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Abstract
Declining groundwater levels due to the absence of a planning system makes aquifers vulnerable to subsidence. This paper
investigates possible hotspots in terms of Subsidence Vulnerability Indices (SVI) by applying the ALPRIFT framework, introduced
recently by the authors bymirroring the procedure for the DRASTIC framework. ALPRIFT is suitable to cases, where data is sparse,
and is the acronym of seven data layers to be presented in due course. It is a scoring technique, in which each data layer bears an
aspect of land subsidence and is prescribed with rates to account for local variability, and with prescribed weights to account for
relative significance of the data layer. The inherent subjectivity in prescribed weights is treated in this paper by learning their values
from site-specific data by the strategy of using artificial intelligence to learn from multiple models (AIMM). The strategy has two
levels: (i) at Level 1, three fuzzy models are used to learn weight values from the local data and from observed target data, and (ii) at
Level 2, genetic expression algorithm (GEP) is used to learn further, in which the outputs of the models at Level 1 are reused as its
inputs and observed data as its target values. The results show that (i) the Nash-Sutcliff Efficiency (NSE) coefficient for ALPRIFT
with measured land subsidence values is approx. 0.21; (ii) NSE is improved to 0.88 by learning the weights at Level 1 using fuzzy
logic, and (iii) NSE is further improved to 0.94 by further learning at Level 2 using GEP.

Keywords ALPRIFT . Framework . Fuzzy logic (Sugeno,Mamdani and Larsen) . GEP . Ground-truthing . InSAR . Learning in
two levels . Proof-of-concept . Sentinel-1 . Subsidence

Introduction

Research on land subsidence is topical in engineering and en-
vironmental research, as its impacts are observed inmany coun-
tries including China, Iran, Japan, Singapore, Thailand and the

USA (Ye et al. 2015; Nadiri et al. 2018a; Hayashi et al. 2009;
Phien-wej et al. 2006; Zhang et al. 2018; Goh et al. 2019;
Galloway et al. 1999). Some engineering impacts of subsidence
are outlined byKihm et al. (2007), which include the following:
(i) a collapse of water wells and the breakage of their casings
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and ancillary works by compacted soil due to decline of the
water table in aquifers; (ii) the requirement for realignment of
diversion structures in open channels; (iii) redistribution of
stresses and strains in building works and structures creating
the potential for excessive forces and subsequent failures.
Arguably, aquifer management practices should feed informa-
tion to planning stages of development works and the paper
investigates accuracies of identifying subsidence hotspots, with
potential to serve as a planning and management tool.

Studies on land subsidence are fragmented, as their focus is
on settlements of ground surface triggered by movements or
removals of groundwater by anthropogenic activities (Poland
et al. 1972; Anumba and Scot 2001). These studies are trig-
gered by a host of processes including the following: (i) ex-
cessive water abstraction from aquifers, e.g. in Thailand,
Spain, Iran and China (Lorphensri et al. 2011; Schmid et al.
2014; Mateos et al. 2017; Nadiri et al. 2018a; Wang et al.
2019); (ii) degradation in organic soils, e.g. Venice, Italy
(Tosi et al. 2013); (iii) extraction of underground fossil fuels,
e.g. Wilmington oil reservoir, California (Colazas and Strehle
1995); (iv) karstification due to dissolution of limestone, e.g.
Turkey and Spain (Desir et al. 2018; Doğan 2005); (v) sub-
surface mining, e.g. Bethlehem Mines Corporation, central
Pennsylvania (Sossong 1973) and Kamptee Colliery, India
(Soni et al. 2007); (vi) braced excavation in residual soils with
groundwater drawdown (Zhang et al. 2018). Subsidence is a
feature since the Industrial Revolution (1750–1950) that often
impacts groundwater resources by withdrawals through aqui-
fer pumpage. There is a gap in the state-of-the-art due to frag-
mentations in the techniques in each field of study with no
cross-cutting techniques.

Land subsidence hazards often stem from two main pro-
cesses: (i) geogenic processes, e.g. Avila-Olivera and
Garduño-Monroy 2008; Cui and Tang 2010; Gu et al. 2018;
and (ii) anthropogenic processes, e.g. Anumba and Scot 2001;
Poland et al. 1972; and Wang et al. 2019). Each process often
depends on a set of variables and their collective product may
give rise toward subsidence. Past researches use different
techniques to investigate and monitor subsidence and settle-
ment by a range of approaches, e.g. Interferometric Synthetic
Aperture Radar (InSAR) (Fernández-Camacho et al. 2015),
global positioning system (GPS) (Sato et al. 2007), field evi-
dence and historical data (Psimoulis et al. (2007), ground-
penetrating radar (GPR) (Avila-Olivera and Garduño-
Monroy 2008). These techniques are not analytical and there-
fore their efficacy is limited to past incidents but the paper
explores a technique that learns from site data.

The ALPRIFT framework, introduced recently by Nadiri
et al. (2018a), integrates both geogenic and anthropogenic di-
mensions to identify potential hotspots for subsidence from local
data. It is a mapping technique, which models Subsidence
Vulnerability Indices (SVI) using seven general-purpose data
layers, as well as those from satellite remote sensing, including

direct measurements for ground-truthing. ALPRIFT is particular-
ly suitable to study areas with sparse data to map proactively
hotspots vulnerable to subsidence by a modelling strategy to
produce defensible information from the available data, though
it is not capable of predicting future incidents.

The authors’ research on subsidence is innovative by intro-
ducing the ALPRIFT framework and investigating its perfor-
mances, which parallels their ongoing program of research on
groundwater vulnerability framework using DRASTIC by
Aller et al. (1987). Both are mapping techniques but
DRASTICmaps aquifer vulnerability caused by anthropogenic
contaminants, whereas ALPRIFT does that for aquifer subsi-
dence. Both ALPRIFT and DRASTIC frameworks involve a
scoring system in terms of rates to account for relative signifi-
cance of local conditions and by weights to account for relative
significance of each data layer. The rates and weights of both
frameworks are not transferrable to each other and they have no
theoretical or empirical basis but are tested using performance
metrics. The authors’ experience in implementing DRASTIC
frameworks is that more defensible vulnerability mapping is
feasible by learning the values of the weights by formulating
strategies using artificial intelligence (AI). As ALPRIFT is a
field of research at its infancy, investigating various strategies
to learn the values of rates and/or weights from local data is now
wide open. The paper investigates one such strategy by using
AI to run multiple models (AIMM) at two levels and this strat-
egy in itself is topical, as follows.

Learning at Level 1 This comprises the application of three
variations of fuzzy logic (FL), which evolved as follows: (i)
Zadeh (1965) presented the original of FL in 1965; (ii) this
was transformed into a modelling capability using subjective-
ly prescribed rules; and (iii) various algorithms emerged to
learn the rules from the data. The paper uses three such algo-
rithms, which are (i) Sugeno FL (SFL), see Sugeno (1985); (ii)
Mamdani FL (MFL), see Mamdani (1976); and Larsen FL
(LFL), see (Larsen 1980). Traditional FL modelling practices
select one of these models as the ‘superior’ one but the paper
regards them as fit-for-purpose and reuses them in the next
levels. Notably, Khatibi et al. (2011a, b, 2012, 2017) criticise
traditional approaches preoccupied with selecting best
models.

Learning at Level 2 The authors have devised various further
learning strategies (Nadiri et al. 2013, 2017a, 2018a, b, c) and
the paper investigates the following: (i) at Level 1, SFL, MFL
and LFL are adopted to optimise the weight values and make
predictions; (ii) at Level 2, these are regarded as multiple
models (MM) and are reused as inputs to another AI model
to run MMs and, hence, the AIMM strategy. This study uses
GEP at Level 2 and this is to be outlined in due course.

The need for identifying hotspots is increasingly necessary
for Ardabil plain, Ardabil province, northwest Iran, for several
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reasons, as follows: (i) Based on the data provided by the
Ardabil Regional Water Authority (ARWA), average decline
of groundwater level is greater than 16 m in the past 10 years
(from 2005 to 2015) at an approximate rate of 2 m/annum. (ii)
One of the main economic sectors of this region is agriculture
but traditional irrigation practices have transformed without
any plans since the availability of tubewell pumping in 2000
and this corresponds to over-abstraction. Owing to the ab-
sence of an effective planning system with participation, the
situation has given rise to the emergence of ‘the tragedy of the
commons’, a concept that is introduced by Hardin (1968).
With no effective basin management plans, anthropogenic en-
croachments have concealed opportunities but distressed wa-
ter table by pumpage. These collectively increase vulnerabil-
ity to induce land subsidence by exposing soil characteristics
to the risk of collapsing under upper soil load. Subsidence risk
in Ardabil plain is now comparable to other anthropogenic
risks and the detection of hotspot areas vulnerable to subsi-
dence in this research can be the first step towards their pos-
sible management in the future.

Methodology

Basic ALPRIFT framework for subsidence and its
measurement

The heuristic capability of the basic ALPRIFT framework
(BAF), introduced by Nadiri et al. (2018a), is capable of map-
ping Subsidence Vulnerability Indices (SVI) of any aquifer/
plain system by pooling together seven data layers, which can
serve as a proxy of subsidence. These data layers and the math-
ematical formulation for BAF SVI are detailed by Nadiri et al.
(2018a), which may be referred to for their basic information.
Their reproduction here and in the “Input data layers” section.

Soil texture and structure of a study area are captured by
reducing the overall geomorphological, hydrogeological char-
acteristics of the set of seven data layers, which are assumed to
be independent of one another, comprising aquifer media (A),
land use (L), pumping of groundwater (P), recharge (R), im-
pacts instigated by aquifer thickness (I), fault distance (F) and
water table variation (T). They are further categorised as fol-
lows: A, the medium, where subsidencemay prevail; LP, these
account for anthropogenic contributions to subsidence; RIFT,
these account for intrinsic tendencies towards subsidence. The
assigned BAF weights and rates are shown in Fig. 4, but for
more details, see Nadiri et al. (2018a).

The methodology is captured in the flowchart in Fig. 1,
which presents the procedure for assessing SVI through the
following steps: (i) discretise the plain under study in GIS into
pixels; (ii) set up an array of seven raw data layers for each
pixel, each of which comprises their prescribed values; (iii)
assign the values of the rates at each pixel; and (iv) assign

weights to each data layer. SVI is expressed as follows:

SVI ¼ ArAw þ LrLw þ PrPw þ RrRw þ IrIw þ Fr Fw

þ TrTw ð1Þ

where SVI is the Subsidence Vulnerability Index, uppercase
acronyms represent the ALPRIFT data layers, subscripts ‘r’
denote rates and ‘w’ denotes weights.

Microwave remote sensing satellite images are also
employed in this study for detecting land subsidence based on
interferometry technique. For this goal, Sentinel-1A
(Interferometric Synthetic Aperture Radar (InSAR)) was ob-
tained for the investigation period from August 2015 to
August 2016. The initial InSAR images were acquired from
https://scihub.copernicus.eu/, where the site provides open
access; the images have a vertical resolution of 10 m, and as
such, they are unsuitable for a direct assessment of subsidence
on their own. The interferometry approach was applied to drive
land subsidence between August 2015 and August 2016. The
research implemented interferometry technique, which is
discussed in greater detail by Nadiri et al. (2018a). In this con-
text, the methodological scheme for InSAR data processing
included four main steps as follows: (i) analysing and comput-
ing a set of data points at the observation wells with known geo-
referenced locations; (ii) comparing land subsidence at known
points and the InSAR image in GIS environment in order to
obtain the InSAR pixel values at each known point; (iii)
adjusting automatically InSAR values at each pixel by applying
the ENVI ground-truth modules through a set of sparsely mea-
sured subsidence values; (iv) carrying out ground-truthing and

normalising the subsidence data layer (i.e. calculate SGTi
SGTmax

); (iv)

conditioning the output, as:

CSVIi ¼ SGTi

SGTmax
� SVImax ð2Þ

where SGTi = subsidence at grid cell i after ground-truthing (in
cm) and SGTmax is its maximum; CSVI is another data layer
created for conditioned SVI at pixel i, SVImax is the BAF max-
imum and hence the term conditioning.

Three models based on fuzzy logic

Three models are developed using fuzzy logic (FL) to learn
the weighting values in lieu of prescribed weights in BAF.
Models using the fuzzy set theory are a strategy to develop a
relationship between input data and output data. Each fuzzy
set uses membership function (MF), which may have different
types, e.g. S-shape, Gaussian, triangular, sigmoid, trapezoidal
and Z-shape and these are decided by trial-and-error. Fuzzy
sets use partial membership, in the range from 0 and 1.

The first-generation FL models used prescriptive rules but
the paper uses the second-generation approach of clustering
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techniques, developed since the 1980s, which are capable of
automatically identifying the possible structures within the data
and identifying optimum rules. Different clustering methods
have been developed to identify clusters within the data and
their optimum numbers (Chiu 1994, Asadi et al. 2014). Most
appropriate clustering methods are subtractive clustering (SC)
(Li et al. 2001) and fuzzy C-means (FCM) (see Bezdek 1981).
In this study, zero or first-order models were used to learn the
weight values from the site data, in association with Sugeno FL
(SFL), Mamdani FL (MLF) and Larsen FL (LFL).

The paper uses three approaches to implement models of
FL as illustrated in Fig. 1 and outlined as follows. Sugeno FL
(SFL) models use (i) constant or linear output membership
functions, referred to as zero and first-order SFL, respectively
(Sugeno 1985), and (ii) SC to extract fuzzy if-then rules
(Fijani et al. 2013; Tayfur et al. 2014; Nadiri et al. 2014,
2015; Moazamnia et al. 2020). In the SCmethods, the number
of clusters is the same as the number of rules and controlled by
the clustering radius, which takes values between 0 and 1.

Mamdani FL (MFL) models use (i) the output membership
functions of the ‘MIN’ operation for their fuzzy implications
(Mamdani 1976; Nadiri et al. 2019), and (ii) rules are identi-
fied by the FCM clustering method (Lee 2004).

Larsen FL (LFL) operates the same as MFL with the excep-
tion that the ‘PRODUCT’ operator is used by LFL in the impli-
cation operations (Larson et al. 2001). Themethodology present-
ed above is illustrated in Fig. 1 by an example with two depen-
dent parameters of A andB, eachwith triangularMFs. The figure
also illustrates its implication and aggregation.

Artificial intelligence running multiple models by GEP

The three FL models of MFL, LFL and SFL are AI models at
Level 1, whichmark the limit of conventional practices in terms
of extracting information from the data. Sufficing to one level
of learning by AI technics is the norm but Khatibi et al. (2017)
criticise limiting the learning to one level. Nadiri et al. (2013,
2017a, b, c, 2018b)) formulate a strategy of learning at two
levels, as follows: The outputs of Level 1 AI models are reused
as inputs to yet another AI model, which also uses the same
target values as the Level 1 models. The AI model at Level 2 in
this study are constructed by the genetic expression program-
ming (GEP) strategy and hence it forms a Level 2 AI strategy to
runmultiple models (MM), a strategy that the authors refer to as
artificial intelligence running multiple models (AIMM), see
Fig. 1. The strategy comprises: (i) formulate three supervised
SFL, MFL and LFL models for modelling the Subsidence
Vulnerability Index (SVI) of a study area using ALPRIFT data
layers; (ii) produce output of the three models to reuse; and (iii)
construct a GEP model, in which the target values are as those
for Level 1 models but its input data are the three output results
from the Level 1 SFL, MFL and LFL models, see Fig. 1.

GEP, introduced by Koza (1994), uses ‘parse tree’ struc-
tures for identifying optimum solutions, which comprise ter-
minal and function sets. The function comprises the basic
operators such as {−, +, ×, ÷, √, sin, log,…} and the terminal
set, which forms the real components of the functions and
their parameters. Notably, both of these components together
emulate the role of chromosomes as in biological systems.
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The modelling strategy investigates the types of functions
through trial-and-error for each system by tree structures.

GEP is used to combine the models at Level 2 for model-
ling subsidence vulnerability. The modelling procedure in
implementing GEP are the following: (i) select the fitness
function, (ii) select terminal and function sets to generate the
initial set of chromosomes, (iii) select the structure of the
chromosomes, (iv) set their linking function and (v) select
genetic operators (Ghorbani and Khatibi 2012).

In this research, GEP was implemented by the
GeneXproTools 4.0 software. The particulars of the model
running in this study include different programs in terms of
their sizes and shapes and the use of fixed length and linear
chromosomes. AIMM in Fig. 1 is expressed mathematically

as follows:

CSVIFLi ¼ FLi A;L; P;R; I; F;Tð Þ ð3Þ
CSVIAIMM ¼ GEP FL1; FL2; FL3ð Þ ð4Þ
where CSVIFLi is the output from each FL model (i = 1: SFL;
i = 2: MFL; i = 3: LFL);

Study area

The study area is approx. 990 km2 (Fig. 2) and comprises the
Ardabil plain in central parts of the Ardabil province. The aqui-
fer is the outcome of geomorphological processes in the Qarasu

Fig. 2 Location and geological map of the Ardabil basin
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(blackwater) basin, which drains three major mountain ranges:
(i) Mount Savalan (Sabalan) at its west, which is
4811 m AMSL with a permafrost crater at the peak; (ii)
Qushchu mountains ranges at its southern side; and (iii)
Baghari (also known as Talesh) mountains at its east. The main
tributaries of Qarasu include Balikhli Chay, Qara Chay, Hire
Chay, Nemin Chay, Naqiz Chay, Sulaya Chay and Nuran Chay.

Geological context

Mount Savalan and Talesh mountains of the study area are
volcanic and largely of the Eocene period, which is the result
of the expansion of the Laramide orogeny phase. Geological
formations in Ardabil plain comprise (i) volcanic formations
composed of basalt (Cretaceous), andesite and tracyandesite
(Quaternary) in the eastern part as the dominant formation of
the basin; (ii) limestone formation mostly occurred in the
Jurassic period located in the northern part; (iii) marl, sand-
stone and tuff formations mostly occurred in Neogene and
located in the northwest of the area; (iv) conglomerates during
the Cretaceous epoch and volcanic conglomerate, tuff con-
glomerate exposed during Neogene and Quaternary; and (v)
traces of recent alluvium related to Quaternary mostly at the
north of the study area (Nadiri et al. 2017a).

At the west, fractures are likely to serve as themain source of
recharging the alluvial aquifer of Ardabil Plain, which are re-
lated to the Igneous and pyroclastic rocks originating from vol-
canic activity of Mount Savalan. Also, in the western part of
Ardabil plain, non-carbonate rocks of Lahar and conglomerate
outcrops are likely to feed the aquifer in Ardabil plain, which
expands approx. 430 km2. The plain is mainly covered with
alluvial deposits of the sand, silt and clay, a composition rife to
subsidence risk in an agriculturally well-developed region.

The southern part of the region is exposed to the activity of
the main faults running in the northeast to southwest direction
belonging to the upper Eocene volcanic activities. The area is
largely formed through tertiary tectonic processes and the
Savalan volcano in the Quaternary period became the primary
feature. The faults in the area include (i) the East Ardabil Fault
along the north to south direction parallel to the Astara fault
and continues towards the Masouleh fault; (ii) the Talesh fault
runs for approx. 400 km along many series largely in the
northeast to southwest direction; (iii) Savalan faults are out-
comes of volcanic activities but the subsequent lava flows
cover fractures and sometimes deep faults, which run in dif-
ferent directions in the vicinity of Mount Savalan, resulting in
hot water mineral springs along their paths.

Hydrogeology of study area

The aquifer under the Ardabil plain is unconfined. The larger
basin area related to Ardabil plain is approx. 4003 km2, of
which 75% are mountainous and 25% are plain. The main

aquifer recharge sources at Ardabil plain are as follows: (i)
groundwater flows through the joints and fractures at the
mountainous upper catchment areas and crosses the aquifer
boundary and thereby recharges it; (ii) rainfall directly falling
on the plain infiltrates soil and thereby percolates groundwa-
ter; and (iii) interactions between the watercourses and the
aquifer with net gains and losses vary through time.
According to geo-electric studies, changes in alluvium thick-
nesses at the margins of the plain are often low but gradually
increase towards its middle so that higher thicknesses are not-
ed at eastern and the middle parts of the plain (Nadiri et al.
2017a). Groundwater in the aquifer is withdrawn through
3669 deep and semi-deep withdrawal wells, 391 natural
springs and 48 qanats (Fig. 3).

Land use

Ardabil is located in the study area and it is a historic city with
a population of more than half a million but that at the plain is
more than one million. Agriculture in the study area is the
main economic activity and the region is well-known for its
fertility and high agricultural activities. There are some pro-
cessing industries around Ardabil including food and drink
packing, electronic devices producing, paper producing and
plastic tools producing factories. The land use classification is
discussed further in the next section.

Dataset preparation

The study area is divided into pixels of dimensions 500 m ×
500 m, which leads to generating 3760 number of pixels. The
databank of the study area shown in Fig. 3 comprises a pro-
vision of 55 observation wells for recording groundwater
levels, 34 number of wells with geological logs and 3669
number of abstraction wells. The tedious data preparation in-
volves a set of decisions, which are presented in detail by
Nadiri et al. (2018a). This section presents a sufficient amount
of detail only to ensure the reproducibility of the models pre-
sented in this study.

Some of the basic information about these data layers
are reproduced in the section: Input data layers

ALPRIFT with its seven data layers and its associated best
practice procedure is detailed by Nadiri et al. (2018a, b, c).
The preparation of the data layers is outlined in Fig. 1 and this
section presents the main decisions appropriate for this study
and specifies data sources.

Aquifer media (A) It expresses soil texture and structure as
follows: (i) use the 34 geological logs available for the study
area, including their qualitative accounts of soil composition
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in terms of clay, sand and gravel (ARWA 2016); (ii) prescribe
the rate values as per Fig. 4; (iii) estimated average-rated pro-
portions at each well distribute these values using inverse
distance weights (IDW) for the study area. The rate for each
class of the A-data layer varies from 5 to 10 (Nadiri et al.
2018a). The rated A-data layer together with their proportions
is shown in Fig. 4a.

Land use (L) The steps for processing this data layer with 28 m
spatial resolution (IranNational Cartographic Centre 2013) is as
follows: (i) produce a polygon vector from the raster map, (ii)
superimpose the grid on the vector map and (iii) assign the rate
values as per Nadiri et al. (2018a, b, c) to each pixel. The rated
L-data layer together with their proportions is shown in Fig. 4b.

Pumping of groundwater (P) The measured monthly dis-
charge data from 3669 available abstraction wells (October
2015–October 2016) obtained from ARWA (2016) used for
calculating the Annual discharge values were as follows: (i)
the Theisen polygons were drawn for the 34 observation
wells; (ii) withdrawal wells were identified within each poly-
gon; (iii) the abstracted groundwater was summed within each
polygon and was divided by the area within the polygon; (iv)
contours of abstraction area were drawn as per algorithm

specified in Fig. 4c; (v) the value of abstracted groundwater
at each pixel was taken off using the contour maps; and (vi)
the data layer was reclassified into six classes as per P-data
layer specified by Nadiri et al. (2018a). Groundwater
pumpage ranges from 0.42 to 48.75 cm/yr and the rated P-
data layer together with their proportions is shown in Fig. 4c.

Recharge (R) The data layer for net recharge was prepared as
per Scanlon et al. (2002) using three raster layers as follows:
(i) use rainfall values at Benis-Sanjan station, provided by
ARWA (2016), and its value is 317 mm for the period from
October-2015 to October-2016; (ii) use slope values and its
values vary in the range of 0–19% in the basin and is less than
2% for plain; and (iii) use soil permeability provided by
ARWA (2016), where its values vary from very slow to high.
The net recharge map is the outcome of combining these three
layers (0.18–44 cm/year) after dividing into three categories as
per Nadiri et al. (2018a). The rated R-data layer together with
their proportions is shown in Fig. 4d.

Impact of aquifer thickness (I) Thicknesses of the sediments in
the study area were measured by geo-electric surveys. The
survey data from 97 wells were used and their depth ranges
were calculated to be in the range of 13–213 m. This was

Fig. 3 Location of abstraction
wells in Ardabil plain
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divided into six categories as per Nadiri et al. (2018a). The
rated I-data layer together with their proportions is shown in
Fig. 4e.

Fault distance (F) The distances between fault lines and every
pixel of the study area were calculated by the Euclidean dis-
tance method in a GIS environment using the map by the
Geological Survey and Mineral Exploration of Iran. The out-
put map was reclassified into six classes as per Nadiri et al.
(2018a). The rated F-data layer together with their proportions
is shown in Fig. 4f.

Water table decline (T) The water table (T) declination at 34
observation wells was calculated by subtracting the water ta-
ble for a 1-year period (October 2015–October 2016) (ARWA
2016). The declined range is from 0.85 to 2.59 m for 2015–
2016. The reclassified map uses four classes (Nadiri et al.
2018a). The rated T-data layer together with their proportions
is shown in Fig. 4g.

Target data Figure 5a shows the CSVI data layer but
reclassified into four designated bands as per Fig. 4. The

data layer serves as target to the three AI models to opti-
mise the ALPRIFT weights and as to the supervised GEP
model at Level 2. As the maximum CSVI from FL models
is not constrained, AI models may slightly exceed those
from BAF. The average values are given in Fig. 5a for the
period August 2015–August 2016. The maximum subsi-
dence over the study area is 2.14 cm for the period of
August 2015–August 2016 but the evidence from obser-
vation wells shows this to be 9 cm for the 10-year period
(average of 0.9 cm) based on the sparse observation well.
Risk exposures to subsidence are probably accelerating at
the study area and this is expected but more data is need-
ed to confirm it.

Implementation of the framework and three models

The input and output datasets for implementing the SFL,
MFL and LFL models require the division of the data into
two sets of training and testing phases. Thus, the training
phase of the models use randomly selected 80% of the
data and the testing phase uses the remaining 20% of
the data. Model performances are measured by comparing

Fig. 4 Raster BAF data layers—rated data; a Aquifer media (weight, 5);
b land use (weight, 4); c pumping of groundwater (weight, 4); d recharge
(weight, 3); e impacts in terms of thickness (weight, 2); f fault distance

(weight, 5); gwater table decline (weight, 1). Note: The A, P, I and T data
layers use the IDW interpolation technique
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the modelled values with their corresponding measured
values using the following performance metrics: correla-
tion coefficient (r), Nash and Sutcliffe Efficiency coeffi-
cient (NSE) and correlation index (CI) Nadiri et al.
(2018c), and receiver operating characteristics (ROC)
curves together with area under curve (AUC) (Swets
1988).

Correlation coefficient varies from 1 to − 1, at which the
measured metric is indicative of a perfect performance but if r
is closer to zero, it indicates poor performances. NSE varies in
the range of 1 to −∞, where (i) NSE = 1 reflects a perfect
match between the modelled and measured values, (ii) NSE =
0 is a reflection of the cases when information content of the
modelled results to be of a similar order of the mean of the
observed data and (iii) NSE < 0 is a reflection of the residual
errors to be larger than that of the measurements (Nourani
et al. 2008). NSE is known to be sensitive to outliers.

The paper uses another performance metric, referred to as
correlation index (CI), which employs only those data and
results at the observation points. The procedure for calculating
CI-values is as follows: (i) the subsidence target values are
grouped into four subsidence bands (SB 1, SB 2, SB 3 and
SB 4); (ii) the modelled subsidence values are also grouped
into four modelled bands (MB 1,MB 2,MB 3 andMB 4); (iii)
a matrix is formed and the score for each field in the matrix is
counted; (vi) weights of 1, 2, 3 and 4 are assigned for the band
differences being 3, 2, 1 and 0, respectively; (v) the weighted
scores are summed together.

The minimum SVI by ALPRIFT is 24 and its maximum is
240. However, the results for SFL, MFL, LFL and AIMM are
not constrained and therefore they can produce values outside
these limits.

Receiver Operating Characteristic (ROC) is often used
for spatial goodness-of-fit. It is an analysis tool for radar
images and is known as “Signal Detection Theory” to
differentiate between the blips from a friendly ship, an
enemy target or noise. The signal detection theory is
now used in wider modelling practices. The ROC curve
accuracy is measured by the Area Under Curve (AUC)
and its value of 1 represents a perfect test but of 0.5
reflect existence of strong noise.

Results

Basic ALPRIFT framework

The basic ALPRIFT framework (BAF) vulnerability indexing
is only used in this investigation for processing the data layers
and benchmarking. GIS is used to process the raw data and
Figs. 4 maps their rated values. SVI values were mapped by
Eq. (1) through the procedure illustrated in Fig. 1 with pre-
scribed rate and weight values as per Nadiri et al. (2018a). The
SVI classification is mapped in Fig. 5b, which also gives the
proportion of areas within each band (Band 1 has 3% of sub-
sidence potential; Band 2 has 57% of subsidence potential;

Fig. 5 Subsidence mapping to identify hotspots: a measured subsidence after ground-truthing; b mapping by BAF; c mapping by SFL; d mapping by
MFL; e mapping by LFL; f mapping by AIMM (GEP)
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Band 3 has 37% of subsidence potential and Band 4 has 5%
subsidence potential).

The performance measure for BAF is based on the
correlation coefficient and NSE through the comparison
of SVI values (Fig. 5b) with measured subsidence (Fig.
5a). It is visually apparent that there are convergences and
divergences between the respective results, but this is nat-
ural as BAF is not a prediction but identification of po-
tentials. The results are given in Table 1, according to
which r and NSE values for BAF are 0.55 and 0.21 re-
spectively, and the values signify that the information ex-
tracted from the data layers by BAF is significant but not
yet defensible. This is a notable similarity with the au-
thors’ reported studies on the DRASTIC vulnerability in-
dices, see Nadiri et al. (2017a, b, c); as well as with that
of BAF (Nadiri et al. 2018a). Thus, the low correlation
justifies seeking for further improvement by using the
SFL, MLF and LFL models as detailed below.

Sugeno, Mamdani and Larsen fuzzy logic

The learning strategy at Level 1 in this investigation is the
use of SFL, MLF and LFL. The SFL model was imple-
mented by optimising the weights for each ALPRIFT data
layer by matching the modelled values with the CSVI
values. The subtractive clustering (SC) technique was
used by systematically increasing the cluster radii from
0 to 1. The results show that the optimum clustering ra-
dius is of 0.4, at which value the RMSE value was
minimised and rendered the value of 0.1. The outcome
is the generation of 9 membership functions (fuzzy if-
then rules). This is then used in the SVI assessment by
the SFL model by formulating fuzzy if-then rule i,
expressed as follows:

Rule i : If

A belongs to MFiA and
L belongs to MFiL and

P belongs to MFiP and

R belongs to MFiR and
I belongs to MFiI and
F belongs to MFiF and
T belongs to MFiT and

0
BBBBBBBBBB@

1
CCCCCCCCCCA

Then SVIi ¼ miAþ niLþ oiP þ piRþ qiI þ riF þ siT þ t

ð5Þ

where MFiA is membership function of the ith cluster of

input A, MFiL is membership function of the ith cluster of
input L and so forth. “AND” is a fuzzy operator, which
connects the various MFs together as per rule. SVIi is the
output of rule i and the linear function of the ith cluster of
output, and mi, ni, oi, pi, qi ri, si and t are constant coef-
ficient values.

The aggregation process comprises the output (SVI) as the
weighted average of all outputs:

SVI ¼ ∑iwiSVIi
∑iwi

ð6Þ

where wi is the firing strength of rule i, assessed via the “and”
operator.

Table 1 includes the presentation of the SFL modelling
results in terms of r, NSE and RMSE, where these values for
the training phase are 0.95, 0.9 and 7.23, and for the testing
phase they are 0.86, 0.93 and 7.99, respectively. The results
show that SFL produces significant improvements over that of
BAF. The CSVI mapping of Ardabil plain from the SFL mod-
el is shown in Fig. 5c.

MFL and LFL models were implemented by
optimising the BAF weights to match CSVI values. The
fuzzy C-mean (FCM) clustering method was adopted to
both extract the clusters and fuzzy rules. The optimum
number of if-then rules was identified by trial-and-error
to be equal to 16, in which the number of if-then rules is
the same for the input and output data clusters. A fuzzy if-
then rule i is formulated for mapping SVI by both MFL
and LFL models and expressed as:

Rule i : If

A belongs to MFiA and
L belongs to MFiL and

P belongs to MFiP and

R belongs to MFiR and
I belongs to MFiI and
F belongs to MFiF and
T belongs to MFiT and

0
BBBBBBBBB@

1
CCCCCCCCCA

Then dCSVI j belongs to MFidCSVI j

ð7Þ

where dCSVI j is the output; MFidCSVI j corresponds to the

membership function of the output of rule i. Table 1 in-
cludes the presentation of the MFL and LFL results; the
CSVI mapping of the plain obtained from the MFL model
is shown in Fig. 5d and that from LFL is shown in Fig.
5e.

Comparing BAF, SFL, MLF and LFL performances

Performance measures are calculated by comparing the SVI
results with the target values by BAF, SFL, MLF and LFL.
The results for processing r, NSE and RMSE use all the pixel
data but for correlation index (CI), only the values at the ob-
servation wells are used. Table 1 lays out the procedure for
calculating CI-values together with their values, according to
which the SFL strategy improves on the performance of BAF.
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Measurements at the observation wells directly assess the
performances and hence used to calculate CI-values but r,
NSE and RMSE values are calculated using CSVI values from
all the grid points. Table 1 shows that r value for BAF is 0.55
but based on statistical tests at 95% level of significance, the
signal in this typical result is significant, even though its value

is low. Thus, the correlation between the modelled values and
CSVI values is significant; and for SFL MFL and LFL, the
better performing model is SFL compared with MFL and LFL
in terms of all of the performance measures. The authors do
not intend to rank the models at Level 1, as they are not the
ends but the means to an end at Level 2. Although SFL im-
proves the performance metrics compared with BAF to 0.9
from 0.21, notably NSE value of 0.9 indicates that there is
room for further improvements and this is archived by GEP
at Level 2, as below.

AIMM by gene expression programming

Gene expression programming (GEP) is used to implement
the AIMM strategy by learning from the models at Level 1
(SFL, MFL and LFL) for the assessment of SVIs. Its inputs
comprise the results of SFL, MFL and LFL models and its
targets comprise distributed CSVIs. The GEP modelling re-
quires the selection of the appropriate basic operators to build
its parse tree and some of the investigated ones are given in
Table 2.

Model runs test the performances of F1 and F2 functions,
defined in Table 2, by minimising their RMSE. The RMSE
values are also presented in Table 2, together with default
values of model runs. The performance of the F1 function is
selected in terms of RMSE and it is preferred for being parsi-
monious. The outputs of the GEP model are SVI values at all
of the pixels. The equation of GEP model to assess the subsi-
dence vulnerability indices is as follows:

CSVIAIMM ¼ MLF

−6:6� LLFð Þ−SLFð Þ � SLFþMLFð Þð Þ � LLF

� �

þ SFL− MFL−1:3ð Þ þ LFLð Þð Þ �MFLð Þ

þ MFLþ SFLð Þ− −1:4
8:9

� �� �
� LFL−SFLð Þ−MFLð Þ �MFL

� �

ð8Þ

where SFL, MFL and LFL in the above equation are terminal
set (actual parameters).

The vulnerability mapping by AIMM is given in Fig.
5f and its performance measures in terms of r, NSE and
RMSE are given in Table 1, in which the modelled CSVI
values are compared with their corresponding conditioned
values of measurements as defined in the “Implementation
of the framework and three models” section. The im-
provements in the performance metrics of GEP compared
with those at Level 1 provide evidence that the AIMM
model driven by GEP is capable of learning from SFL,
MFL and LFL models as well as from the target values.
The performance of the AIMM model is further tested by
AOC/RUC, which renders a ROC value of 0.964. Also,
the variation of sensitivity against specificity is shown in

Table 1 Results of the four models and BAF for the testing phase

Method SVI scores Criteria

SB4 SB3 SB2 SB1 RMSE NSE r CI

Unsupervised BAF

MB1 1 5 6 2 85 0.55 0.21 21.6
MB2 1 3 0 4

MB3 0 1 2 5

MB4 0 0 1 0

SFL

MB1 6 6 0 1 97 Training

MB2 0 3 4 1 0.95 0.9 7.23

MB3 0 0 0 8 Test

MB4 0 0 1 0 0.93 0.86 7.99

MFL

MB1 4 6 2 0 94 Training

MB2 0 4 4 0 0.94 0.88 7.91

MB3 0 0 1 7 Test

MB4 0 0 1 0 0.89 0.7 9.47

LFL

MB1 4 7 2 0 91 Training

MB2 0 2 5 0 0.95 0.89 8.53

MB3 0 0 0 8 Test

MB4 0 0 1 0 0.94 0.88 7.61

GEP

MB1 8 3 2 0 99 Training

MB2 0 2 6 0 0.97 0.94 5.9

MB3 0 0 0 8 Test

MB4 0 0 0 1 0.96 0.93 6.4

CI for BAF = 4 (1 + 3 + 2 + 0) + 3 (5 + 0 + 5 + 1 + 1 + 1) + 2 (6 + 4 + 0 +
0) + 1 (2 + 0) = 85

CI for SFL = 4 (6 + 3 + 0 + 0) + 3 (6 + 4 + 8 + 1 + 0 + 0) + 2 (1 + 0 + 0 +
0) + 1 (1 + 0) = 96

CI for MLF = 4 (4 + 4 + 1 + 0) + 3 (6 + 4 + 7 + 0 + 0 + 1) + 2 (2 + 0 + 0 +
0) + 1 (0 + 0) = 94

CI for LFL = 4 (4 + 2 + 0 + 0) + 3 (7 + 5 + 8 + 0 + 0 + 1) + 2 (2 + 0 + 0 +
0) + 1 (0 + 0) = 91

CI for GEP = 4 (8 + 2 + 0 + 0) +3 (3 + 6 + 8 + 0 + 0 + 0) +2 (2 + 0 + 0 + 0)
+1 (1 + 0) = 99

Note1: There are two types of bands: Modelling Bands (MB) and
Subsidence Bands (SB)

Note 2: The level of Significance of all correlation coefficients is less than
5%, hence, reject the null hypothesis

Note 3: For ALPRIFT, maximum SVI = 240

Note 4: For ALPRIFT, minimum SVI = 24
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Fig. 6, according to which the signal captured by GEP is
strongly defensible.

Inter-comparison of the mapping results

Avisual inter-comparison of the mapped results in Fig. 5a–e is
indicative of a greater convergence between those at Fig. 5a
and Fig. 5f but divergences are also observed, as follows: (i) as
per Fig. 5a, there is a highly vulnerable small patch of area of
Band 4 (0.37% of the study area) in the middle of the study
area but none of the mapping results (Figs. 5b–f) are able to
match its severity; this probably indicates that the models are
not sensitive to small local variations. (ii) The southern Band 3
in Fig. 5a (22% of the study area) is identified as Band 4 (less
than 28% of the study area) by BAF, see Fig. 5b; Band 4 (23%
of the study area) by SFL, see Fig. 5c; Band 4 (19% of the
study area) by MFL, see Fig. 5d; Band 4 (19% of the study
area) by LFL, see Fig. 5e; and Band 4 (19% of the study area)
by AIMM, see Fig. 5f. This divergence between the mapped
results and observed values may be explained as the ability to
anticipate deteriorating future conditions and the necessity for
more conservative planning decisions in the future.

Discussion

Topical research on impacts of land subsidence is wide and
existing activities are reflected by (Mateos et al. 2017; Yin
et al. 2016; Hayashi et al. 2009; Stramondo et al. 2007) among
others. These studies focus on managing impacts of land sub-
sidence, mitigation measures and recovery of impacted lands.
Land subsidence causes degradation as the loss of utility in
various forms including damage to physical, social, cultural or
economic functions and can undermine ecosystem diversity.
Subsidence is often triggered by over-abstraction of ground-
water resources during water shortage or drought episodes.
Remediation methods include recharging aquifers using sur-
face water from alternative sources if feasible, developing
basin and drought management plans. In the last few decades,
sustainable drainage systems (SuDS) have also become viable
techniques to recharge groundwater aquifers. The BAF is an
approach introduced by Nadiri et al. (2018a), which is suitable
for planning as a management tool by drawing up a map of

hotspots in Ardabil plain, as given in Fig. 5b. However, the
response of the authorities responsible for planning water us-
ages in Iran remains to be seen. Without a planned approach,
international experience shows that it is unlikely to resolve the
conflict between achieving equitable water allocations and
mitigating the decline in groundwater levels. Conversely,
without a planned approach, permanent damage is almost
assured.

Nadiri et al. (2018a) sufficed to using SFL alone to learn
from local data to set the rating and weighting of the
ALPRIFT data layers, even though the NSE metric was found
to be 0.74. As they did not explore the application of the
AIMM strategy, this is taken up in this study but for a different
case study. The AIMM strategy is open to diverse selection of
models both at Levels 1 and 2 of learning by AI. The paper
investigates the use of multiple models of fuzzy logic at Level
1 and GEP at Level 2.

Although there may be room for further learning and test-
ing different strategies, currently, the authors are focussed on
testing the application of ALPRIFT to different study areas,
during which the impacts of different selections of AI tech-
niques using the AIMM strategy will be explored. The results
presented in Fig. 5 show that the improvements by extracting
further information make the results defensible. The results
presented in the paper also confirms the authors’ overall con-
clusion that AI techniques and two levels of learning are better
placed to identify the weight values of a framework than using
their prescribed values.

The classification of the land use data layer in the paper
remains the same as that reported by Nadiri et al. (2018a).
However, the authors are anticipating revising this data layer
by considering many internationally available land-use classi-
fication schemes.

Proof-of-concept for the AIMM strategy is supported by
the results which are presented in the research but it adds
further to the defensibility of ALPRIFT to enhance its
Technology Readiness Level, as defined by the NASA classi-
fication (see: https://www.nasa.gov/sites/default/files/trl.png).
Therefore, the results reported by the paper take the TRL from
Level 4 higher but further studies are needed to ensure that it is
at TRL 9. The authors’ have formulated a program for this
purpose until a working tool emerges for the service of
practitioners. Further investigations are underway for Salmas

Table 2 Implementation of GEP: basic functions for parse tree, default parameters and results

Definition RMSE

F1 {+, − , × , ÷} 0.04

F2 þ;−;�;�;
ffiffiffi
x

p
; 1x ; exp xð Þ; ln xð Þ; log xð Þ; x2� �

0.04

Default values used by the GEP models: gene recombination rate, 0.1; head size, 8; number of chromosomes, 30; root insertion sequence transposition,
0.2; insertion sequence transposition, 0.1; mutation rate, 0.044; number of genes, 3; gene transposition rate, 0.1; one-point recombination rate, 0.3;
inversion rate, 0.1; two-point recombination rate, 0.3
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plain in the west Azerbaijan province adjacent to the Lake
Urmia basin. The authors are also considering various
techniques to transform a vulnerability framework into a risk
framework.

Conclusion

ALPRIFT is a consensual integration of the following data
layers: aquifer media (A), land use (L), pumping of ground-
water (P), recharge (R), impacts instigated by aquifer thick-
ness (I), fault distance (F) and water table variation (T). Each
data layer is processed and assigned with appropriate rating
values to account for local variations and weights to account
for the relative importance of each ALPRIFT data layer. A
further data layer is also developed based on ground-truthing
of the data downloaded from Sentinel-1 satellites.

The ALPRIFT framework is investigated by applying it to
Ardabil plain, in the Ardabil province, northwest Iran, where
the groundwater level decline is approx. 16 m during 2005–
2015 period. This is a strong telltale sign for subsidence, as
evidenced by measured settlements at 34 observation wells.
The paper identifies hotspots by a modelling strategy at two
levels of learning as follows: (i) without a strategy, the map-
ping results by using the basic ALPRIFT framework are found
to be fit-for-purpose in terms of performance metrics. (ii) The
learning at Level 1 is based on identifying the values of
weights by the strategy of using three fuzzy logic (FL) models,
and their results in terms of performance metrics show im-
provements toward the defensibility of the mapping results
but with room for improvements. (iii) The learning at Level
2 is based on genetic expression programming (GEP), which
reuses multiple models at Level 1 as inputs together with
target values (Sentinel-1 data with ground-truthing), and their

results in terms of a set of performance metrics show the
mapping results to be defensible. The results produce an en-
hancement for the Technology Readiness Level of the
ALPRIFT framework.

Acknowledgements The authors acknowledge gratefully the provision
of the data by the Ardabil Regional Water Authority (ARWA) and their
cooperation.

Funding information This research is one of the outputs of the Artificial
Intelligence Multiple Models research group team which is financially
supported by the University of Tabriz through a Grant scheme.

References

Aller L, Bennett T, Lehr JH, Petty R, Hackett G (1987) DRASTIC: a
standardized system for evaluating ground water pollution potential
using hydrogeologic settings, EPA 600/2–87-035. U.S.
Environmental Protection Agency, Ada

Anumba CJ, Scot DT (2001) Performance evaluation of a knowledge-
based system for subsidence management. Struct Surv 19:222–232.
https://doi.org/10.1108/02630800110412462

ARWA, (2016) The data supplied by the Ardabil Regional Water
Authority (ARWA) to the authors

Asadi S, Hassan M, Nadiri A, Dylla H (2014) Artificial intelligence
modeling to evaluate field performance of photocatalytic asphalt
pavement for ambient air purification. J Environ Sci Pollut Res
21(14):8847–8857. https://doi.org/10.1007/s11356-014-2821-z

Avila-Olivera JA, Garduño-Monroy VH (2008) A GPR study of
subsidence-creep-fault processes in Morelia, Michoacán, Mexico.
Eng Geol 100(1–2):69–81. https://doi.org/10.1016/j.enggeo.2008.
03.003

Bezdek JC (1981) Pattern recognition with fuzzy objective function al-
gorithms. Plenum Press, New York. https://doi.org/10.1007/978-1-
4757-0450-1

Chiu S (1994) Fuzzy model identification based on cluster estimation. J
Intell Fuzzy Syst 2:267–278

Colazas XC, Strehle RW (1995) Subsidence in the Wilmington Oil Field,
Long Beach, California, USA. Dev Pet Sci 41:285–335. https://doi.
org/10.1016/S0376-7361(06)80053-1

Cui ZD, Tang YQ (2010) Land subsidence and pore structure of soils
caused by the high-rise building group through centrifuge model
test. Eng Geol 113(1–4):44–52. https://doi.org/10.1016/j.enggeo.
2010.02.003

Desir G, Gutiérrez F, Merino J, Carbonel D, Benito-Calvo A, Guerrero J,
Fabregat I (2018) Rapid subsidence in damaging sinkholes: mea-
surement by high-precision leveling and the role of salt dissolution.
Geomorphology 503:393–409

Doğan U (2005) Land subsidence and caprock dolines caused by subsur-
face gypsum dissolution and the effect of subsidence on the fluvial
system in the Upper Tigris Basin (between Bismil–Batman,
Turkey). Geomorphology 71:389–401

Fernández-Camacho R, Cabeza IB, Aroba J, Gómez-Bravo F, Rodríguez
S, de la Rosa J (2015) Assessment of ultrafine particles and noise
measurements using fuzzy logic and data mining techniques. Sci
Total Environ 512:103–113. https://doi.org/10.1016/j.scitotenv.
2015.01.036

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

ytivitisneS

1 - Specif icity

Fig. 6 Evaluation of AIMM performance based on AUC criterion

4001A study of subsidence hotspots by mapping vulnerability indices through innovatory ‘ALPRIFT’ using...

https://doi.org/10.1108/02630800110412462
https://doi.org/10.1007/s11356-014-2821-z
https://doi.org/10.1016/j.enggeo.2008.03.003
https://doi.org/10.1016/j.enggeo.2008.03.003
https://doi.org/10.1007/978-1-4757-0450-1
https://doi.org/10.1007/978-1-4757-0450-1
https://doi.org/10.1016/S0376-7361(06)80053-1
https://doi.org/10.1016/S0376-7361(06)80053-1
https://doi.org/10.1016/j.enggeo.2010.02.003
https://doi.org/10.1016/j.enggeo.2010.02.003
https://doi.org/10.1016/j.scitotenv.2015.01.036
https://doi.org/10.1016/j.scitotenv.2015.01.036


Fijani E, Nadiri AA, Asghari Moghaddam A, Tsai F, Dixon B (2013)
Optimization of DRASTIC method by supervised committee ma-
chine artificial intelligence to assess groundwater vulnerability for
Maragheh-Bonab plain aquifer Iran. J Hydrol l53:89–100. https://
doi.org/10.1016/j.jhydrol.2013.08.038

Galloway D, Jones D, Ingebritsen SE (1999) Land subsidence in the
United State. U.S. Department of the Interior, U.S. Geological
Survey. Circular 1182:175. https://pubs.usgs.gov/circ/circ1182/pdf/
circ1182_intro.pdf

Ghorbani MA, Khatibi R, Yousefi AH (2012) Inter-comparison of an
evolutionary programming model of suspended sediment time-
series with other local models. Book chapter: Genetic programming
- new approaches and successful applications. https://doi.org/10.
5772/47801

Goh ATC, Zhang RH, Wang W, Wang L, Liu HL, Zhang WG (2019)
Numerical study of the effects of groundwater drawdown on ground
settlement for excavation in residual soils. Acta Geotech. https://doi.
org/10.1007/s11440-019-00843-5

Gu K, Shi B, Liu C, Jiang H, Li T, Wu J (2018) Investigation of land
subsidence with the combination of distributed fiber optic sensing
techniques and microstructure analysis of soils. Eng Geol 240(5):
34–47. https://doi.org/10.1016/j.enggeo.2018.04.004

Hardin G (1968) The tragedy of the commons. Science 162(3859):1243–
1248

Hayashi T, Tokunag T, Aichi M, Shimada J, Taniguchi M (2009) Effects
of human activities and urbanization on groundwater environments:
an example from the aquifer system of Tokyo and the surrounding
area. Sci Total Environ 407(9:3165–3172

Iran National Cartographic Centre (2013) Landuse report of East
Azerbaijan

Khatibi R, Ghorbani MT, Aalami MA, Kocak K, Makarynskyy O,
Makarynska D, Aalinezhad D (2011a) Dynamics of hourly sea level
at Hillary Boat Harbour, Western Australia: a chaos theory perspec-
tive. J Ocean Dyn 61(11):1797–1807 (http://www.springerlink.com/
content/y1xq053633217222/)

Khatibi R, Ghorbani M, Hesenpur MK, Kişi Ö (2011b) Comparison of
three artificial intelligence techniques for discharge routing. J
Hydrol 403:201–212. http://www.sciencedirect.com/science/
article/pii/S0022169411001673

Khatibi R, Sivakumar B, Ghorbani MA (2012) Investigating chaos in
river stage and discharge time series. J Hydrol 414–415:108–117.
https://doi.org/10.1016/j.jhydrol.2011.10.026

Khatibi R, Ghorbani MA, Akhoni Pourhosseini F (2017) Stream flow
predictions using nature-inspired firefly algorithms and a multiple
model strategy – directions of innovation towards next generation
practices. Adv Eng Inform 34:80–89. https://doi.org/10.1016/j.aei.
2017.10.002

Kihm JH, Kim JM, Song SH, Lee GS (2007) Three-dimensional numer-
ical simulation of fully coupled groundwater flow and land defor-
mation due to groundwater pumping in an unsaturated fluvial aqui-
fer system. J Hydrol 335:1–14. https://doi.org/10.1016/j.jhydrol.
2006.09.031

Koza JR (1994) Genetic programming as a means for programming com-
puters by natural selection. Stat Comput 4:87–112

Larsen PM (1980) Industrial applications of fuzzy logic control.
International Journal of Man-Machine Studies 12:3–10. https://doi.
org/10.1016/S0020-7373(80)80050-2

Larson KJ, Barasaoslu H, Marino MA (2001) Prediction of optimal safe
ground water yield and land subsidence in the Los Banos-Kettlman
city area, California, using a calibrated numerical simulation model.
J Hydrol 242:79–102

Lee KH (2004) First course on fuzzy theory and applications. Springer,
Berlin

Li H, Philip CL, Huang HP (2001) Fuzzy neural intelligent systems:
mathematical foundation and the applications in engineering. CRC
Press, Boca Raton ISBN 9780849323607

Lorphensri O, Ladawadee A, Dhammasarn S (2011) Review of ground-
water management and land subsidence in Bangkok, Thailand. In:
Taniguchi M (ed) Groundwater and subsurface environments.
Springer, Tokyo. https://doi.org/10.1007/978-4-431-53904-9_7

Mamdani EH (1976) Advances in the linguistic synthesis of fuzzy con-
trollers. Int J Man-Mach Stud 8:669–678

Mateos RM, Ezquerro P, Luque-Espinar JA, Béjar-Pizarro M, Notti D,
Azañón JM, Montserrat O, Herrera G, Fernández-Chacón F,
Peinado T, Galve JP, Pérez-Peña V, Fernández-Merodob JA,
Jiménez J (2017) Multiband PSInSAR and long-period monitoring
of land subsidence in a strategic detrital aquifer (Vega de Granada,
SE Spain): an approach to support management decisions. J Hydrol
553:71–87

Moazamnia M, Hassanzadeh Y, Nadiri A, Sadeghfam S (2020)
Vulnerability indexing to saltwater intrusion from models at two
levels using artificial intelligence multiple model (AIMM). J
Environ Manag 255:109–871

Nadiri AA, Fijani E, Tsai FTC,Moghaddam AA (2013) Supervised com-
mittee machine with artificial intelligence for prediction of fluoride
concentration. J Hydroinf 15(4):1474–1490. https://doi.org/10.
2166/hydro.2013.008

Nadiri AA, Chitsazan N, Tsai FTC, Moghaddam AA (2014) Bayesian
artificial intelligence model averaging for hydraulic conductivity
estimation. J Hydrol Eng 19:520–532

Nadiri AA, Marwa H, Asadi S (2015) Supervised intelligence committee
machine to evaluate field performance of photocatalytic asphalt
pavement for ambient air purification. J Transp Res Board 2528:
96–105

Nadiri AA, Gharekhani M, Khatibi R, Sadeghfam S, Asgari Moghaddam
A (2017a) Groundwater vulnerability indices conditioned by super-
vised intelligence committee machine (SICM). Sci Total Environ
574:691–706. https://doi.org/10.1016/j.scitotenv.2016.09.093

Nadiri AA, Gharekhani M, Khatibi R, Asgari Moghaddam A (2017b)
Assessment of groundwater vulnerability using supervised commit-
tee to combine fuzzy logic models. Environ Sci Pollut Res 24(9):
8562–8577. https://doi.org/10.1007/s11356-017-8489-4

Nadiri AA, Sedghi Z, Khatibi R, Gharekhani M (2017c) Mapping vul-
nerability of multiple aquifers usingmultiple models and fuzzy logic
to objectively derivemodel structures. Sci Total Environ 593:75–90.
https://doi.org/10.1016/j.scitotenv.2017.03.109

Nadiri AA, Taheri Z, Khatibi R, Barzegari G, Dideban K (2018a)
Introducing a new framework for mapping subsidence vulnerability
indices (SVIs). Sci Total Environ 628:1043–1057. https://doi.org/
10.1016/j.scitotenv.2018.02.031

Nadiri AA, Gharekhani M, Khatibi R (2018b) Mapping aquifer vulnera-
bility indices using artificial intelligence-running multiple frame-
works (AIMF) with supervised and unsupervised learning. Water
Resour Manag, first online. https://doi.org/10.1007/s11269-018-
1971-z

Nadiri AA, Sadeghfam S, Gharekhani M, Khatibi R, Akbari E (2018c)
Introducing the risk aggregation problem to aquifers exposed to
impacts of anthropogenic and geogenic origins on a modular basis
using ‘risk cells’. J Environ Manag 217:654–667. https://doi.org/10.
1016/j.jenvman.2018.04.011

Nadiri AA, Naderi K, Khatibi R, Gharekhani M (2019) Modelling
groundwater level variations by learning from multiple models
using fuzzy logic. Hydrol Sci J 64(2):210–226

Nourani V, Asghari Moghaddam A, Nadiri AA (2008) Forecasting spa-
tiotemporal water levels of Tabriz aquifer. Trend Appl Sci Res 3(4):
319–329. https://doi.org/10.3923/tasr.2008.319.329

Phien-wej N, Giao PH, Nutalaya P (2006) Land subsidence in Bangkok,
Thailand. Eng Geol 82:187–201

Poland JF, Lofgren BE, Riley FS, (1972) Glossary of selected terms
useful in studies of the mechanics of aquifer systems and land sub-
sidence due to fluid withdrawal. U.S. Geological Survey Water-
Supply Paper. 2025, P 9

4002 A. A. Nadiri et al.

https://doi.org/10.1016/j.jhydrol.2013.08.038
https://doi.org/10.1016/j.jhydrol.2013.08.038
https://pubs.usgs.gov/circ/circ1182/pdf/circ1182_intro.pdf
https://pubs.usgs.gov/circ/circ1182/pdf/circ1182_intro.pdf
https://doi.org/10.5772/47801
https://doi.org/10.5772/47801
https://doi.org/10.1007/s11440-019-00843-5
https://doi.org/10.1007/s11440-019-00843-5
https://doi.org/10.1016/j.enggeo.2018.04.004
http://www.springerlink.com/content/y1xq053633217222/
http://www.springerlink.com/content/y1xq053633217222/
http://www.sciencedirect.com/science/article/pii/S0022169411001673
http://www.sciencedirect.com/science/article/pii/S0022169411001673
https://doi.org/10.1016/j.jhydrol.2011.10.026
https://doi.org/10.1016/j.aei.2017.10.002
https://doi.org/10.1016/j.aei.2017.10.002
https://doi.org/10.1016/j.jhydrol.2006.09.031
https://doi.org/10.1016/j.jhydrol.2006.09.031
https://pubs.usgs.gov/circ/circ1182/pdf/circ1182_intro.pdf
https://pubs.usgs.gov/circ/circ1182/pdf/circ1182_intro.pdf
https://doi.org/10.1007/978-4-431-53904-9_7
https://doi.org/10.2166/hydro.2013.008
https://doi.org/10.2166/hydro.2013.008
https://doi.org/10.1016/j.scitotenv.2016.09.093
https://doi.org/10.1007/s11356-017-8489-4
https://doi.org/10.1016/j.scitotenv.2017.03.109
https://doi.org/10.1016/j.scitotenv.2018.02.031
https://doi.org/10.1016/j.scitotenv.2018.02.031
https://doi.org/10.1007/s11269-018-1971-z
https://doi.org/10.1007/s11269-018-1971-z
https://doi.org/10.1016/j.jenvman.2018.04.011
https://doi.org/10.1016/j.jenvman.2018.04.011
https://doi.org/10.3923/tasr.2008.319.329


Psimoulis P, Ghilardi M, Fouache E, Stiros S (2007) Subsidence and
evolution of the Thessaloniki plain, Greece, based on historical
leveling and GPS data. Eng Geol 90(1–2):55–70. https://doi.org/
10.1016/j.enggeo.2006.12.001

Sato PH, Abe K, Otaki O (2007) GPS-measured land subsidence in Ojiya
City, Niigata Prefecture, Japan. Eng Geol 67(3–4):379–390. https://
doi.org/10.1016/S0013-7952(02)00221-1

Scanlon BR, Healy RW, Cook RG (2002) Choosing appropriate tech-
niques for quantifying groundwater recharge. Hydrogeol J 10:18–39

Schmid W, Hanson RT, Leake SA, Hughes JD, Niswonger RG (2014)
Feedback of land subsidence on the movement and conjunctive use
of water resources. Environ Model Softw 62:253–270

Soni AK, Singh KKK, Prakash A, Singh KB, Chakraboraty AK (2007)
Shallow cover over coal mining: a case study of subsidence at
Kamptee Colliery, Nagpur, India. Bull Eng Geol Environ 66(3):
311–318. https://doi.org/10.1007/s10064-006-0072-z

Sossong AT (1973) Subsidence experience of Bethlehem Mines
Corporation in Central Pennsylvania. In: Hargraves AJ (ed)
Subsidence in mines-Proceedings of symposium, 4th, Wollongong
University, February 20-22, 1973. Australasian Institute of Mining
and Metallurgy, pp 5.1–5.5

Stramondo S, Saroli M, Tolomei C, Moro M, Doumaz F, Pesc A, Loddo
F, Bald P, Boschi E (2007) Surface movements in Bologna (Po Plain
Italy) detected by multitemporal DInSAR. Remote Sens Environ
110:304–316. https://doi.org/10.1016/j.rse.2007.02.023

Sugeno M (1985) Industrial application of fuzzy control. North-Holland,
New York 269 pp

Swets JA 1988. Measuring the Accuracy of Diagnostic Systems. Am
Assoc Adv Sci 240(4857):1285–1293. http://www.jstor.org/stable/
1701052

Tayfur G, Nadiri AA, Moghaddam AA (2014) Supervised intelligent
committee machine method for hydraulic conductivity estimation.
Water Resour Manag 28:1173–1184

Tosi L, Teatini P, Strozzi T (2013) Natural versus anthropogenic subsi-
dence of Venice. Sci Rep 3:2710. https://doi.org/10.1038/srep02710

Wang Y, Wang Z, Cheng W (2019) A review on land subsidence caused
by groundwater withdrawal in Xi’an, China. Bull Eng Geol Environ
78(4):2851–2863. https://doi.org/10.1007/s10064-018-1278-6

Ye S, Luo Y, Wu J, Teatini P, Wang H, Jiao X (2015) Three dimensional
numerical modeling of land subsidence in Shanghai. Proc IAHS
372:443–448

Yin J, Yu D,Wilby R (2016) Modelling the impact of land subsidence on
urban pluvial flooding: a case study of downtown Shanghai, China.
Sci Total Environ 15(544):744–753. https://doi.org/10.1016/j.
scitotenv.2015.11.159

Zadeh LA (1965) Fuzzy sets. Inf Control 8:338–353
ZhangW,WangW, ZhouD, Zhang R, GohATC, Hou Z (2018) Influence

of groundwater drawdown on excavation responses – a case history
in Bukit Timah granitic residual soils. J Rock Mech Geotech Eng
10(5):856–864

4003A study of subsidence hotspots by mapping vulnerability indices through innovatory ‘ALPRIFT’ using...

https://doi.org/10.1016/j.enggeo.2006.12.001
https://doi.org/10.1016/j.enggeo.2006.12.001
https://doi.org/10.1016/S0013-7952(02)00221-1
https://doi.org/10.1016/S0013-7952(02)00221-1
https://doi.org/10.1007/s10064-006-0072-z
https://doi.org/10.1016/j.rse.2007.02.023
https://pubs.usgs.gov/circ/circ1182/pdf/circ1182_intro.pdf
https://pubs.usgs.gov/circ/circ1182/pdf/circ1182_intro.pdf
https://doi.org/10.1038/srep02710
https://doi.org/10.1007/s10064-018-1278-6
https://doi.org/10.1016/j.scitotenv.2015.11.159
https://doi.org/10.1016/j.scitotenv.2015.11.159

	A...
	Abstract
	Introduction
	Methodology
	Basic ALPRIFT framework for subsidence and its measurement
	Three models based on fuzzy logic
	Artificial intelligence running multiple models by GEP

	Study area
	Geological context
	Hydrogeology of study area
	Land use

	Dataset preparation
	Some of the basic information about these data layers are reproduced in the section: Input data layers
	Implementation of the framework and three models

	Results
	Basic ALPRIFT framework
	Sugeno, Mamdani and Larsen fuzzy logic
	Comparing BAF, SFL, MLF and LFL performances
	AIMM by gene expression programming
	Inter-comparison of the mapping results

	Discussion
	Conclusion
	References


