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Abstract

Declining groundwater levels due to the absence of a planning system makes aquifers vulnerable to subsidence. This paper
investigates possible hotspots in terms of Subsidence Vulnerability Indices (SVI) by applying the ALPRIFT framework, introduced
recently by the authors by mirroring the procedure for the DRASTIC framework. ALPRIFT is suitable to cases, where data is sparse,
and is the acronym of seven data layers to be presented in due course. It is a scoring technique, in which each data layer bears an
aspect of land subsidence and is prescribed with rates to account for local variability, and with prescribed weights to account for
relative significance of the data layer. The inherent subjectivity in prescribed weights is treated in this paper by learning their values
from site-specific data by the strategy of using artificial intelligence to learn from multiple models (AIMM). The strategy has two
levels: (i) at Level 1, three fuzzy models are used to learn weight values from the local data and from observed target data, and (ii) at
Level 2, genetic expression algorithm (GEP) is used to learn further, in which the outputs of the models at Level 1 are reused as its
inputs and observed data as its target values. The results show that (i) the Nash-Sutcliff Efficiency (NSE) coefficient for ALPRIFT
with measured land subsidence values is approx. 0.21; (ii) NSE is improved to 0.88 by learning the weights at Level 1 using fuzzy
logic, and (iii) NSE is further improved to 0.94 by further learning at Level 2 using GEP.

Keywords ALPRIFT - Framework - Fuzzy logic (Sugeno, Mamdani and Larsen) - GEP - Ground-truthing - InSAR - Learning in
two levels - Proof-of-concept - Sentinel-1 - Subsidence

Introduction

Research on land subsidence is topical in engineering and en-
vironmental research, as its impacts are observed in many coun-
tries including China, Iran, Japan, Singapore, Thailand and the
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USA (Ye et al. 2015; Nadiri et al. 2018a; Hayashi et al. 2009;
Phien-wej et al. 2006; Zhang et al. 2018; Goh et al. 2019;
Galloway et al. 1999). Some engineering impacts of subsidence
are outlined by Kihm et al. (2007), which include the following:
(i) a collapse of water wells and the breakage of their casings
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and ancillary works by compacted soil due to decline of the
water table in aquifers; (ii) the requirement for realignment of
diversion structures in open channels; (iii) redistribution of
stresses and strains in building works and structures creating
the potential for excessive forces and subsequent failures.
Arguably, aquifer management practices should feed informa-
tion to planning stages of development works and the paper
investigates accuracies of identifying subsidence hotspots, with
potential to serve as a planning and management tool.

Studies on land subsidence are fragmented, as their focus is
on settlements of ground surface triggered by movements or
removals of groundwater by anthropogenic activities (Poland
et al. 1972; Anumba and Scot 2001). These studies are trig-
gered by a host of processes including the following: (i) ex-
cessive water abstraction from aquifers, e.g. in Thailand,
Spain, Iran and China (Lorphensri et al. 2011; Schmid et al.
2014; Mateos et al. 2017; Nadiri et al. 2018a; Wang et al.
2019); (ii) degradation in organic soils, e.g. Venice, Italy
(Tosi et al. 2013); (iii) extraction of underground fossil fuels,
e.g. Wilmington oil reservoir, California (Colazas and Strehle
1995); (iv) karstification due to dissolution of limestone, e.g.
Turkey and Spain (Desir et al. 2018; Dogan 2005); (v) sub-
surface mining, e.g. Bethlehem Mines Corporation, central
Pennsylvania (Sossong 1973) and Kamptee Colliery, India
(Soni et al. 2007); (vi) braced excavation in residual soils with
groundwater drawdown (Zhang et al. 2018). Subsidence is a
feature since the Industrial Revolution (1750—1950) that often
impacts groundwater resources by withdrawals through aqui-
fer pumpage. There is a gap in the state-of-the-art due to frag-
mentations in the techniques in each field of study with no
cross-cutting techniques.

Land subsidence hazards often stem from two main pro-
cesses: (i) geogenic processes, e.g. Avila-Olivera and
Garduino-Monroy 2008; Cui and Tang 2010; Gu et al. 2018;
and (i) anthropogenic processes, e.g. Anumba and Scot 2001;
Poland et al. 1972; and Wang et al. 2019). Each process often
depends on a set of variables and their collective product may
give rise toward subsidence. Past researches use different
techniques to investigate and monitor subsidence and settle-
ment by a range of approaches, e.g. Interferometric Synthetic
Aperture Radar (InSAR) (Fernandez-Camacho et al. 2015),
global positioning system (GPS) (Sato et al. 2007), field evi-
dence and historical data (Psimoulis et al. (2007), ground-
penetrating radar (GPR) (Avila-Olivera and Garduiio-
Monroy 2008). These techniques are not analytical and there-
fore their efficacy is limited to past incidents but the paper
explores a technique that learns from site data.

The ALPRIFT framework, introduced recently by Nadiri
et al. (2018a), integrates both geogenic and anthropogenic di-
mensions to identify potential hotspots for subsidence from local
data. It is a mapping technique, which models Subsidence
Vulnerability Indices (SVI) using seven general-purpose data
layers, as well as those from satellite remote sensing, including
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direct measurements for ground-truthing. ALPRIFT is particular-
ly suitable to study arcas with sparse data to map proactively
hotspots vulnerable to subsidence by a modelling strategy to
produce defensible information from the available data, though
it is not capable of predicting future incidents.

The authors’ research on subsidence is innovative by intro-
ducing the ALPRIFT framework and investigating its perfor-
mances, which parallels their ongoing program of research on
groundwater vulnerability framework using DRASTIC by
Aller et al. (1987). Both are mapping techniques but
DRASTIC maps aquifer vulnerability caused by anthropogenic
contaminants, whereas ALPRIFT does that for aquifer subsi-
dence. Both ALPRIFT and DRASTIC frameworks involve a
scoring system in terms of rates to account for relative signifi-
cance of local conditions and by weights to account for relative
significance of each data layer. The rates and weights of both
frameworks are not transferrable to each other and they have no
theoretical or empirical basis but are tested using performance
metrics. The authors’ experience in implementing DRASTIC
frameworks is that more defensible vulnerability mapping is
feasible by learning the values of the weights by formulating
strategies using artificial intelligence (Al). As ALPRIFT is a
field of research at its infancy, investigating various strategies
to learn the values of rates and/or weights from local data is now
wide open. The paper investigates one such strategy by using
Al to run multiple models (AIMM) at two levels and this strat-
egy in itself is topical, as follows.

Learning at Level 1 This comprises the application of three
variations of fuzzy logic (FL), which evolved as follows: (i)
Zadeh (1965) presented the original of FL in 1965; (ii) this
was transformed into a modelling capability using subjective-
ly prescribed rules; and (iii) various algorithms emerged to
learn the rules from the data. The paper uses three such algo-
rithms, which are (i) Sugeno FL (SFL), see Sugeno (1985); (ii)
Mamdani FL (MFL), see Mamdani (1976); and Larsen FL
(LFL), see (Larsen 1980). Traditional FL modelling practices
select one of these models as the ‘superior’ one but the paper
regards them as fit-for-purpose and reuses them in the next
levels. Notably, Khatibi et al. (2011a, b, 2012, 2017) criticise
traditional approaches preoccupied with selecting best
models.

Learning at Level 2 The authors have devised various further
learning strategies (Nadiri et al. 2013, 2017a, 2018a, b, ¢) and
the paper investigates the following: (i) at Level 1, SFL, MFL
and LFL are adopted to optimise the weight values and make
predictions; (ii) at Level 2, these are regarded as multiple
models (MM) and are reused as inputs to another Al model
to run MMs and, hence, the AIMM strategy. This study uses
GEP at Level 2 and this is to be outlined in due course.

The need for identifying hotspots is increasingly necessary
for Ardabil plain, Ardabil province, northwest Iran, for several
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reasons, as follows: (i) Based on the data provided by the
Ardabil Regional Water Authority (ARWA), average decline
of groundwater level is greater than 16 m in the past 10 years
(from 2005 to 2015) at an approximate rate of 2 m/annum. (ii)
One of the main economic sectors of this region is agriculture
but traditional irrigation practices have transformed without
any plans since the availability of tubewell pumping in 2000
and this corresponds to over-abstraction. Owing to the ab-
sence of an effective planning system with participation, the
situation has given rise to the emergence of ‘the tragedy of the
commons’, a concept that is introduced by Hardin (1968).
With no effective basin management plans, anthropogenic en-
croachments have concealed opportunities but distressed wa-
ter table by pumpage. These collectively increase vulnerabil-
ity to induce land subsidence by exposing soil characteristics
to the risk of collapsing under upper soil load. Subsidence risk
in Ardabil plain is now comparable to other anthropogenic
risks and the detection of hotspot areas vulnerable to subsi-
dence in this research can be the first step towards their pos-
sible management in the future.

Methodology

Basic ALPRIFT framework for subsidence and its
measurement

The heuristic capability of the basic ALPRIFT framework
(BAF), introduced by Nadiri et al. (2018a), is capable of map-
ping Subsidence Vulnerability Indices (SVI) of any aquifer/
plain system by pooling together seven data layers, which can
serve as a proxy of subsidence. These data layers and the math-
ematical formulation for BAF SVI are detailed by Nadiri et al.
(2018a), which may be referred to for their basic information.
Their reproduction here and in the “Input data layers” section.

Soil texture and structure of a study area are captured by
reducing the overall geomorphological, hydrogeological char-
acteristics of the set of seven data layers, which are assumed to
be independent of one another, comprising aquifer media (A),
land use (L), pumping of groundwater (P), recharge (R), im-
pacts instigated by aquifer thickness (I), fault distance (F) and
water table variation (T). They are further categorised as fol-
lows: A, the medium, where subsidence may prevail; LP, these
account for anthropogenic contributions to subsidence; RIFT,
these account for intrinsic tendencies towards subsidence. The
assigned BAF weights and rates are shown in Fig. 4, but for
more details, see Nadiri et al. (2018a).

The methodology is captured in the flowchart in Fig. 1,
which presents the procedure for assessing SVI through the
following steps: (i) discretise the plain under study in GIS into
pixels; (ii) set up an array of seven raw data layers for each
pixel, each of which comprises their prescribed values; (iii)
assign the values of the rates at each pixel; and (iv) assign

weights to each data layer. SVI is expressed as follows:
SVI = A/Ay + LiLy + PPy + R.Ry + L1, + F.Fy
+ T, Ty (1)

where SVI is the Subsidence Vulnerability Index, uppercase
acronyms represent the ALPRIFT data layers, subscripts ‘r’
denote rates and ‘w’ denotes weights.

Microwave remote sensing satellite images are also
employed in this study for detecting land subsidence based on
interferometry technique. For this goal, Sentinel-1A
(Interferometric Synthetic Aperture Radar (InSAR)) was ob-
tained for the investigation period from August 2015 to
August 2016. The initial InSAR images were acquired from
https://scihub.copernicus.eu/, where the site provides open
access; the images have a vertical resolution of 10 m, and as
such, they are unsuitable for a direct assessment of subsidence
on their own. The interferometry approach was applied to drive
land subsidence between August 2015 and August 2016. The
research implemented interferometry technique, which is
discussed in greater detail by Nadiri et al. (2018a). In this con-
text, the methodological scheme for InNSAR data processing
included four main steps as follows: (i) analysing and comput-
ing a set of data points at the observation wells with known geo-
referenced locations; (ii) comparing land subsidence at known
points and the InSAR image in GIS environment in order to
obtain the InSAR pixel values at each known point; (iii)
adjusting automatically InSAR values at each pixel by applying
the ENVI ground-truth modules through a set of sparsely mea-
sured subsidence values; (iv) carrying out ground-truthing and

normalising the subsidence data layer (i.e. calculate SgGTTf ); (iv)
conditioning the output, as:

SGT;

max

CSVL - X SVImax (2)
where SGT; = subsidence at grid cell 7 after ground-truthing (in
cm) and SGT,. is its maximum; CSVI is another data layer
created for conditioned SVI at pixel 7, SV, is the BAF max-
imum and hence the term conditioning.

Three models based on fuzzy logic

Three models are developed using fuzzy logic (FL) to learn
the weighting values in lieu of prescribed weights in BAF.
Models using the fuzzy set theory are a strategy to develop a
relationship between input data and output data. Each fuzzy
set uses membership function (MF), which may have different
types, e.g. S-shape, Gaussian, triangular, sigmoid, trapezoidal
and Z-shape and these are decided by trial-and-error. Fuzzy
sets use partial membership, in the range from 0 and 1.

The first-generation FL models used prescriptive rules but
the paper uses the second-generation approach of clustering
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Fig. 1 Flowchart illustrating BAF and AIMM (FLs-GEP)

techniques, developed since the 1980s, which are capable of
automatically identifying the possible structures within the data
and identifying optimum rules. Different clustering methods
have been developed to identify clusters within the data and
their optimum numbers (Chiu 1994, Asadi et al. 2014). Most
appropriate clustering methods are subtractive clustering (SC)
(Li et al. 2001) and fuzzy C-means (FCM) (see Bezdek 1981).
In this study, zero or first-order models were used to learn the
weight values from the site data, in association with Sugeno FL
(SFL), Mamdani FL. (MLF) and Larsen FL (LFL).

The paper uses three approaches to implement models of
FL as illustrated in Fig. 1 and outlined as follows. Sugeno FL
(SFL) models use (i) constant or linear output membership
functions, referred to as zero and first-order SFL, respectively
(Sugeno 1985), and (ii) SC to extract fuzzy if-then rules
(Fijani et al. 2013; Tayfur et al. 2014; Nadiri et al. 2014,
2015; Moazamnia et al. 2020). In the SC methods, the number
of clusters is the same as the number of rules and controlled by
the clustering radius, which takes values between 0 and 1.

Mamdani FL (MFL) models use (i) the output membership
functions of the ‘MIN’ operation for their fuzzy implications
(Mamdani 1976; Nadiri et al. 2019), and (ii) rules are identi-
fied by the FCM clustering method (Lee 2004).

Larsen FL (LFL) operates the same as MFL with the excep-
tion that the ‘PRODUCT” operator is used by LFL in the impli-
cation operations (Larson et al. 2001). The methodology present-
ed above is illustrated in Fig. 1 by an example with two depen-
dent parameters of A and B, each with triangular MFs. The figure
also illustrates its implication and aggregation.

@ Springer

Artificial intelligence running multiple models by GEP

The three FL models of MFL, LFL and SFL are Al models at
Level 1, which mark the limit of conventional practices in terms
of extracting information from the data. Sufficing to one level
of learning by Al technics is the norm but Khatibi et al. (2017)
criticise limiting the learning to one level. Nadiri et al. (2013,
2017a, b, ¢, 2018b)) formulate a strategy of learning at two
levels, as follows: The outputs of Level 1 Al models are reused
as inputs to yet another Al model, which also uses the same
target values as the Level 1 models. The Al model at Level 2 in
this study are constructed by the genetic expression program-
ming (GEP) strategy and hence it forms a Level 2 Al strategy to
run multiple models (MM), a strategy that the authors refer to as
artificial intelligence running multiple models (AIMM), see
Fig. 1. The strategy comprises: (i) formulate three supervised
SFL, MFL and LFL models for modelling the Subsidence
Vulnerability Index (SVI) of a study area using ALPRIFT data
layers; (i) produce output of the three models to reuse; and (iii)
construct a GEP model, in which the target values are as those
for Level 1 models but its input data are the three output results
from the Level 1 SFL, MFL and LFL models, see Fig. 1.
GEP, introduced by Koza (1994), uses ‘parse tree’ struc-
tures for identifying optimum solutions, which comprise ter-
minal and function sets. The function comprises the basic
operators such as {—, +, X, =, \/, sin, log, ...} and the terminal
set, which forms the real components of the functions and
their parameters. Notably, both of these components together
emulate the role of chromosomes as in biological systems.
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The modelling strategy investigates the types of functions
through trial-and-error for each system by tree structures.

GEP is used to combine the models at Level 2 for model-
ling subsidence vulnerability. The modelling procedure in
implementing GEP are the following: (i) select the fitness
function, (ii) select terminal and function sets to generate the
initial set of chromosomes, (iii) select the structure of the
chromosomes, (iv) set their linking function and (v) select
genetic operators (Ghorbani and Khatibi 2012).

In this research, GEP was implemented by the
GeneXproTools 4.0 software. The particulars of the model
running in this study include different programs in terms of
their sizes and shapes and the use of fixed length and linear
chromosomes. AIMM in Fig. 1 is expressed mathematically

as follows:
CSVIY = FLi(A,L,P,R, I, F, T) (3)
CSVIanm = GEP(FL,, FL,,FL;) (4)

where CSVIF™ is the output from each FL model (i = 1: SFL;
i=2: MFL;i=3: LFL),

Study area

The study area is approx. 990 km? (Fig. 2) and comprises the
Ardabil plain in central parts of the Ardabil province. The aqui-
fer is the outcome of geomorphological processes in the Qarasu
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Fig. 2 Location and geological map of the Ardabil basin
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(blackwater) basin, which drains three major mountain ranges:
(i) Mount Savalan (Sabalan) at its west, which is
4811 m AMSL with a permafrost crater at the peak; (ii)
Qushchu mountains ranges at its southern side; and (iii)
Baghari (also known as Talesh) mountains at its east. The main
tributaries of Qarasu include Balikhli Chay, Qara Chay, Hire
Chay, Nemin Chay, Naqiz Chay, Sulaya Chay and Nuran Chay.

Geological context

Mount Savalan and Talesh mountains of the study area are
volcanic and largely of the Eocene period, which is the result
of the expansion of the Laramide orogeny phase. Geological
formations in Ardabil plain comprise (i) volcanic formations
composed of basalt (Cretaceous), andesite and tracyandesite
(Quaternary) in the eastern part as the dominant formation of
the basin; (ii) limestone formation mostly occurred in the
Jurassic period located in the northern part; (iii) marl, sand-
stone and tuff formations mostly occurred in Neogene and
located in the northwest of the area; (iv) conglomerates during
the Cretaceous epoch and volcanic conglomerate, tuff con-
glomerate exposed during Neogene and Quaternary; and (v)
traces of recent alluvium related to Quaternary mostly at the
north of the study area (Nadiri et al. 2017a).

At the west, fractures are likely to serve as the main source of
recharging the alluvial aquifer of Ardabil Plain, which are re-
lated to the Igneous and pyroclastic rocks originating from vol-
canic activity of Mount Savalan. Also, in the western part of
Ardabil plain, non-carbonate rocks of Lahar and conglomerate
outcrops are likely to feed the aquifer in Ardabil plain, which
expands approx. 430 km?”. The plain is mainly covered with
alluvial deposits of the sand, silt and clay, a composition rife to
subsidence risk in an agriculturally well-developed region.

The southern part of the region is exposed to the activity of
the main faults running in the northeast to southwest direction
belonging to the upper Eocene volcanic activities. The area is
largely formed through tertiary tectonic processes and the
Savalan volcano in the Quaternary period became the primary
feature. The faults in the area include (i) the East Ardabil Fault
along the north to south direction parallel to the Astara fault
and continues towards the Masouleh fault; (ii) the Talesh fault
runs for approx. 400 km along many series largely in the
northeast to southwest direction; (iii) Savalan faults are out-
comes of volcanic activities but the subsequent lava flows
cover fractures and sometimes deep faults, which run in dif-
ferent directions in the vicinity of Mount Savalan, resulting in
hot water mineral springs along their paths.

Hydrogeology of study area
The aquifer under the Ardabil plain is unconfined. The larger

basin area related to Ardabil plain is approx. 4003 km?, of
which 75% are mountainous and 25% are plain. The main
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aquifer recharge sources at Ardabil plain are as follows: (i)
groundwater flows through the joints and fractures at the
mountainous upper catchment areas and crosses the aquifer
boundary and thereby recharges it; (ii) rainfall directly falling
on the plain infiltrates soil and thereby percolates groundwa-
ter; and (iii) interactions between the watercourses and the
aquifer with net gains and losses vary through time.
According to geo-electric studies, changes in alluvium thick-
nesses at the margins of the plain are often low but gradually
increase towards its middle so that higher thicknesses are not-
ed at eastern and the middle parts of the plain (Nadiri et al.
2017a). Groundwater in the aquifer is withdrawn through
3669 deep and semi-deep withdrawal wells, 391 natural
springs and 48 qanats (Fig. 3).

Land use

Ardabil is located in the study area and it is a historic city with
a population of more than half a million but that at the plain is
more than one million. Agriculture in the study area is the
main economic activity and the region is well-known for its
fertility and high agricultural activities. There are some pro-
cessing industries around Ardabil including food and drink
packing, electronic devices producing, paper producing and
plastic tools producing factories. The land use classification is
discussed further in the next section.

Dataset preparation

The study area is divided into pixels of dimensions 500 m X
500 m, which leads to generating 3760 number of pixels. The
databank of the study area shown in Fig. 3 comprises a pro-
vision of 55 observation wells for recording groundwater
levels, 34 number of wells with geological logs and 3669
number of abstraction wells. The tedious data preparation in-
volves a set of decisions, which are presented in detail by
Nadiri et al. (2018a). This section presents a sufficient amount
of detail only to ensure the reproducibility of the models pre-
sented in this study.

Some of the basic information about these data layers
are reproduced in the section: Input data layers

ALPRIFT with its seven data layers and its associated best
practice procedure is detailed by Nadiri et al. (2018a, b, c).
The preparation of the data layers is outlined in Fig. 1 and this
section presents the main decisions appropriate for this study
and specifies data sources.

Aquifer media (A) It expresses soil texture and structure as
follows: (i) use the 34 geological logs available for the study
area, including their qualitative accounts of soil composition
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in terms of clay, sand and gravel (ARWA 2016); (ii) prescribe
the rate values as per Fig. 4; (iii) estimated average-rated pro-
portions at each well distribute these values using inverse
distance weights (IDW) for the study area. The rate for each
class of the A-data layer varies from 5 to 10 (Nadiri et al.
2018a). The rated A-data layer together with their proportions
is shown in Fig. 4a.

Land use (L) The steps for processing this data layer with 28 m
spatial resolution (Iran National Cartographic Centre 2013) is as
follows: (i) produce a polygon vector from the raster map, (ii)
superimpose the grid on the vector map and (iii) assign the rate
values as per Nadiri et al. (2018a, b, ¢) to each pixel. The rated
L-data layer together with their proportions is shown in Fig. 4b.

Pumping of groundwater (P) The measured monthly dis-
charge data from 3669 available abstraction wells (October
2015-October 2016) obtained from ARWA (2016) used for
calculating the Annual discharge values were as follows: (i)
the Theisen polygons were drawn for the 34 observation
wells; (i) withdrawal wells were identified within each poly-
gon; (iii) the abstracted groundwater was summed within each
polygon and was divided by the area within the polygon; (iv)
contours of abstraction area were drawn as per algorithm

specified in Fig. 4c; (v) the value of abstracted groundwater
at each pixel was taken off using the contour maps; and (vi)
the data layer was reclassified into six classes as per P-data
layer specified by Nadiri et al. (2018a). Groundwater
pumpage ranges from 0.42 to 48.75 cm/yr and the rated P-
data layer together with their proportions is shown in Fig. 4c.

Recharge (R) The data layer for net recharge was prepared as
per Scanlon et al. (2002) using three raster layers as follows:
(1) use rainfall values at Benis-Sanjan station, provided by
ARWA (2016), and its value is 317 mm for the period from
October-2015 to October-2016; (ii) use slope values and its
values vary in the range of 0—19% in the basin and is less than
2% for plain; and (iii) use soil permeability provided by
ARWA (2016), where its values vary from very slow to high.
The net recharge map is the outcome of combining these three
layers (0.18—44 cm/year) after dividing into three categories as
per Nadiri et al. (2018a). The rated R-data layer together with
their proportions is shown in Fig. 4d.

Impact of aquifer thickness (I) Thicknesses of the sediments in
the study area were measured by geo-clectric surveys. The
survey data from 97 wells were used and their depth ranges
were calculated to be in the range of 13-213 m. This was
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Fig. 4 Raster BAF data layers—rated data; a Aquifer media (weight, 5);
b land use (weight, 4); ¢ pumping of groundwater (weight, 4); d recharge
(weight, 3); e impacts in terms of thickness (weight, 2); f fault distance

divided into six categories as per Nadiri et al. (2018a). The
rated I-data layer together with their proportions is shown in
Fig. 4e.

Fault distance (F) The distances between fault lines and every
pixel of the study area were calculated by the Euclidean dis-
tance method in a GIS environment using the map by the
Geological Survey and Mineral Exploration of Iran. The out-
put map was reclassified into six classes as per Nadiri et al.
(2018a). The rated F-data layer together with their proportions
is shown in Fig. 4f.

Water table decline (T) The water table (T) declination at 34
observation wells was calculated by subtracting the water ta-
ble for a 1-year period (October 2015—October 2016) (ARWA
2016). The declined range is from 0.85 to 2.59 m for 2015—
2016. The reclassified map uses four classes (Nadiri et al.
2018a). The rated T-data layer together with their proportions
is shown in Fig. 4g.

Target data Figure 5a shows the CSVI data layer but
reclassified into four designated bands as per Fig. 4. The
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(weight, 5); g water table decline (weight, 1). Note: The A, P, I and T data
layers use the IDW interpolation technique

data layer serves as target to the three Al models to opti-
mise the ALPRIFT weights and as to the supervised GEP
model at Level 2. As the maximum CSVI from FL models
is not constrained, AI models may slightly exceed those
from BAF. The average values are given in Fig. 5a for the
period August 2015—-August 2016. The maximum subsi-
dence over the study area is 2.14 cm for the period of
August 2015-August 2016 but the evidence from obser-
vation wells shows this to be 9 cm for the 10-year period
(average of 0.9 cm) based on the sparse observation well.
Risk exposures to subsidence are probably accelerating at
the study area and this is expected but more data is need-
ed to confirm it.

Implementation of the framework and three models

The input and output datasets for implementing the SFL,
MFL and LFL models require the division of the data into
two sets of training and testing phases. Thus, the training
phase of the models use randomly selected 80% of the
data and the testing phase uses the remaining 20% of
the data. Model performances are measured by comparing
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the modelled values with their corresponding measured
values using the following performance metrics: correla-
tion coefficient (»), Nash and Sutcliffe Efficiency coeffi-
cient (NSE) and correlation index (CI) Nadiri et al.
(2018c), and receiver operating characteristics (ROC)
curves together with area under curve (AUC) (Swets
1988).

Correlation coefficient varies from 1 to — 1, at which the
measured metric is indicative of a perfect performance but if »
is closer to zero, it indicates poor performances. NSE varies in
the range of 1 to —oo, where (i) NSE = 1 reflects a perfect
match between the modelled and measured values, (ii)) NSE =
0 is a reflection of the cases when information content of the
modelled results to be of a similar order of the mean of the
observed data and (iii) NSE <0 is a reflection of the residual
errors to be larger than that of the measurements (Nourani
et al. 2008). NSE is known to be sensitive to outliers.

The paper uses another performance metric, referred to as
correlation index (CI), which employs only those data and
results at the observation points. The procedure for calculating
Cl-values is as follows: (i) the subsidence target values are
grouped into four subsidence bands (SB 1, SB 2, SB 3 and
SB 4); (ii) the modelled subsidence values are also grouped
into four modelled bands (MB 1, MB 2, MB 3 and MB 4); (iii)
a matrix is formed and the score for each field in the matrix is
counted; (vi) weights of 1, 2, 3 and 4 are assigned for the band
differences being 3, 2, 1 and 0, respectively; (v) the weighted
scores are summed together.

The minimum SVI by ALPRIFT is 24 and its maximum is
240. Howeyver, the results for SFL, MFL, LFL and AIMM are
not constrained and therefore they can produce values outside
these limits.

Receiver Operating Characteristic (ROC) is often used
for spatial goodness-of-fit. It is an analysis tool for radar
images and is known as “Signal Detection Theory” to
differentiate between the blips from a friendly ship, an
enemy target or noise. The signal detection theory is
now used in wider modelling practices. The ROC curve
accuracy is measured by the Area Under Curve (AUC)
and its value of 1 represents a perfect test but of 0.5
reflect existence of strong noise.

Results
Basic ALPRIFT framework

The basic ALPRIFT framework (BAF) vulnerability indexing
is only used in this investigation for processing the data layers
and benchmarking. GIS is used to process the raw data and
Figs. 4 maps their rated values. SVI values were mapped by
Eq. (1) through the procedure illustrated in Fig. 1 with pre-
scribed rate and weight values as per Nadiri et al. (2018a). The
SVI classification is mapped in Fig. 5b, which also gives the
proportion of areas within each band (Band 1 has 3% of sub-
sidence potential; Band 2 has 57% of subsidence potential,
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Band 3 has 37% of subsidence potential and Band 4 has 5%
subsidence potential).

The performance measure for BAF is based on the
correlation coefficient and NSE through the comparison
of SVI values (Fig. 5b) with measured subsidence (Fig.
5a). It is visually apparent that there are convergences and
divergences between the respective results, but this is nat-
ural as BAF is not a prediction but identification of po-
tentials. The results are given in Table 1, according to
which » and NSE values for BAF are 0.55 and 0.21 re-
spectively, and the values signify that the information ex-
tracted from the data layers by BAF is significant but not
yet defensible. This is a notable similarity with the au-
thors’ reported studies on the DRASTIC vulnerability in-
dices, see Nadiri et al. (2017a, b, c); as well as with that
of BAF (Nadiri et al. 2018a). Thus, the low correlation
justifies seeking for further improvement by using the
SFL, MLF and LFL models as detailed below.

Sugeno, Mamdani and Larsen fuzzy logic

The learning strategy at Level 1 in this investigation is the
use of SFL, MLF and LFL. The SFL model was imple-
mented by optimising the weights for each ALPRIFT data
layer by matching the modelled values with the CSVI
values. The subtractive clustering (SC) technique was
used by systematically increasing the cluster radii from
0 to 1. The results show that the optimum clustering ra-
dius is of 0.4, at which value the RMSE value was
minimised and rendered the value of 0.1. The outcome
is the generation of 9 membership functions (fuzzy if-
then rules). This is then used in the SVI assessment by
the SFL model by formulating fuzzy if-then rule i,
expressed as follows:

A belongs to MFiA and
L belongs to MF; 4
P belongs to MF}, and
R belongs to MF}R and
I belongs to MF| and
F belongs to MF}; and
T belongs to MF}. and

Rulei: If

Then SVI; = m;A + nil + oiP +piR + qil +rF+sT 4+t

where MF}, is membership function of the i/ cluster of
input A, MF! is membership function of the i cluster of
input L and so forth. “AND” is a fuzzy operator, which
connects the various MFs together as per rule. SVI; is the
output of rule i and the linear function of the i/ cluster of
output, and m;, ny, 0;, p;, ;i i, i and ¢ are constant coef-
ficient values.
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The aggregation process comprises the output (SVI) as the
weighted average of all outputs:

wiSVI;
gyy = ZWiSVE (6)
i
where wj is the firing strength of rule 7, assessed via the “and”
operator.

Table 1 includes the presentation