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Abstract
The factors affecting the stability of surrounding rock have fuzzy randomness, and their evaluation indicators not only show
boundary ambiguity and interval discreteness but also have complex interactions. In order to reflect the distribution character-
istics and interaction relationship of the indicators, and improve the accuracy of surrounding rock stability evaluation, a stability
evaluation model of surrounding rock based on a fuzzy Rock Engineering Systems (RES)-connection cloud is proposed. The
research showed that the introduction of linguistic hesitant fuzzy sets improves RES, resulting in experts’ compilation completely
retained. Through cloud theory transformation, the subjectivity can be further weakened, and the credibility of indicator weight
can be effectively improved. The two-dimensional cloud cause-effect map can reflect the indicator interaction relationship more
intuitively and accurately. The joint state is found to be the most dominant parameter, and groundwater seepage is found to be the
least dominant parameter. Furthermore, the connection cloud can overcome the defects of traditional cloud model which assumes
the indictor follow normal distribution. Comparing the engineering application results with the matter-element extension method
and the fuzzy set method, the feasibility of the present model is verified.
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Introduction

The classification of surrounding rock stability can provide
important information for engineering design and construction
method selection, and it has important guiding significance for
rock excavation and support. The growing demand for engi-
neering has resulted in the development of rock mass stability
classification as an independent discipline. Finding a suitable
classification method of surrounding rock stability for engi-
neering applications has always been one of the important
research directions in rock mechanics. The existing methods
for evaluating surrounding rock stability can be divided into
three categories—qualitative analysis, quantitative analysis,
and meta-analysis. With the development of rock mechanics

theory and evaluation algorithms, quantitative analysis has
gradually replaced qualitative analysis.

Evaluationmethods range from single-indexmethods (e.g.,
Rock Quality Designation (RQD) and the Rock Mass Rating
(RMR) system)(Zhang et al. 2019) to methods utilizing the
comprehensive evaluation of multiple indicators, e.g., the ca-
tastrophe progression method (Xie et al. 2018), uncertainty
measurement theory(He et al. 2014; Li et al. 2017), back
propagation (BP) neural networks(Liu et al. 2018; Gao et al.
2018; Tian et al. 2017; Goh and Zhang 2012), matter-element
extension analysis theory(Su et al. 2006), fuzzy set contrastive
analysis theory (Wang et al. 2015), set pair analysis(Bu et al.
2018), fuzzy comprehensive evaluation method (Wang et al.
2017), the data-driven Multivariate adaptive regression spline
method(Zhang and Goh 2012; Goh et al. 2017), and the cloud
model(Zhu et al. 2019; Wang et al. 2016). And also include a
combination of various theories for evaluation, e.g., particle
swarm optimization combined with a support vector machine
algorithm(Nie et al. 2013; Zhuang et al. 2019; Liu et al. 2017),
and fuzzy comprehensive evaluation combined with numeri-
cal simulation(Ding et al. 2019). Although some achieve-
ments have been made, each method has its own drawbacks.
For example, thematter-element extensionmethod ignores the

* Feng Gao
csugaofeng@csu.edu.cn

1 School of Resource and Safety Engineering, Central South
University, Changsha 410083, Hunan, China

2 Research Center for Mining Engineering and Technology in Cold
Regions, Central South University, Changsha 410083, Hunan, China

https://doi.org/10.1007/s10064-020-01744-8

/ Published online: 21 February 2020

Bulletin of Engineering Geology and the Environment (2020) 79:3221–3230

http://crossmark.crossref.org/dialog/?doi=10.1007/s10064-020-01744-8&domain=pdf
http://orcid.org/0000-0003-4726-5180
mailto:csugaofeng@csu.edu.cn


uncertainty of the indicator, and its effect on dealing with the
discrete optimization problem is poor. The cloud model real-
izes the fuzzy transformation of qualitative and quantitative
indicators, but the traditional cloud model assumes that the
evaluation indicator satisfies the normal distribution, however,
in actual engineering, the individual effects of the factors are
not uniformly small, that is, some indicators have an overrid-
ing dominant role, and the indicators are not independent of
each other but have a certain degree of interdependence, they
will not be able to meet the conditions of normal distribution;
meanwhile, the stability classification based on traditional
cloud is excessively affected by the indicators at the mean of
the interval. These shortcomings affect the accuracy of the
surrounding rock stability evaluation.

On the contrary, the stability of the surrounding rock is af-
fected by multiple indicators, which are not completely inde-
pendent but have interaction with each other. Together, they
constitute a complex fuzzy system and ultimately determine
the stability classification of the surrounding rock. The rock
engineering system(RES, Hudson 1992) is an approach to deal
with complex engineering problems, as it combines adaptabil-
ity, comprehensiveness, repeatability, efficiency, and
effectiveness. Many researchers attempted to develop this
method in various fields, such as Shang et al. (2000) and
Rozos et al. (2011) used RES coupled with GIS to solve the
site selection problem, Zhang et al. (2004), Montoya-Montes
et al. (2012), Rozos et al. (2008), Yoo et al, (2008) and Ali and
Hasan (2002) adopted RES approach to evaluate the stability of
slope and tunnel. In addition to geological applications, many
researchers applied RES to various practical engineering
problems, such as Andrieux and Hadjigeorgiou (2008) assessed
the likelihood of success of a large-scale confined destress blast
in an underground mine pillar using RES, Saeidi and
Khalokakaie (2013) predict the groutability of the rock mass
based on RES method, and Fattahi and Moradi (2018) estimat-
ed the rock mass deformation modulus based on RES. In all
these studies, the traditional RES was used to obtain the weight
and interaction relationship of every factors, and the key factors
in the index system can be found. The quantification of the
interaction strength in matrix is one of the most important parts
of the RES method, in all of the above studies, the expert semi-
quantitative method (ESQ) is the commonly used, in which one
value is deterministically assigned to each interaction, relying
on the expert experience to assign the interaction matrix.
Therefore, the ESQ implicitly consider that there are no uncer-
tainties when the influence of one indicator on the others, the
main weakness of ESQ is its great variability of interaction
value and rough correspondence between value and action
strength. Rafiee et al. (2015, 2016) introduced the fuzzy system
theory to minimize subjectivity of quantifying the interaction
matrix, but it caused the loss of some expert’s evaluation infor-
mation, and its C-E map cannot reflect the fuzzy interaction of
the indicators.

In view of this, in this study, a novel coding approach is
proposed for use within the RES systems framework. In this
method, in order to completely retain the experts’ evaluation
information, the linguistic hesitation fuzzy set was used to
coding the interaction matrix. Then in order to weaken the
coding subjectivity and integrate the coding results, using
the cloud model theory, the semi-quantitative linguistic vari-
ables in comprehensive interaction matrix are transformed in-
to the fuzzy quantitative variables in comprehensive cloud
form. Finally through decoding the interaction matrix, we
can learn the interaction of indicators, and the indicator
weights are determined. Considering that in practice, the dis-
tribution of evaluation indicators of surrounding rock stability
is in the form of a limitation interval distribution, the random-
ness, and fuzziness reflected by the traditional cloudmodel are
different from the actual situation, which is most obvious in
the distribution of the membership degree of the boundary
level (the highest and the lowest risk grade); thus, the connec-
tion cloud theory is introduced to overcome this defect. The
improved RES is coupled with the connection cloud to estab-
lish a stability evaluation model for the surrounding rock. The
validity of the model is verified by engineering cases.

Research method

RES theory

RES theory (Hudson 1992) begins with the evaluation indica-
tors that interact with each other and work together on the
same research object. The specific mechanism and framework
of RES was listed in appendix A. In the traditional RES, the
interactive matrix (Fig. 4 in Appendix A) compilation method
is the ESQ method, which quantifies the evaluation tone sim-
ply into specific values. Natural language, however, does not
strictly distinguish between randomness and fuzziness, but
includes both. For example, in the use of words such as “prob-
ably,” “maybe,” “or so”, and “more or less,” fuzziness implies
randomness and randomness implies fuzziness (Li and Du,
2005). The ESQ method obviously lacks the description of
the uncertainty and ambiguity of the interaction strength be-
tween indicators. Therefore, in this paper, to overcome the
loss and distortion of information, the linguistic hesitation
fuzzy set is applied to compile the interaction matrix and per-
form cloud transformations on the compilation results.

Hesitant fuzzy linguistic set and cloud transformation

The hesitant fuzzy set (HFS) is used in quantitative situations
in which people hesitate about several possible values to de-
termine the membership degree of an element to a given
set(Tang and Liao 2019). Motivated by the HFS, Rodriguez
et al. (2012) introduced the Hesitant fuzzy linguistic term
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set(HFLTS) to express qualitative information in which peo-
ple hesitate about several linguistic terms.

Definition 1: Let S = {s0, s1, ..., st − 1} be a linguistic term
set, where t is an odd number, a linguistic hesitant fuzzy set in
S is a set that when applied to the linguistic terms of S returns a
subset of S with several values in [0, 1], denoted
byLH = {<Sθ(i), lh(Sθ( i))>| Sθ(i) ∈ S}, where lh Sθ ið Þ

� � ¼
r1; r2; :::; rmif g is a set with mivalues in [0, 1] denoting the

possible membership degrees of the elementSθ(i) ∈ S to the set
LH.

In this study, let t = 4; then the linguistic term S0, S1, S2,S3,
S4, means: no influence, weak influence, medium influence,
strong influence, and decisive influence, respectively. The
universe is [Xmin, Xmax]; by the golden radio method(Zhu
et al. 2016), five clouds can be generated with their numerical
characteristics as Ai (Exi, Eni, Hei) (i = 1,2,…,5):

Ex2 ¼ Xmin þ Xmaxð Þ=2;Ex0 ¼ Xmin;Ex4 ¼ Xmax;
Ex1 ¼ Ex2−0:382 Xmax−Xminð Þ=2;Ex3 ¼ Ex2 þ 0:382 Xmax−Xminð Þ=2;
En1 ¼ En3 ¼ 0:382 Xmax−Xminð Þ=6;En2 ¼ 0:618En3;En0 ¼ En4 ¼ En3=0:618;
He1 ¼ He3 ¼ He2=0:618;He0 ¼ He4 ¼ He3=0:618

8>><
>>: ð1Þ

The universe of this study is taken as [0,10], He2 = 0.1.
Using Eq. (1), we can obtain the following five clouds:
A0 (0, 1.031, 0.262), A1 (3.09, 0.637, 0.162), A2 (5, 0.393,
0.1), A3 (6.91, 0.637, 0.162), A4(10, 1.031.0.262).

Definition 2: Let S = {s0, s1, ..., st − 1} be a linguistic term
set, where the valid universe is [Xmin, Xmax]. The cloud Ai(Exi,
Eni,Hei) represents Si. Let LH = {<Sθ(i), lh(Sθ(i))| Sθ(i) ∈ S} be a
linguistic hesitant fuzzy set, where

lh Sθ ið Þ
� � ¼ r1; r2;…; rmif g. A*

LH Ex*LH ;En
*
LH ;He*LH

� �
i s

called the comprehensive cloud (Rozos et al. 2011) of LH,
where

Ex*LH ¼ 1

LHj j ∑
θ ið Þ∈ LHj j

Exθ ið Þ
lh Sθ ið Þ
� ��� �� ∑

r∈ lh Sθ ið Þð Þj j
r

0
@

1
A

0
@

1
A;

En*LH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LHj j ∑
θ ið Þ∈ LHj j

Enθ ið Þ
� �2s

;

He*LH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

LHj j ∑
θ ið Þ∈ LHj j

Heθ ið Þ
� �2s

8>>>>>>>>>><
>>>>>>>>>>:

ð2Þ

The comprehensive cloud unifies the form of (HFLTS)
with different lengths, which is conductive to generalizing
the decision making methods to linguistic fuzzy decision-
making (Wang and Feng 2005).

Connection cloud model

The actual distribution of evaluation indicators often pre-
sents a limited interval distribution rather than an ideal
normal distribution; thus, the randomness and fuzziness
expressed by traditional cloud models are different from
the actual parameters. The connection cloud model over-
comes this weakness and it is more in line with the distri-
bution characteristics of surrounding rock stability evalua-
tion indicators in actual situation.

Connection cloud (Wang et al. 2016) definition: Assume
that the classification standard can be divided into m evalua-
tion grades (i = 1,2,...,m), each grades has n evaluation indexes
(j = 1,2,...,n), the cloud mapping of grade i for index j consists
of both the left and right half of an asymmetric connection
cloud with the boundary of expected value Exi, and the cloud
drop is obtained by the digital feature values (Ex, En,He, a, λ)
and the cloud drop N, which can be expressed by

ui ¼ 1−
xi−Ei

x

ai0

� �2
" #λi

ð3Þ

ai0 ¼ Eni
0 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2λi þ 3
p

ð4Þ

λi ¼ lg0:5

lg 1− yi−Ei
x

ai

� 	2

 � ð5Þ

Ei
x ¼

Limax þ Limin

2
ð6Þ

Ei
n ¼

aiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λi þ 3

p ð7Þ

Hei ¼ 0:1Exi ð8Þ

Where Exi,Eni, and Hei are expected value, entropy, and
hyper entropy of the left interval or right interval of grade in
the asymmetric connection cloud, respectively; aiandai'are the
half-interval length and modified half-interval length,(ai' de-
notes the modified left half-interval length,xi ∈ [Exi − ai', Ex

i],
and ai ' denotes the modif ied r ight half - interval
length,xi ∈ [Exi, Exi + ai'], in which Eni is generated by a nor-
mal distribution, Eni'~N(Eni, (Hei)2)); Limax and Limin are the
upper limit and lower limit of the interval in the i th evaluation
grade, respectively; and λi is the order of the corresponding
distribution density function
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Evaluation model for surrounding rock
stability based on fuzzy RES-connection cloud

Surrounding rock evaluation indicator system

The classification of surrounding rock stability is closely re-
lated to the selection of evaluation indicator, and its influenc-
ing factors are mainly geological factors and engineering fac-
tors. Geological factors mainly include rock mass characteris-
tics, groundwater activity, stress state and joint state of sur-
rounding rock, while engineering factors refer to external fac-
tors that are formed in the later stage of rock mass without
disturbance. In this paper, we focus on the characteristics of
surrounding rock before engineering activities, so the evalua-
tion indicators are selected from geological factors. According
to the relevant research results(Xue et al. 2019; Hu 2000;
Rehman et al. 2018), considering the accessibility of indica-
tors, the rock quality index RQD (%), uniaxial compressive
strength Rw (MPa), rock integrity index Kv, groundwater seep-
age volumeW (L/(min·10 m)) and joint condition are used as
the evaluation indicators of surrounding rock stability, in
which the surrounding rock properties are reflected by RQD,
uniaxial compressive strength, and the rock integrity index.
The groundwater seepage volume is used to reflect the soft-
ening and destructive effects of groundwater on surrounding
rock. The stability of surrounding rock is divided into five
grades: grade I (extremely stable), grade II (stable), grade III
(basic stability), grade IV (unstable), and grade V (very unsta-
ble). The corresponding indicators are also divided into five
grades, and the specific classification criteria are shown in
Table 1.

Rock quality index (RQD) can reflect the development
characteristics of structural plane. In engineering, rock mass
quality is judged according to the integrity of drilling core, that

is, the cumulative length of core over 10 cm (including 10 cm)
is the percentage of the total length of borehole (Table 1).

Uniaxial compressive strength (UCS) is one of the most
important engineering properties of rocks, which represents
the ability of resist deformation. Rockmaterial strength is used
as a crucial parameter in many rock classification systems.
UCS is influenced by many characteristics of rocks such as
weathering or alteration rate, micro cracks and internal frac-
tures, density and porosity (Singh and Goel 2011). Based on
the RMR classification, the unconfined compressive strength
of intact rock is subdivided into five classes (Table 1).

Rock integrity index (Kv) is an important index reflecting
rock integrity. The development degree of structural planes
(joints, layers, gneisses, faults) in rock mass (i.e., rock mass
integrity) is an important geological factor affecting the stabil-
ity of surrounding rock mass. The engineering properties of
rock mass largely depend on the weak structural planes and
fillers between them, as well as their spatial distribution, in-
cluding the number of structural planes, spacing, and the num-
ber of joints per unit volume. They directly weaken the stabil-
ity of surrounding rock. It can be obtained by wave velocity
test for qualitative evaluation. Expressed by Eq. (9):

Kv ¼ Vpm=Vpr
� �2 ð9Þ

Where, Vpm is the P wave velocity of rock mass and Vpr is
the P wave velocity of complete rock mass.

Groundwater is an important factor affecting the stability of
surrounding rock. The influence of groundwater on the stabil-
ity of surrounding rock is mainly manifested in the following
three aspects: (1) groundwater softens the rock and reduces
the strength of the rock, which is most obvious to the rock in
the weathered fractured zone, and reduces the self-

Table 2 Criteria for joint surface
coefficient Level Description of joint surface Value

I Very rough surface, discontinuous, closed rock wall 9~10

II Micro-rough, surface opening <1 mm, slightly weathered 7~9

III Micro-rough, surface opening <1 mm, seriously weathered 4~7

IV Slip surface or mud with thickness less than 5 mm, surface opening between 1 and 5 mm 2~4

V Mud with thickness > 5 mm, surface opening >5 mm 0~2

Table 1 Classification of
surrounding rock stability
evaluation indicators

Grade RQD(%), X1 Rw(MPa),X2 Kv, X3 W(L/(min·10 m)−1), X4 Joint condition, X5

I 60–100 200–300 0.75–1.00 0–5 9–10

II 40–60 100–200 0.55–0.75 5–10 7–9

III 25–40 50–100 0.30–0.55 10–25 4–7

IV 10–25 25–50 0.15–0.30 25–125 2–4

V 0–10 0–25 0–0.15 125–250 0–2
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stabilization ability of surrounding rock; (2) In rock mass with
weak structural planes, water will reduce the friction of struc-
tural planes, dissolve the cements between rocks, and induce
the sliding and failure of rock mass. (3) Increase the dynamic
and static water pressure, and the water may contain corrosive
substances, which have corrosive effect on surrounding rock
and supporting structure. Therefore, the seepage volume per
minute of 10 m long surrounding rock is chosen as the basis
for quantitative determination of groundwater.

Joint condition contains the joints’ distribution, develop-
ment, scale, and physical and mechanical properties, and it
is closely related to rock mass strength and stress state. The
degree of joint openness and filling properties are important
components for determining rock mass integrity (Xue et al.
2019). Joint condition is a single-factor evaluation criterion to

quantitatively evaluate joint surface properties, which can be
achieved through a geological sketch of the tunnel face
(Table 2).

According to the classification standard of the surrounding
rock stability evaluation indicator (Table 1), based on the con-
nection cloud theory, all the indicator cloud digital character-
istics of five grades can be obtained according to Eq. (3)– (8);
according to Eq. (3), 500 cloud droplets in each of the left and
right half intervals of the j index i level are simulated, and a
connection cloud of the j index i level is generated, as shown
in Fig. 1. In the figure, the abscissa is the value of the evalu-
ation indicator, and the ordinate is the membership degree.
The five clouds in each figure represent the standard connec-
tion cloud of the I–V grade, connection cloud is more superior
on the assumption of indicator distribution. For example, the

Table 3 Indicator linguistic hesitation fuzzy set synthesis interaction matrix

Index factors of surrounding rock stability classification system

X1 {(S2, 0.4,0.5,0.6)} {(S2, 0.6), (S3, 0.7,0.8)} {(S1, 0.3,0.4), (S2, 0.5)} {(S1, 0.4,0.5), (S2, 0.4)}

{(S1, 0.5,0.6,0.7)} X2 {(S0, 0.7,0.8), (S1, 0.8)} {(S1, 0.5,0.7), (S2, 0.4)} {(S1, 0.5,0.7,0.8)}

{(S3, 0.7,0.7,0.8)} {(S2, 0.8), (S3, 0.7,0.7)} X3 {(S3, 0.8), (S4, 0.6,0.7)} {(S3, 0.6,0.7), (S4, 0.5)}

{(S1, 0.3,0.4,0.5)} {(S1, 0.5,0.6,0.7)} {(S1, 0.6,0.7,0.8)} X4 {(S0, 0.5,0.8), (S1, 0.6)}

{(S3, 0.5,0.7,0.7)} {(S2, 0.6,0.7), (S3, 0.5)} {(S3, 0.5,0.7,0.8)} {(S2, 0.8), (S3, 0.6,0.7)} X5

Fig. 1 Standard connection clouds of evaluation indicators classification
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RQD value expectation of grade V is 80, when the measured
data of RQD is greater than 80, the membership of the grade V
should still be 1, but in the traditional cloud, the boundary
grade cloud (the highest and lowest grade) distribution still
presents a normal distribution, thus, when the RQD value is
greater than 80, its membership begins to decrease, which is
obviously not consistent with the actual situation.

Comprehensive evaluation based on fuzzy RES

The procedure for building the interactionmatrix is as follows.
Invite relevant experts in this field to compile the interaction
matrix of indicators. To preserve the information implied by
“probably” “maybe” in evaluation, applying the linguistic
hesitation fuzzy set, compile an interaction matrix. The lin-
guistic term set is S0,S1,S2,S3,S4, which means no influence,
weak influence, medium influence, strong influence, and de-
cisive influence, respectively. Integrate multiple interaction
matrices into a comprehensive indicator interaction matrix,
as displayed in Table 3.

When the experts code the interaction matrix, the concept
of linguistic terms used does not strictly distinguish between
randomness and ambiguity but includes both. The linguistic
hesitant fuzzy set semi-quantizes a large number of words

such as “probably,” “maybe,” and “or so” through member-
ship degree. Therefore, to further consider the randomness of
the relationship between indicators and weaken expert subjec-
tivity, cloud theory is introduced to achieve the transformation
from qualitative and semi-quantitative data to quantitative da-
ta. The universe of the linguistic hesitant fuzzy set is taken as
[0,10] in this study. According to the numerical characteristics
of five clouds (A0–A4) in the linguistic hesitant terminology
set, the linguistic hesitant decision matrix (Table 3) is trans-
formed into the comprehensive cloud interaction matrix ac-
cording to Eq. (2), as listed in Table 4.

To decode the comprehensive cloud interaction matrix, the
addition operation of cloud theory should be introduced, and
its operation mode is as follows (Zhu et al. 2016). If there are
clouds A1 (Ex1, En1, He1) and A2 (Ex2, En2, He2) in a certain
domain U, then the result of the additive algebra operation is
A(Ex, En, He) such that

Ex ¼ Ex1 þ Ex2 ð10Þ

En ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
En21 þ En22

q
ð11Þ

He ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
He21 þ He22

q
ð12Þ

The cloud coding of the row and column in which indictor
Pi is located is added to obtain the cloud coding of cause (C)
and effect (E) in the index interaction matrix, as well as the
interaction strength (C+E) with the system. On this basis, the
weights (wi) of each evaluation indictor are expressed by
Eq.(10–12) and Eq.(13 in Appendix A), as displayed in
Table 5.

In order to visually express the fuzzy interactive relation-
ship between indicators, using the two-dimensional cloud
generator, the two-dimensional cloud of five indicators, where
the two interacting dimensions values are C and E cloud cod-
ing values, is generated, and the cause-effect (C-E) map of the
surrounding rock stability indicators is generated, as shown in
Fig. 2. The x-axis is the cause (C), the y-axis is the effect (E),
and the z-axis is the membership degree. The interaction be-
tween the indicators is illustrated by the specific spatial distri-
bution of the indicators in the C-E map. The plane perpendic-
ular to the x-y coordinate system with the edge of C=E is the
equivalent plane of the causal space, which divides the space
into upper left and lower right parts. The indicator located in

Table 5 Surrounding rock
stability grading indicators Index factors C E C+E wi (%)

RQD(%), X1 10.07 1.354 0.3439 12.53 1.936 0.4922 22.61 2.363 0.6004 19.19

Rw(MPa), X2 7.078 2.194 0.5575 12.13 1.235 0.3140 19.21 2.518 0.6399 16.30

Kv, X3 18.99 1.525 0.4922 12.10 1.685 0.4283 31.09 2.273 0.6524 26.39

W(L/(min·10 m)−1), X4 6.182 1.936 0.4922 13.98 1.623 0.5118 20.16 2.526 0.7100 17.11

Joint state, X5 16.58 1.389 0.3531 8.174 1.976 0.5021 24.76 2.415 0.6138 21.01

Table 4 The comprehensive cloud interaction matrix of the
surrounding rock stability indicators

Index factors of surrounding rock stability classification system

X1 2.500
0.393
0.100

4.091
0.748
0.190

1.791
0.748
0.190

1.690
0.748
0.190

1.854
0.637
0.162

X2 1.236
1.212
0.308

1.927
0.748
0.190

2.061
0.637
0.162

5.067
0.637
0.162

4.419
0.748
0.190

X3 6.014
0.212
0.308

3.496
1.212
0.308

1.236
0.637
0.162

1.857
0.637
0.162

2.163
0.637
0.162

X4 0.927
1.212
0.308

4.376
0.637
0.162

3.353
0.748
0.190

4.607
0.637
0.162

4.246
0.748
0.190

X5
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the lower right area has a greater advantage to the surrounding
rock stability grading system. The indicator in the upper left
area has a weaker parameter advantage for the system. It can
be seen from the figure that the joint condition is the greatest
advantage parameter; its effect on the indicator system is
greatest; the groundwater seepage (W) is the least dominant
parameter, which is the most affected by the others. The ex-
pectation ofRQD is on the upper left side of the split plane, but
the C = E plane partially cuts its two-dimensional cloud,
which means that the interaction role of RQD has fuzziness
and randomness, so the effect of this indicator on the system is
roughly equal to that of the system. Compared with the tradi-
tional RES C-E diagram(Rafiee et al. 2016), the two-
dimensional cloud model replaces the determined coordinate
points, which is more conducive for visually depicting the
specific interaction of each indicator in the surrounding rock
stability system. The situation realizes the ambiguity and ran-
dom expression of the complex fuzzy system, which reflects
the advantages of cloud transformation.

Stability evaluation of surrounding rock based
on fuzzy RES-connection cloud

The implementation process of the surrounding rock stability
evaluation model based on the fuzzy RES-connection cloud is
as follows. First, several experts are invited to compile the
indicator interaction matrix based on linguistic hesitant fuzzy
set theory. The coding results are integrated, thus all expert
comment information is retained. Realize the fuzzy transfor-
mation from qualitative and half-qualitative to quantitative
data (type 3) based on the cloud model, weakening the sub-
jectivity of expert evaluation, and the weights of every

indictor is obtained by Eq. (1). Next, the evaluation index
system of surrounding rock stability is established. The I–V
grade connection cloud digital features (Ex, En,He, a, λ) of
each indicator are obtained based on the connection cloud,
and the cloud generator is used to generate the asymmetric
grade connection cloud of each indicator. Finally, the mea-
sured values of the cases to be evaluated are substituted into
the connection cloud model to obtain the five grade

Fig. 3 Evaluation model of surrounding rock stability based on fuzzy
RES-connection cloud

Fig. 2 C–E indicator interactive
cloud map
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membership degrees of each indicator. Combined with the
indicator weight, the membership degree of all indicators in
each grade are weighted and added; according to the “maxi-
mum membership degree principle,” the sample stability
grade is determined. The specific process is shown in Fig. 3.

Case study

To verify the feasibility of the proposed model, the stability of
surrounding rock of a mine in Shanxi Province of China is eval-
uated. Two fault fracture zone named F3 and F12 cut into the
mine from its southwest end. One strikes N25°~40°E and dips to
SE, another strikes N29°Wand dips to NE. The both dips angle
are between 15° and 19°. The fault throws of F3 and F12 are
unequal, which in middle is large and the ones in two ends are
small, and the extension lengths are 6000 m and 1300 m respec-
tively. The surrounding rock stratum is the Taiyuan Formation of
Upper Carboniferous. Its lithology is mainly gray-white medi-
um-coarse quartz sandstone, and contains a small part of con-
glomerate. The rock is hard, displays massive structure and lo-
cally loose structure, and its joint fissures are not well developed.
The -136 m tunnel face of the mine is selected as the actual
evaluation section, and Table 6 is part of the measurement data
collected based on the indicator system.

Substitute the sample data in Table 6 into the surrounding
rock stability evaluation model based on fuzzy RES-
connection cloud. The index weights were taken as wi-

= {0.1919, 0.1630, 0.2639, 0.1711, 0.2101}, which were ob-
tained in the study, and the stability grade of each sample was
determined according to Eq. (3). The evaluation results and
comparison with other methods are listed in Table 7.

It can be seen from Table 7 that compared with the
classification results in (Lian et al. 2004; Hu 2000; Luo
and Wang 2009), the evaluation results based on the fuzzy
RES-connection cloud are basically consistent with the
evaluation results of the matter element extension method
and the fuzzy set method, thus the feasibility of the model
is proved. According to the “maximum membership de-
gree principle,” sample No. 1 is judged to be grade II, and
the distance between the grade membership degree of II
(0.5968) and I (0.4004) is much smaller than the distance
between grade II and grade III (0.0277). Thus, it can be
considered that the true classification of sample 1 should
be between level II and level I, that is, it is determined to
be level II but biased toward level I. Similarly, samples 2,
3, and 5 all have this feature. Furthermore, when the dif-
ference between the two adjacent levels of the sample
theoretical level is small (< 0.2, such as samples 6, 7, 8),
or when the theoretical grade is at the lowest and highest

Table 7 Sample evaluation
results and comparison Sample Comprehensive membership degree Proposed

model
Matter element
extension(Lian
et al. 2004; Hu
2000)

Fuzzy
set(Luo
and Wang
2009)

U(I) U(II) U(III) U(IV) U(V)

1 0.4004 0.5968 0.0277 0 0 II~I* II II

2 0.0988 0.6230 0.3268 0.0001 0 II~III* II II

3 0.4333 0.4648 0.1144 0 0 II~I* II II

4 0.7305 0.2782 0 0 0 I I I

5 0.3060 0.5828 0.1611 0 0 II~I* II II

6 0 0 0.2871 0.7010 0.1306 IV IV IV

7 0 0.1728 0.6717 0.1687 0.0017 III III III

8 0 0.0775 0.2719 0.4882 0.2201 IV IV IV

Table 6 Measured values of
evaluation indicators Sample X1 X2 X3 X4 X5

RQD(%) Rw (MPa) Kv W (L/(min·10 m)−1) Joint condition

1 0.12 185.5 0.89 6 8

2 0.27 176.4 0.80 8 7

3 0.08 158.2 0.94 6 7

4 0.04 201.1 0.97 5 9

5 0.24 181.9 0.92 9 8

6 0.52 25.0 0.22 20 4

7 0.26 40.0 0.38 10 6

8 0.26 25.0 0.15 20 3
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grade (such as sample 4), it can be considered that the
bias of the grading is not obvious, and the theoretical
grade is regarded as the true grade. Therefore, applying
the judgment results of the model proposed in this study
can provide more reference information for the evaluation
of surrounding rock of actual engineering and the selec-
tion of surrounding rock support measures.

Conclusions

1) The linguistic hesitation fuzzy set was introduced to re-
place the ESQ coding method, then the cloud theory was
used to convert data in linguistic hesitant fuzzy set form
into the fuzzy quantitative integrated cloud data, weaken-
ing the subjectivity in the RES coding and improving the
accuracy of the indicator weights.

2) The cause-effect (C-E) map of the traditional RES was
improved to two-dimensional cloud map based on cloud
theory, the fuzzy and random interaction of factors was
intuitively and truly reflected.

3) Coupled improved RES with connection cloud, the sur-
rounding rock stability was accurately evaluated.
Through comparison and verification, this model can
more accurately and effectively reflect the true stability
grade and its classification bias.
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Appendix

RES theory

RES theory (Hudson 1992) begins with the evaluation in-
dicators that interact with each other and work together on
the same research object. Using a binary action mechanism
to reflect the interaction between the evaluation indicators,
the complex system morphology of the research object is
described using the indicator system interaction matrix. By
coding the non-diagonal elements of the interaction matrix
and analyzing the interaction matrix, the interaction rela-
tionship between the indicators can be obtained, as well as
the interaction strength of different indicators on the fuzzy
complex system of the research object, so as to realize the
identification of the main factors of the system and the
importance (i.e., the weight) of the indicators. Figure 4
shows the multidimensional interaction matrix (N × N),
which contains N evaluation indicators,

where the N elements on the main diagonal are evaluation
indicators, and the elements on the off-diagonal are the inter-
action values between the indicators, the interaction direction
of the indicators is as shown by the clockwise circle in the
upper left corner, and Iij and Iji are the effect code values of Pi
to Pj and Pj to Pi, respectively. The sum of the influence code
values of the row where Pi is located reflects the intensity of
the influence of Pi on the remaining indicators, which is called
the cause Ci, and the sum of the influence code values of the
column where Pi is located reflects the influence intensity of
the remaining indicators on Pi, which is called the effect Ei.
The importance of each evaluation index is obtained by com-
paring the Ci + Ei values of each indicator, and the (Ci, Ei)
reflects the interaction relationship between each indicator
and the system. The weight wi of each indicator is expressed
as

wi ¼ Ci þ Ei

∑n
i¼1 Ci þ Eið Þ � 100% ð13Þ
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