et al. 2018; Le et al. 2019).

The employed bees are in charge of exploiting the
already discovered sustenance source and fetch the nec-
tar. Each employed bee contacts with a corresponding
onlooker bee. When they return to the hive, they trans-
mit the message about the quality and location of the
nectar to the onlooker bees by dancing. The onlooker
bees obtain the information by observing the different
duration and frequency dances (Wenner et al. 1967;
Gordan et al. 2018). Once the nourishment source is
exhausted, the so-called scout bees start to search for
new promising flower patches arbitrarily.

The ABC algorithm is a metaheuristic optimizationmethod
established by Karaboga (2005) which gets inspired from the
behaviors of bees foraging. In the ABC algorithm, the position
of nectar sources can be regarded as the solution of the prob-
lem, and thus the number of the nectar sources represents the
rationality of the associated solution. The main search proce-
dure of the ABC algorithm can be divided into four phases as
follows.

Initialization phase

The initialization of the ABC algorithm is to generate a ran-
dom population of the food source positions (called SN solu-
tions) as below:

δab ¼ rand 0; 1ð Þ δmax
b −δmin

b

� �þ δmin
b ð1Þ

where δab is defined as the bth optimal variable of the ath
solution; a and b is in the range of [1, SN] and [1, D]; both
a and b are integers. SN shows the number of solutions and D
indicates the number of optimization parameters.

Additionally, δmin
b and δmax

b denote the lower and upper bounds
of the bth optimal variable, respectively, and rand(0, 1) denotes
a random well-distributed number ranging from [0, 1].

Employed bee phase

In this phase, the employed bees aim to explore a more suit-
able nourishment candidate by integrating their previously
obtained position information with a random nectar source
location in the neighborhood as below:

vab ¼ δab þ ηab δkb−δabð Þ ð2Þ

where ηab is generated randomly in the range of [− 1, 1],
k and b are randomly selected from {1, 2,…, SN} and
[1, D] respectively, also k ≠ b (Kumbhar and Krishnan
2011). After generating the new position va, the goodness
of the new nutrition source va will be compared with the
previously one δa by employed bees. According to the
greedy selection, the old information δa will be replaced
by the better food source information va. Otherwise, the
previous position δa still is kept by employed bees
(Nourani et al. 2012).

Onlooker bees phase

When the employed bees reach the hive, they transmit the
information associated with the quality and location of the
nourishment sources to the onlooker bees. After that, the on-
looker bees pick out the available information and select the
new nectar source according to the probability values
expressed by fitness values. Here, the mathematical expres-
sion of probability values is given as below:

pa ¼
fitnessa

∑SN
a¼1fitnessa

ð3Þ

Here, fitnessa denotes the fitness value of the ath-
solution. And then, the roulette wheel (Dhahri et al.
2012) selection is introduced to evaluate the p

a
. A random

real number between [0, 1] can be obtained by the roulette
wheel selection for each position. If all the random num-
ber is less than the probability value pa corresponding to
the position δa, it proves that a good nourishment source
is found nearby. For the new generated solution va, it is
compared with the current solution δa by applying greedy
selection. If va is more advanced than δa, it is retained in
the population. On the contrary, δa is retained (Kisi et al.
2012; Koopialipoor et al. 2019b).

Scout bees phase

When the source of nourishment is close to be exhausted,
the employed bees convert to the scout bees. The mission
of these scout bees is to search for new promising nectar
source in the vicinal area randomly (Karaboga 2005). In
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other words, when the existing solution is unable to reach
the threshold (called limit) defined by manipulators, the
new source position is computed as in “Initialization
phase” until the requirements of the nourishment source
are met (Kurban and Beşdok 2009). Then, the best-
optimal food source is obtained.

Data collection

The performance of the ABC-ANN models was measured
utilizing the data collected from the original Zhou et al.
(2016a) database which contains a total of 246 rockburst
cases. In addition, the sources are verified and include docu-
ments published between 1994 and 2013among which half of
the documents are published between 2009 and 2013. The
general database consists of data collected from at least 20
underground projects (i.e., road and railway tunnels, hydro-
power station tunnels, nuclear cooling tunnels, coal mines,
and hard rock metal mines) from different countries (i.e.,
China, Norway, Sweden, Japan, Italy, and Russia) and in-
cludes 246 cases of rockburst events. Six potential indicators
are included in this database and investigated in this work
which are coalescent between the internal and external factors
and a comprehensive consideration including geotechnical
and constructive factors. They are the maximum tangential
stress of the cavern wall (σθ =MTS), the uniaxial compressive
strength (UCS or σc) of rock, the uniaxial tensile strength
(UTS or σt) of rock, stress concentration factor (SCF or σθ/
σc), rock brittleness index (B = σc/σt), and the elastic strain
index (EEI orWet). Those indicators are considered the major
parameters to quantitatively characterize the occurrence of
rockburst. Table 2 displays the relevant input indicators used
to establish the potential of rockburst prediction model range
with their range, mean, standard deviation, and skew,
respectively. The proportion of four types of rockburst as
described by Zhou et al. (2012) and Zhou et al. (2016a) in this
database was categorized as heavy rockburst (H, 44 cases),

moderate rockburst (M, 81 cases), low rockburst (L, 78 cases),
and none rockburst (N, 43 cases). Correlations, boxplot, bar
graphs, and scatterplots of rockburst database as illustrated by
the GGally function (Schloerke et al. 2011) in Fig. 1, and all
bivariate combinations of a single set of indicators are
depicted as a plot matrix that allows for a mixture of both
discrete and continuous indicator types using the ggplot2 plot-
ting framework (Wickham 2016). Particularly, the scatterplot
matrix in the upper panel demonstrates the pairwise relation-
ship between parameters with corresponding correlation coef-
ficients showing in the lower panel (i.e., the parameter Wet is
notably correlated with MTS), whereas the marginal frequen-
cy of each kind of rockburst parameter exhibits on the diago-
nal distribution.

Result and discussion

In this section, various artificial intelligence models are devel-
oped to predict the rockburst phenomenon. As mentioned in
the previous section, 6 parameters were used to investigate
this phenomenon (Table 2). These parameters were selected
by reviewing the abovementioned previous studies. Using
these parameters, four intensities are predicted for the occur-
rence of this phenomenon in underground mines. ANN and
ABC-ANN are the prediction models used in this research. In
fact, these models are employed to predict the exact occur-
rence of this phenomenon in underground mines, as well as
improving the performance of intelligent models by means of
optimization algorithms.

Multi-variable regression

The purpose of regression analyses is to design a model which
is able to create a relationship between the dependent and
independent variables (Koopialipoor et al. 2018d, 2019d).
The multi-variable regression (MVR) method is employed to
establish a relationship between dependent and independent
variables. This method established a linear relationship be-
tween the parameters to find their best-suited function consid-
ering the least error. In this study, the parameters of Table 2
and rockburst were used as the inputs and output of the model,
respectively. The MVR method suggests the following equa-
tion for rockburst:

Rockburst ¼ 0:0062�MTSþ 0:0013� UCSþ 0:0141

� UTSþ 0:0664� SCF

þ 0:0097� Bþ 0:0824�Wet þ 1:2369

ð4Þ

The correlation (R2) of the above equation is 0.409 with the
RMSE of 0.7524, indicating a poor relationship between the

Table 2 Descriptive statistics values of various parameters of rockburst
case histories with their range, mean, standard deviation, and skew for the
ABC-ANN modeling

Parameter Range Mean Standard
deviation

Skew Kurtosis

MTS/Mpa 2.60~297.80 58.00 54.075 2.924 9.432

UCS/Mpa 20.00~304.20 111.54 42.661 0.777 1.815

UTS/Mpa 1.30~22.60 7.17 4.182 0.888 0.579

SCF 0.10~4.87 0.59 0.672 3.819 16.543

B 0.15~80.00 20.54 14.241 2.037 4.947

Wet 0.81~30.00 5.16 4.156 3.247 13.817
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input and output parameters with very low accuracy.
Consequently, this method cannot be used to predict rockburst
in underground mines.

ANN

In this section, the ANN model is designed and developed to
predict rockburst. Proper use of the input data is one of the
most significant parts needed in designing intelligent systems.
Considering the literature review of the researchers in the pre-
vious section, parameters affecting the rockburst phenomenon
have been identified. Table 2 has been used for the input data
of this system. Intelligent networks have two fundamental
parts: the training part, which creates a nonlinear relationship
between dependent and independent parameters and then
assessed by the testing part. Therefore, from the totally 246
available data, some part should be allocated to the training
part as well as the testing part. Many researchers have sug-
gested that the number of training data should be larger and
about 70–80% of the total data (Khandelwal and Singh 2009;
Koopialipoor et al. 2018c; Liao et al. 2019; Xu et al. 2019).
Also in this study, 80% of the data was allocated to the training
part and 20% to the testing part.

Various algorithms are employed to train the ANN,
among which, the Levenberg-Marquardt (LM) method
has been used and recommended by different researchers
(Jahed Armaghani et al. 2015; Ghaleini et al. 2018).
Given its ability, this algorithm can be used appropriately
in the field of mining and civil engineering issues
(Mohamad et al. 2019; Yang et al. 2019; Zhou et al.
2019b, 2020). Three layers are used in this model. The

first and third layers are related to the input data and
output data (rockburst), respectively. The past researchers
have also referred to the use of a hidden layer, by which,
many linear and nonlinear engineering problems can be
solved (Koopialipoor et al. 2018a). In this study, a hidden
layer has been used, too. Figure 2 depicts the structure
presented by this research for the ANN.

The ANN model aims for finding the proper perfor-
mance for predicting the intelligent systems. The results
of the ANN model are influenced by the two parameters
of the number of neurons and iterations. In other words, the
number of neurons in the hidden layer can contribute to the
determination of the minimums of computational space.
This search goes ahead to the stages that the problem’s
initial condition has been set for it. When the initial con-
ditions are not obtained, the system will progress according
to the number of the specified iterations. Various re-
searchers have suggested methods to determine the appro-
priate number of hidden layer’s neurons. Some researchers
have proposed several formulas to determine the number of
neurons (Jahed Armaghani et al. 2015; Koopialipoor et al.
2017). However, various researches have been conducted
in the engineering fields, and various numbers of data have
been used, indicating that the intelligent models reach their
best function in each computational space with a certain
number of neurons (Monjezi et al. 2013; Gordan et al.
2018). Therefore, in this study, it has been tried to use
between 1 and 16 neurons, and in order to specify the best
performance, each sample has been run several times. It is
noteworthy that the conventional neuron number for a hid-
den layer has been reported about 5–15 (Monjezi et al.

Fig. 1 Generalized pairs plot of rockburst database. Each color represents a different rockburst type
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2013; Gordan et al. 2018). In addition, a full analysis of 10
to 100 iterations was carried out for the sake of determin-
ing the number of iterations. The two statistical indices of
R2 and RMSE were used aiming at assessing the perfor-
mance of the developed models. Figures 3 and 4 illustrate
the effect of the number of neurons on the performance of
the prediction model. As shown in Fig. 3, the R2 and
RMSE change diagram is ascending and descending, re-
spectively. A good performance is provided in the number
of 10 neurons. It should be noted that some next neurons
have a much better performance, however, it caused the
model had high runtime. For this reason, since the goal is
to find the best conditions for optimal model implementa-
tion, the number of 10 neurons that have a lower imple-
mentation time is chosen as optimal conditions. The same
reasons are similar to the number of iterations for choosing
the best condition (see Fig. 4).

Eventually, the results of the best model obtained by 60
iterations and 10 hidden-layered neurons are presented in
Table 3. The values of rockburst prediction for the total data
are plotted in Fig. 5. As observed, the performance of this
neural model (R2) for the total data is 0.8334, suggesting that
the developed neural model can have a better performance
than the MVR model in predicting rockburst in underground
mines and deep tunnels.

ABC-ANN

Different researchers have used optimization algorithms to
improve the performance of an ANN (Ghaleini et al.
2018; Koopialipoor et al. 2018c). One of the problems
with neural networks is being trapped in the local mini-
mum. In this case, the model presents the result to the
system, and since the system’s minimum error is not

available, the performance appropriate for it is presented
and cannot be improved, while optimization algorithms
find the lowest system error with the best performance
and more accurately through searching the computational
space. Some researchers have proposed various hybrid
networks that, with developing them and the help of neu-
ral models, they have aimed to find a more acceptable
performance. In this study, the ABC optimization algo-
rithm has been used for the part of ANN training. In this
case, the ABC-ANN hybrid algorithm is modeled.
Figure 6 illustrates an overview of the operating system
in this model. Given the importance of rockburst in un-
derground mines and tunnels, its better prediction can de-
crease the risks caused by it as well as providing the
required preparations for the design of tunnels. In the
following, the more effective parameters in this modeling
will be assessed.

Number of bees

The number of bees is one of the important parameters affect-
ing the results of this hybrid system. Indeed, the bees replace
the hidden-layered neurons in the neural network. They search
the computational space according to the ABC algorithm
rules. Many researchers consider the number of particles in
the optimization algorithms as the most effective factor in the
result of the prediction models (Ghaleini et al. 2018;
Koopialipoor et al. 2018c). Nevertheless, the selection of high
number of particles will increase the program runtime. In this
case, finding appropriate algorithms or techniques providing
acceptable performance with a low number is favored. For
example, using their hybrid algorithms, some researchers have
reported their best performance in a population of 200–500
particles (Ghaleini et al. 2018; Koopialipoor et al. 2018c). It

Fig. 2 The proposed structure for
the prediction of rockburst
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should be noted that the technique used in this research is of
the kind of new methods. Some studies on this method have
declared that acceptable results can be obtained regarding the
continuous search feature of the ABC algorithm (Ghaleini
et al. 2018; Koopialipoor et al. 2018c). In these researches,
10 to 100 bees were the largest number of bees in which were
used and they received proper performance (Ghaleini et al.
2018; Koopialipoor et al. 2018c). Also in this study, 10 to

100 bees were used. As mentioned, an ANN performance is
improved by this method. Hence, a structure similar to the best
selected ANN of previous section (10 neurons) was used in
order to compare the results, and only its training section was
learnt by the ABC algorithm. Figure 7 illustrates the effect of
number of bees on the rockburst prediction model. As can be
seen, the results of model performance are closed to steady
state after 80 bees. Therefore, 80 bees are selected as optimal.

Fig. 3 Investigate the effect of neuron on ANN models

Fig. 4 Investigate the effect of iteration on ANN models
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Number of iterations

The number of iterations is another parameter affecting the per-
formance of the prediction system. It is the same as the iteration
parameter in the ANN. In addition, here in their hybrid networks,
some researchers have reported the effectiveness of the number
of iterations in their prediction models (Ghaleini et al. 2018;
Koopialipoor et al. 2018c). They usually have their best system
performance at 300 to 600 iterations, while researchers who have
used the ABC method have achieved proper performance in the
range of 150–250 (iterations) (Ghaleini et al. 2018; Koopialipoor
et al. 2018c). In this case, the number of iterations from 50 to 500
was analyzed in order to determine the effect of this parameter.
Moreover, due to the comparison, the used structure is the same
as theANN structure. Figure 8 illustrates the effect of the number
of iterations on the rockburst prediction model. As can be seen,
the results of the model performance in the repetition number of
300 are at an acceptable level. Also, the runtime of this number is
less than the subsequent iterations.

Ultimately, amodelwith 80 bees and 300 iterationswas chosen
as the bestmodel in terms of runtime reduction to predict rockburst
in the intelligent system. Table 4 shows the results of the best

model made with this technique. Figure 9 illustrates the values
of rockburst prediction for the total data. The ABC-ANN model
offers better performance than the previous two models for the
prediction of rockburst in deep tunnels and underground spaces.

Sensitivity analysis

In this research, the response surface method is used aiming to
optimize the model and search the largest contribution of the
model’s input parameters. By specifying the number of vari-
ables and the maximum and minimum limits set for each
variable, this method designates the test matrix. Therefore,
the number of tests and levels of each variable are determined
in each test. When numerous variables need to be analyzed,
this method is fully preferable to high-volume procedures
such as a complete factorial. The test design is such that reli-
able statistical results are obtained even without a retest. Thus,
this method will facilitate the research process as well as re-
ducing time and costs. It is worth noting that in this analysis,
the range of changes is between − 1 and 1, indicating the direct
and inverse relationship between the changes. The more the
line of variation becomes vertical, the lower the impact of that
parameter will be.

Here, the perturbation graph is presented. It allows com-
paring the effect of all parameters at a specific point in the
design space. The reference point is placed at the midpoint of
all factors determined by the zero code. The steep of a param-
eter indicates the response sensitivity to that parameter. The
relatively smooth line indicates the insensitivity of the

Fig. 5 Results of R2 for all data using the ANN model

Table 3 The results of
the optimum ANN
model

Training Testing

R2 RMSE R2 RMSE

0.8982 0.3137 0.8015 0.4206
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response to the change in that particular agent. It is noteworthy
that the effect of interactions is not visible in this graph.

Here, the variables A, B, C, D, E, and F are MTS, UCS,
UTS, SCF, B, and Wet, respectively. As observed in Fig. 10,

Fig. 6 A total structure of ABC-ANN for the prediction of rockburst

Fig. 7 The effect of bee numbers on results of rockburst prediction
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the MTS andWet parameters have a greater effect, while com-
pared with other parameters, the UCS parameter has a lesser
effect on rockburst.

Application of prediction methods

Rockburst is one of the dangerous phenomena occurring in
tunnels and mines, particularly at deep areas. This phenome-
non can cause damage to the facilities. Rockburst is catego-
rized into four different levels based on its intensity. The pre-
cise prediction of this phenomenon can significantly help de-
signers and engineers of underground structures to mitigate
the risk of rockbursts.

To assess the performance of the models proposed in this
study, 50 events which occurred in underground mines and
tunnels were randomly selected. In terms of intensity,
rockburst was divided into four levels for these cases. The
results of the three methods of MVR, ANN, and ABC-ANN
were used in order to compare the outcomes with the actual
results. Figure 11 simply shows the application of rockburst
prediction methods with real data. As observed, each model
shows some values of the prediction for this phenomenon. In

this figure, the ABC-ANN model accurately predicts
rockburst based on the four levels. As can be seen, 46 samples
of rockburst events are predicted accurately by the ABC-ANN
method. This is despite the fact that only 27 samples are cor-
rectly determined by the ANN method. Therefore, it is possi-
ble to control the dangers in these areas carefully using the
proposed ABC-ANN model.

Conclusions

Rockburst is one of the dangers occurring in deep under-
ground mines and tunnels. Precise understanding of this
phenomenon can reduce or control its destructive effects.
The use of models which is able to predict the behavior of
this phenomenon accurately is a matter for experts in this
field. For the same reason, in this research, rockburst has
been assessed and predicted based on real data in tunnels
and underground mines using artificial intelligence and its
development technique. In the present study, 246 samples
of rockburst events of various intensity of risk were col-
lected. The data used to predict this phenomenon included
the following: MTS (σθ), UCS (σc), UTS (σt), SCF (σθ/
σc), B (σc/σt), and Wet (EEI). Two intelligent models were
implemented and developed in this study. First, the ANN
model was designed at different conditions and developed
to its maximum capacity in predicting rockburst. Then, a
new model was developed in this field using the ABC
optimization algorithm. By ABC, the previous model
was trained and its various conditions were investigated.
The results of the new hybrid model ABC-ANN indicated

Fig. 8 The effect of iteration numbers on results of rockburst prediction

Table 4 The results of
the optimum ANN
model

Training Testing

R2 RMSE R2 RMSE

0.9987 0.1073 0.9656 0.1281
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a proper improvement in the performance of the predic-
tion systems of rockburst phenomenon. Finally, a compar-
ison was eventually made between different models to
examine the four risk levels of this phenomenon in

tunnels and underground mines, indicating that newly de-
veloped models were able to predict accurately and assess
risk levels of rockburst which allow designers and spe-
cialists to investigate and control the hazards.

Fig. 10 Parameters effects on the
probability of rockburst

Fig. 9 Results of R2 for all data using the ABC-ANN model

4276 J. Zhou et al.



Funding information This work is supported by the National Natural
Science Foundation Project of China (41630642; 41807259), the
Natural Science Foundation of Hunan Province (Grant No.
2018JJ3693), the Innovation-Driven Project of Central South University
(No. 2020CX040), and the Sheng Hua Lie Ying Program of Central
South University.

References

Adoko AC, Gokceoglu C, Wu L, Zuo QJ (2013) Knowledge-based and
data-driven fuzzy modeling for rockburst prediction. Int J Rock
Mech Min Sci 61:86–95

Afraei S, Shahriar K, Madani SH (2018) Statistical assessment of rock
burst potential and contributions of considered predictor variables in
the task. Tunn Undergr Sp Technol 72:250–271

Armaghani DJ, KoopialipoorM,Marto A, Yagiz S (2019). Application of
several optimization techniques for estimating TBM advance rate in
granitic rocks. J Rock Mech Geotech Eng

Badem H, Basturk A, Caliskan A, Yuksel ME (2018) A new hybrid
optimization method combining artificial bee colony and limited-
memory BFGS algorithms for efficient numerical optimization.
Appl Soft Comput 70:826–844

Cook NGW (1965) A note on rockbursts considered as a problem of
stability. J South Afr Inst Min Metall 65:437–446

Dhahri H, Alimi AM, Abraham A (2012) Designing beta basis function
neural network for optimization using artificial bee colony (abc). In:
Neural Networks (IJCNN), The 2012 International Joint Conference
on. IEEE, pp 1–7

Engelbrecht AP (2007) Computational intelligence: an introduction. John
Wiley & Sons

Faradonbeh RS, Taheri A (2018) Long-term prediction of rockburst haz-
ard in deep underground openings using three robust data mining
techniques. Eng Comput:1–17

Feng X-T, Wang LN (1994) Rockburst prediction based on neural net-
works. Trans Nonferrous Metals Soc China 4:7–14

Ge QF, Feng XT (2008) Classi?cation and prediction of rockburst using
AdaBoost combination learning method. Rock Soil Mech 29(4):
943–948

Ghaleini EN, Koopialipoor M, Momenzadeh M et al (2018) A combina-
tion of artificial bee colony and neural network for approximating
the safety factor of retaining walls. Eng Comput:1–12

Gong F, Li X (2007) A distance discriminant analysis method for predic-
tion of possibility and classification of rockburst and its application.
Yanshilixue Yu Gongcheng Xuebao/Chinese J Rock Mech Eng 26:
1012–1018

Gong FQ, Li XB, ZhangW (2010) Rockburst prediction of underground
engineering based on Bayes discriminant analysis method. Rock
Soil Mech 31(Suppl. 1):370–377

Gong F, Luo Y, Li X et al (2018) Experimental simulation investigation
on rockburst induced by spalling failure in deep circular tunnels.
Tunn Undergr Sp Technol 81:413–427

Gong, F.Q., Li, X.B., Zhang, W., 2010. Rockburst prediction of under-
ground engineering based on Bayes discriminant analysis method.
Rock Soil Mech. 31(1):370–377

Gordan B, Koopialipoor M, Clementking A et al (2018) Estimating and
optimizing safety factors of retaining wall through neural network
and bee colony techniques. Eng Comput:1–10

Guo H, Zhou J, Koopialipoor M, et al (2019) Deep neural network and
whale optimization algorithm to assess flyrock induced by blasting.
Eng Comput 1–14

Haykin S, Network N (2004) A comprehensive foundation. Neural Netw
2:41

Jahed Armaghani D, Hajihassani M, Monjezi M et al (2015) Application
of two intelligent systems in predicting environmental impacts of
quarry blasting. Arab J Geosci 8:9647–9665. https://doi.org/10.
1007/s12517-015-1908-2

Kaiser PK, MacCreath DR, Tannant DD (1996) Canadian rockburst sup-
port handbook: prepared for sponsors of the Canadian rockburst
research program 1990-1995. Geomechanics Research Centre

Karaboga D (2005) An idea based on honey bee swarm for numerical
optimization. Technical report-tr06, Erciyes university, engineering
faculty, computer engineering department

Fig. 11 A comparison between developed models for the prediction of rockburst

4277Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system

https://doi.org/10.1007/s12517-015-1908-2
https://doi.org/10.1007/s12517-015-1908-2


Khandelwal M, Singh TN (2009) Correlating static properties of coal
measures rocks with P-wave velocity. Int J Coal Geol 79:55–60

Kisi O, Ozkan C, Akay B (2012) Modeling discharge–sediment relation-
ship using neural networks with artificial bee colony algorithm. J
Hydrol 428:94–103

Koopialipoor M, Armaghani DJ, Haghighi M, Ghaleini EN (2017) A
neuro-genetic predictive model to approximate overbreak induced
by drilling and blasting operation in tunnels. Bull Eng Geol Environ
1–10

Koopialipoor M, Armaghani DJ, Hedayat A et al (2018a) Applying var-
ious hybrid intelligent systems to evaluate and predict slope stability
under static and dynamic conditions. Soft Comput:1–17. https://doi.
org/10.1007/s00500-018-3253-3

Koopialipoor M, Fallah A, Armaghani DJ et al (2018b) Three hybrid
intelligent models in estimating flyrock distance resulting from
blasting. Eng Comput:1–14

Koopialipoor M, Ghaleini EN, Haghighi M et al (2018c) Overbreak pre-
diction and optimization in tunnel using neural network and bee
colony techniques. Eng Comput:1–12

Koopialipoor M, Nikouei SS, Marto A, et al (2018d) Predicting tunnel
boring machine performance through a new model based on the
group method of data handling. Bull Eng Geol Environ 1–15

Koopialipoor M, Fahimifar A, Ghaleini EN, et al (2019a) Development
of a new hybrid ANN for solving a geotechnical problem related to
tunnel boring machine performance. Eng Comput 1–13

Koopialipoor M, Ghaleini EN, Tootoonchi H et al (2019b) Developing a
new intelligent technique to predict overbreak in tunnels using an
artificial bee colony-based ANN. Environ Earth Sci 78:165. https://
doi.org/10.1007/s12665-019-8163-x

Koopialipoor M, Murlidhar BR, Hedayat A et al (2019c) The use of new
intelligent techniques in designing retaining walls. Eng Comput:1–
12

Koopialipoor M, Noorbakhsh A, Noroozi Ghaleini E, et al (2019d) A
new approach for estimation of rock brittleness based on non-
destructive tests. Nondestruct Test Eval 1–22. doi: https://doi.org/
10.1080/10589759.2019.1623214

Koopialipoor M, Tootoonchi H, Jahed Armaghani D et al (2019e)
Application of deep neural networks in predicting the penetration
rate of tunnel boring machines. Bull Eng Geol Environ. https://doi.
org/10.1007/s10064-019-01538-7

Kumbhar PY, Krishnan S (2011) Use of Artificial Bee Colony (ABC)
algorithm in artificial neural network synthesis. Int J Adv Eng Sci
Technol 11:162–171

Kurban T, Beşdok E (2009) A comparison of RBF neural network train-
ing algorithms for inertial sensor based terrain classification. Sensors
9:6312–6329

Le LT, Nguyen H, Dou J, Zhou J (2019) A comparative study of PSO-
ANN, GA-ANN, ICA-ANN, and ABC-ANN in estimating the
heating load of buildings'energy efficiency for smart city planning.
Appl Sci 9(13):2630

Li N, Jimenez R (2018) A logistic regression classifier for long-term
probabilistic prediction of rock burst hazard. Nat Hazards 90:197–
215

Li N, Feng X, Jimenez R (2017a) Predicting rock burst hazard with
incomplete data using Bayesian networks. Tunn Undergr Space
Technol 61:61–70

Li TZ, Li YX, Yang XL (2017b) Rock burst prediction based on genetic
algorithms and extreme learning machine. J Cent South Univ 24(9):
2105–2113

Li X, Zhou J,Wang S, Liu B (2017c) Review and practice of deep mining
for solid mineral resources. Chin J Nonferrous Met 27:1236–1262

Li E, Zhou J, Shi X, Armaghani DJ, Yu Z, Chen X, Huang P (2020)
Developing a hybrid model of salp swarm algorithm-based support
vector machine to predict the strength of fiber-reinforced cemented
paste backfill. Eng Comput. https://doi.org/10.1007/s00366-020-
01014-x

Liao X, Khandelwal M, Yang H et al (2019) Effects of a proper feature
selection on prediction and optimization of drilling rate using intel-
ligent techniques. Eng Comput:1–12

Lin Y, Zhou K, Li J (2018) Application of cloud model in rock burst
prediction and performance comparison with three machine learning
algorithms. IEEE Access 6:30958–30968

Liu Z, Shao J, Xu W, Meng Y (2013) Prediction of rock burst classifica-
tion using the technique of cloud models with attribution weight.
Nat Hazards 68:549–568

Mandal SK, SinghMM (2009) Evaluating extent and causes of overbreak
in tunnels. Tunn Undergr Sp Technol 24:22–36

McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent
in nervous activity. Bull Math Biophys 5:115–133

Mohamad ET, Koopialipoor M, Murlidhar BR et al (2019) A new hybrid
method for predicting ripping production in different weathering
zones through in-situ tests. Measurement

Monjezi M, Hasanipanah M, Khandelwal M (2013) Evaluation and pre-
diction of blast-induced ground vibration at Shur River Dam, Iran,
by artificial neural network. Neural Comput & Applic 22:1637–
1643

Nourani E, Rahmani AM, Navin AH (2012) Forecasting stock prices
using a hybrid artificial bee colony based neural network. In:
Innovation Management and Technology Research (ICIMTR),
2012 International Conference on. IEEE, pp 486–490

Ortlepp WD (2005) RaSiM comes of age–a review of the contribution to
the understanding and control of mine rockbursts. In: Proceedings of
the Sixth International Symposium on Rockburst and Seismicity in
Mines, Perth, Western Australia. pp 9–11

PuY, Apel DB, Lingga B (2018) Rockburst prediction in kimberlite using
decision tree with incomplete data. J Sust Min 17(3):158–165

Schloerke B, Crowley J, Cook D, et al (2011) Ggally: extension to
ggplot2

Shi XZ, Zhou J, Dong L, Hu HY,Wang HY, Chen SR (2010) Application
of un- ascertained measurement model to prediction of classification
of rockburst intensity. Chin J Rock Mech Eng 29(supp.1):2720–
2727

Tao M, Ma A, Cao WZ, Li XB, Gong FQ (2017) Dynamic response of
pre-stressed rock with a circular cavity subject to transient loading.
Int J Rock Mech Min Sci 99:1–8

Tao M, Li ZW, Cao WZ, Li XB, Wu CQ (2019) Stress redistribution of
dynamic loading incident with arbitrarywaveform through a circular
cavity. Int J Numer Anal Methods Geomech 43(6):1279–1299

Trevor H, Robert T, JH F (2009) The elements of statistical learning: data
mining, inference, and prediction

Wang SY, Lam KC, Au SK, Tang CA, Zhu WC, Yang TH (2006)
Analytical and numerical study on the pillar rockbursts mechanism.
Rock Mech Rock Eng 39(5):445–467

Wang S, Li X, Du K, Wang S, Tao M (2018a) Experimental study of the
triaxial strength properties of hollow cylindrical granite specimens
under coupled external and internal confining stresses. Rock Mech
Rock Eng 51(7):2015–2031

Wang S, Li X, Wang S (2018b) Three-dimensional mineral grade distri-
bution modelling and longwall mining of an underground bauxite
seam. Int J Rock Mech Min Sci 103:123–136

Wang S, Li X, Yao J, Gong F, Li X, DuK, TaoM,Huang L, Du S (2019a)
Experimental investigation of rock breakage by a conical pick and
its application to non-explosive mechanized mining in deep hard
rock. Int J Rock Mech Min Sci 122:104063

Wang S, Liu Y, Du K, Zhou J (2019b) Dynamic failure properties of
sandstone under radial gradient stress and cyclical impact loading.
Front Earth Sci 7:251

Wenner AM,Wells PH, Rohlf FJ (1967) An analysis of the waggle dance
and recruitment in honey bees. Physiol Zool 40:317–344

Wickham H (2016) ggplot2: elegant graphics for data analysis. Springer

4278 J. Zhou et al.

https://doi.org/10.1007/s00500-018-3253-3
https://doi.org/10.1007/s00500-018-3253-3
https://doi.org/10.1007/s12665-019-8163-x
https://doi.org/10.1007/s12665-019-8163-x
https://doi.org/10.1080/10589759.2019.1623214
https://doi.org/10.1080/10589759.2019.1623214
https://doi.org/10.1007/s10064-019-01538-7
https://doi.org/10.1007/s10064-019-01538-7


Xia-ting F, Webber S, Ozbay MU (1998) Neural network assessment of
rockburst risks for deep gold mines in South Africa [J]. Trans
Nonferrous Metals Soc China 8:335–341

Xu C, Gordan B, Koopialipoor M et al (2019) Improving performance of
retaining walls under dynamic conditions developing an optimized
ANN based on ant colony optimization technique. IEEE Access 7:
94692–94700

Yang H, KoopialipoorM, Armaghani DJ et al (2019) Intelligent design of
retaining wall structures under dynamic conditions. Steel Compos
Struct 31:629–640

Zhao HB (2005) Classification of rockburst using support vector ma-
chine. Rock Soil Mech 26:642–644

ZhaoY, NoorbakhshA, KoopialipoorM et al (2019) A newmethodology
for optimization and prediction of rate of penetration during drilling
operations. Eng Comput:1–9

Zhou J, Shi X, Dong L et al (2010) Fisher discriminant analysis model
and its application for prediction of classification of rockburst in
deep-buried long tunnel. J Coal Sci Eng 16:144–149

Zhou J, Li X, Shi X (2012) Long-term prediction model of rockburst in
underground openings using heuristic algorithms and support vector
machines. Saf Sci 50:629–644

Zhou J, Li X, Mitri HS (2016a) Classification of rockburst in under-
ground projects: comparison of ten supervised learning methods. J
Comput Civ Eng 30:4016003

Zhou J, Shi XZ, Huang RD, Qiu XY, Chen C (2016b) Feasibility of
stochastic gradient boosting approach for predicting rockburst dam-
age in burst-prone mines. Trans NonferrousMetals Soc China 26(7):
1938–1945

Zhou J, Li X, Mitri HS (2018) Evaluation method of rockburst: state-of-
the-art literature review. Tunn Undergr Sp Technol 81:632–659

Zhou J, Aghili N, Ghaleini EN, et al (2019a) A Monte Carlo simulation
approach for effective assessment of flyrock based on intelligent
system of neural network. Eng Comput 1–11

Zhou J, Koopialipoor M, Murlidhar BR et al (2019b) Use of intelligent
methods to design effective pattern parameters of mine blasting to
minimize flyrock distance. Nat Resour Res. https://doi.org/10.1007/
s11053-019-09519-z

Zhou J, Li E, Yang S, Wang M, Shi X, Yao S, Mitri HS (2019c) Slope
stability prediction for circular mode failure using gradient boosting
machine approach based on an updated database of case histories.
Saf Sci 118:505–518

Zhou J, Guo H, Koopialipoor M, Armaghani DJ, Tahir MM (2020)
Investigating the effective parameters on the risk levels of rockburst
phenomena by developing a hybrid heuristic algorithm. Eng
Comput. https://doi.org/10.1007/s00366-019-00908-9

4279Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system

https://doi.org/10.1007/s11053-019-09519-z
https://doi.org/10.1007/s11053-019-09519-z

	Prediction of rockburst risk in underground projects developing a neuro-bee intelligent system
	Abstract
	Introduction
	Methodology
	Artificial neural network
	Artificial bee colony
	Initialization phase
	Employed bee phase
	Onlooker bees phase
	Scout bees phase


	Data collection
	Result and discussion
	Multi-variable regression
	ANN
	ABC-ANN
	Number of bees
	Number of iterations

	Sensitivity analysis

	Application of prediction methods
	Conclusions
	References


