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Abstract
The traditional strength reduction method (SRM) uses a single reduction parameter to reduce the cohesion (c) and friction
coefficient (tanφ) of a slope. However, this paper develops a new SRM using two different reduction parameters to reduce c
and tanφ, by which the critical state of the slope can strictly simultaneously satisfy the upper and lower limit theorem. First, two
types of critical state curves (CSCs) are established based on the upper and lower limit theorems, respectively, which are used to
depict the sufficient conditions for the slope in the critical state. The intersection of two CSCs is considered the most appropriate
combination of c/γH and tanφ to lead a slope to the critical state. Second, it is supposed that the most appropriate reduction path is
that c and tanφ are reduced towards the intersection of two CSCs. Finally, the differences between the traditional SRM and the
proposed method are discussed by analysing five examples with different slope angles. The results show that the potential sliding
area of the slope acquired by the proposed method is larger than those obtained from the traditional SRM. The sliding surface of
the slope at the critical state acquired by the proposedmethod can preferably represent the drawing open surface of the back edge.
Thus, the traditional SRM may underestimate the sliding range of a slope.
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Introduction

The slope stability analysis has always been a classical issue in
the geotechnical engineering field (Sloan 2013). In general, the
slope stability analysis consists of two components: calculating
the safety factor and searching for the critical sliding surface
(Kim and Lee 1997; Zheng et al. 2009). Many different analysis
methods can be classified into two types: (1) a series of potential
critical sliding surfaces are pre-assumed; then, the safety factors
for each surface are calculated; finally, the minimum safety fac-
tor and corresponding slip surface are determined; and (2) the

safety factor of slope is first acquired; then, its corresponding
critical sliding surface is determined according to the stress,
strain or displacement distributions of the slope at the critical
state (Zheng et al. 2005; Cheng et al. 2007; Lin et al. 2009, 2019;
Zheng et al. 2009; Wang et al. 2016; Tu et al. 2016; Sun et al.
2016, 2020). The limit equilibrium method (LEM) undoubtedly
belongs to the first type, whilst the strength reduction method
(SRM) is classified as the second type. The dominant methods in
the slope stability analysis have always been the traditional limit
equilibrium methods in the previous decades and will remain
unchanged for some time to come. However, by comparing the
LEM with the SRM, Duncan (1996) and Krahn (2007) coinci-
dentally thought that the LEM has its essential shortcomings,
and the LEM does not satisfy the deformation compatibility.
The SRM hasmany particular advantages over the LEM inmany
aspects, so it has received increasing attention and broad accep-
tance from many researchers in slope stability analysis (Zheng
et al. 2005; Xu et al. 2009).

In the traditional SRM, the cohesion (c) and friction coeffi-
cient (tanϕ) are reduced by the same reduction parameter (i.e.,
the equivalent proportional reduction method), and the reduc-
tion parameter that leads the slope to the critical state is
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considered the safety factor of this slope. However, many
researchers have introduced different viewpoints about this
reduction method and thought that there might be a more
appropriate approach to reduce the shear strength parameters.
The first typical perspective is that the reduction approach
should represent the weakening rate of c and tanϕ during the
process of slope progressive failure and reflect different con-
tributions of c and tanϕ in maintaining the slope stability. The
reduction of the shear strength parameters based on a single
reduction coefficient implies that c and tanϕ have identical
safety reservations, and their weakening degree are treated
as identical, which obviously conflicts with the actual process
of slope progressive failure. Thus, a selection of two appro-
priate reduction-parameters for c and tanϕ can compensate for
the drawbacks of the equivalent proportional reduction meth-
od (Suo 2010; Pantelidis and Griffiths 2012; Yuan et al. 2013;
Jiang et al. 2013; Bai et al. 2014; Deng et al. 2017; Chen and
Lin 2018). Another perspective is that the process of strength
reduction is similar to the strain-softening behaviour of geo-
technical materials; the reduction of c and tanϕ should be
along their softening pathway. By introducing this correlation
into the SRM, the non-proportional correlative reduction
method is proposed (Conte et al. 2010; Xue et al. 2016). The
third perspective is that there are infinitely many combinations
of (tanϕ, c) that lead the slope to its critical state, and the curve
composed of these combinations is defined as the critical state
curve. The shortest pathway from the initial friction coeffi-
cient and cohesion to the critical state curve is considered
the most appropriate reduction approach (Isakov and
Moryachkov 2014; Yuan et al. 2016; Tang et al. 2017).
Regardless of how the reduction approach is selected, the core
goal is that the slope can reach a critical state much closer to
reality using the strength reduction method. However, there is
no obvious consensus on this issue.

Compared with the traditional SRM, a key issue for SRM
based on two reduction parameters is how to define a global

safety factor to estimate the slope stability. In general, the
global factor of safety (Fgcf) is the function of Fsc and Fsf,
where Fsc and Fsf are the reduction parameters of the cohesion
and friction coefficient that lead the slope to the critical state,
respectively. At present, there are several typical definitions as
follows (Jiang et al. 2013):

Fgcf ¼ Fsc þ Fsf

2
: ð1Þ

Fgcf ¼
ffiffiffi
2

p
Fsc � Fsfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F2
sc þ F2

sf

q Yuan et al: 2013ð Þ: ð2Þ

Fgcf ¼ 1

1−
Lffiffiffi
2

p
; L

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

1

Fsc

� �2

þ 1−
1

Fsf

� �2
s

Isakov and Moryachkov 2014ð Þ:

ð3Þ

Fgcf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fsc � Fsf

p
Yuan et al: 2016ð Þ: ð4Þ

Except for the above definitions, Bai et al. (2015) thought
that it was not necessary to define the global safety factor by
establishing a pure mathematical relationship among Fgcf, Fsc
and Fsf. The global safety factor can be defined as:

Fgcf ¼ Ψ ini

Ψ cri
ð5Þ

where Ψ is a physical index that represents the overall situation
of the slope, and subscripts ini and cri denote the initial state
and critical state of the slope, respectively. However, the suit-
able physical index to define the global safety factor has not
been noted in this cited reference.

In summary, the essential questions for the SRM based on
two reduction parameters are the selection of the appropriate
reduction pathway of c and tanϕ and the definition of the global
safety factor. In this paper, the authors propose a new SRM that
simultaneously satisfies the upper and lower limit theorems and
provide a new definition of the global safety factor. To verify
the feasibility of the proposed method, five simple slope exam-
ples are used as research objects to find the differences between
the traditional SRM and the proposed method.

“tanϕ− c
γH ” critical state curve

Upper bound limit analysis

The upper bound limit analysis method, which is known
as the energy analysis method, is established on the vir-
tual work principle. This method assumes that slope fail-
ure would occur if the external work rate from soil grav-
ity (Wext) exceeds the internal energy dissipation rate

Fig. 1 Rotational failure mechanism of a simple homogeneous slope
(Chen and Liu 1990)
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(Wint). When Wext tends to be equal to Wint, the slope will
reach the critical state. Obviously, the complex stress-
strain analysis can be avoided in this method (Chen
and Liu 1990; Tang et al. 2017).

Figure 1 shows a rotational failure mechanism of a simple
homogeneous slope used to build the work-energy balance

equation. According to the work-energy balance equation
Wert =Wint, the critical height of the slope is:

H ¼ c
γ
� f θh; θ0;β

0
� �

Chen and Liu 1990ð Þ ð6Þ

where f(θh, θ0, β
′) is expressed as:

f θh; θ0;β
0� �

¼ e2 θh−θ0ð Þtanϕ−1
� � � sinθh⋅e θh−θ0ð Þtanϕ−sinθ0

� �
2tanϕ � f 1− f 2− f 3− f 4ð Þ Chen and Liu 1990ð Þ: ð7Þ

f1~f4 are given as:
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8>>>>>>>>>>>><
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Chen and Liu 1990ð Þ ð8Þ

r0 and θ0 are the initial polar radius and polar angle of log
spiral, respectively; ϕ and γ are the internal friction angle and
unit weight of soil, respectively; β is the slope angle. The
meanings of the other parameters are shown in Fig. 1.

Next, we study the relationship among the geometrical and
mechanical parameters of the slope when it reaches the critical
failure state according to Eq. 6. If we take the partial derivative
of Eq. 7 with respect to θh, θ0 and β

′, when ∂f/∂θh = 0, ∂f/∂θ0 = 0
and ∂f/∂β′ = 0 make sense, the minimum of f(θh, θ0, β

′) is ac-
quired and marked as minf. Its corresponding minimum upper
limit of the slope height is expressed as Hcu. Thus, the critical
state of the slope that satisfies the upper limit theorem is:

c
γHcu

¼ 1

min f
ð9Þ

where minf is an implicit function of the internal friction angle
of soil and slope angle. Once the slope angle has been deter-
mined, there are multiple combinations of (tanϕ, c/γHcu) that
make Eq. (9) true. The curve that consists of these (tanϕ, c/
γHcu) combinations is named the critical state curve (CSC).
The key issue to establish the CSC is searching for the mini-
mum value of f(θh, θ0, β

′) under the limiting conditions (Eq.
(10)). Considering the mathematical optimization method, the
CSCs that satisfy the upper limit theorem for different slope
angles are shown in Fig. 2.

θ0 < θh < π
0 < θ0 < π=2
0 < β

0
< β

ϕ≤β

8>><
>>:

ð10Þ

(a) (b)

Fig. 2 Critical state curves that
satisfy the upper limit theorem for
different slope angles
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As shown in Fig. 2, all critical state curves for different
slope angles have identical characteristics: c/γHcu first sharply
drops and subsequently slowly decreases with the increase in
tanϕ, which performs as a hyperbolic function. Thus, the re-
lationship between c/γHcu and tanϕ can be fitted by the fol-
lowing expression:

c
γHcu

¼ mu

tanϕþ nu
−hu ð11Þ

where mu, nu and hu are the undetermined coefficients
that vary with the change in slope angle. The fitting
results of Eq. (11) for different slope angles are shown
in Table 1. All relevant coefficients are greater than
0.99 and very close to 1.0. Thus, the hyperbolic func-
tion can perfectly represent the relationship between c/
γHcu and tanϕ.

Lower bound limit analysis

Eq. (6) shows the upper bound of the slope height at the
ultimate state according to the upper bound limit analysis.
Obviously, there must be a lower bound for the slope height,
and the lower bound limit analysis method can provide a so-
lution approach for this issue. The basic description of the
lower bound theorem is as follows: all possible external loads
that satisfy the statically admissible stress field are less than
the real ultimate load (Chen and Liu 1990). The mathematical
expressions for the statically admissible stress filed are:

Staticequilibriumcondition : σij; j þ Fi ¼ 0 Chen and Liu 1990ð Þ
ð12Þ

Yieldcriterion : f σij
� �

≤0 Chen and Liu 1990ð Þ ð13Þ
Boundarycondition : σijn j ¼ Ti Chen and Liu 1990ð Þ

ð14Þ
where Fi is the body force vector; f is the yield function; nj is
the normal vector of the stress boundary; σij is the stress ten-
sor; Ti is the surface force vector applied on the stress bound-
ary. For a slope without external loads (i.e., Ti = 0), if the
function ofFi is assigned, the goal of the lower bound theorem
is to search for a slope with the maximal geometric size that
makes Eqs. (12) and (13) true. Thus, the lower bound theorem
can be expressed in another manner: the maximum possible
slope height that satisfies the statically admissible stress filed
is a lower bound of the slope height at the real ultimate state.

It is challenging to destruct a statically admissible stress
field of the entire slope in the actual engineering. However,
Chen and Morgenstern (1983) have proposed a vertical slice
method that strictly satisfies the lower bound theorem to ana-
lyse the slope stability. In this method, a mass of probable
slide surfaces is first presumed to cover the entire slope; then,
the force and moment balance equations of each slice em-
braced by a presumed slide surface are simultaneously

Table 1 Coefficients of the critical state curves based on the upper
bound theorem

Slope angle mu nu hu Relevant coefficient

15° 0.0300 0.1153 0.0792 0.9976

20° 0.0399 0.1540 0.0782 0.9985

25° 0.0503 0.195 0.0774 0.9991

30° 0.0626 0.2423 0.0778 0.9923

35° 0.0788 0.302 0.0807 0.9956

40° 0.0983 0.3718 0.0841 0.9979

45° 0.1209 0.4509 0.0873 0.9954

50° 0.1474 0.5398 0.0906 0.9912

55° 0.1899 0.6667 0.0985 0.9988

60° 0.1783 0.6452 0.0824 0.9992

65° 0.1878 0.6814 0.0734 0.9948

70° 0.1987 0.7094 0.0671 0.9977

75° 0.1956 0.7003 0.0542 0.9934

80° 0.2002 0.7138 0.0425 0.9975

85° 0.2026 0.7192 0.0286 0.9917

Table 2 Designing scheme for
the slope models Number of slope model 1# 2# 3# 4# 5# 6# 7# 8# 9#

Slope angle (°) 15 15 15 15 15 30 30 30 30

Slope height (m) 20 50 80 110 140 20 50 80 110

Weight (kN/m3) 10 15 20 25 30 15 20 25 30

Number of slope model 10# 11# 12# 13# 14# 15# 16# 17# 18#

Slope angle (°) 30 45 45 45 45 45 60 60 60

Slope height (m) 140 20 50 80 110 140 20 50 80

Weight (kN/m3) 10 20 25 30 10 15 25 30 10

Number of slope model 19# 20# 21# 22# 23# 24# 25#
Slope angle (°) 60 60 75 75 75 75 75

Slope height (m) 110 140 20 50 80 110 140

Weight (kN/m3) 15 20 30 10 15 20 25

W. Yuan et al. 2940



established. Obviously, this process is equivalent to the de-
struction of the statically admissible stress field.

In this paper, this method is used to establish the relationship
between the slope height and other influence factors associated
with the slope at the critical state. The procedure is as follows:

(1) Many slope models with different heights, slope angles
and soil weights are established.

(2) For each slope model, more than 5000 presumed possi-
ble slide surfaces are assigned to cover the entire slope
profile. The safety factors associated with each potential
sliding surface are calculated based on Chen and
Morgenstern’s vertical slide method.

(3) The minimum safety factor is selected and made to be
1.0 by adjusting c and tanϕ of the soil. Obviously, there
are many combinations of (c, tan ϕ) that make the mini-
mum safety factor equal to 1.0.

(4) According to all combinations of (c, tan ϕ) for each slope
model, the relationships between the slope height and c,
tanϕ and γ for different slope angles are established
through the multiple nonlinear fitting method.

The orthogonal experimental design method is used to de-
sign various slope models. Thus, the slope height, slope angle
and soil weight are considered the impact factors, and each
impact factor has been specified with five values: the slope
height is equal to 20m, 50m, 80m, 110m or 140 m; the slope
angle is equal to 15°, 30°, 45°, 60°or 75°; and the soil weight
is equal to 10 kN/m3, 15 kN/m3, 20 kN/m3, 25 kN/m3 or 30
kN/m3. According to the orthogonal array L25(3

5), the final
designing scheme for slope models is shown in Table 2.

Based on the above calculation procedure, the combinations
of (c, tanϕ) for each slope model in Table 2 at the critical state
are obtained. Similarly, let us suppose that the abscissa denotes
the friction coefficient (tanϕ) and the ordinate denotes non-
dimensional number (c/γH). The combinations of (tanϕ, c/
γH) for the slope with different slope angles can form a curve,
which is named the critical state curve (CSC) and satisfies the

lower bound theorem. Figure 3 shows the CSC for different
slope angles. As observed in Fig. 3, their morphological char-
acteristics are very close to the CSC that satisfies the upper
bound theorem in Fig. 2. Thus, the relationship between tanϕ
and c/γH can also be established by the multiple nonlinear
fitting method in the basis of the hyperbolic function:

c
γHcL

¼ mL

tanϕþ nL
−hL ð15Þ

where HcL is the critical slope height resulting from the lower
bound analysis method; mL, nL and hL are undetermined coef-
ficients that vary with the change in slope angle. Fortunately, all
relevant coefficients of the fitting functions for different slope
angles in Table 2 are greater than 0.99 and very close to 1.0.
Thus, the CSC that satisfies the lower bound theorem can also
be accurately represented by the hyperbolic curve. In view of
this conclusion, the CSC for the other slope angles except those
in Table 2 can be obtained by identical procedures, and their
undetermined coefficients (mL, nL, hL) are shown in Table 3.

Relationship between two types of critical state
curves

Undoubtedly, these two types of critical state curves are very
close to each other instead of actually coinciding with each
other in the same “tanϕ − c/γH” coordinate system. For exam-
ple, for slope angle = 20,40,60 and 80°, their two types ofCSCs
are shown in Fig. 4. All CSCs that satisfy the upper bound
theorem are first above and subsequently below the CSCs sat-
isfying lower bound theorem along with the increasing of tanϕ.
Each group of CSC has an intersection point, and it is indicated
that this point simultaneously satisfies Eqs. (11) and (15). In

Table 3 Coefficients of the critical state curves based on the lower
bound theorem

Slope angle mL nL hL Relevant coefficient

15° 0.0437 0.1657 0.1025 0.9972

20° 0.0501 0.1954 0.09 0.9987

25° 0.0560 0.2226 0.0827 0.9981

30° 0.0723 0.2819 0.0863 0.9954

35° 0.0823 0.3255 0.0802 0.9938

40° 0.0965 0.3795 0.0807 0.9927

45° 0.1188 0.4626 0.0833 0.9991

50° 0.1344 0.5291 0.0792 0.9923

55° 0.1623 0.6239 0.0814 0.9946

60° 0.1904 0.7410 0.0806 0.9941

65° 0.1867 0.7320 0.0691 0.9953

70° 0.1998 0.7835 0.0599 0.9918

75° 0.2057 0.7846 0.0510 0.9924

80° 0.2211 0.8618 0.0400 0.9966

85° 0.2441 0.9490 0.0276 0.9989

Fig. 3 Critical state curves that satisfy the lower limit theorem for
different slope angles
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other words, once a slope angle is determined, the c, γ,H and
tanϕ attached to this intersection point can bring this slope to
the ultimate state, which simultaneously satisfies the upper and
lower bounds. Obviously, this ultimate state of slope can be
considered its realistic critical state, and this intersection point
can be named the optimal critical point (OCP). The coordinates
of theOCP for different slope angles can be acquired by solving
Eqs. (11) and (15), as shown in Table 4.

Strength reduction method using two
reduction parameters

Reduction path for c and tan ϕ

The essence of SRM is to make the slope as close to the
realistic ultimate state as possible. In this section, we propose
a new SRM using two reduction parameters based on CSC.

As shown in Fig. 5, two solid lines represent two types of
CSC for an arbitrary slope. Pi denotes the initial state of this

slopewith the initial coordinates of tanϕi;
ci
γH

� �
, andOCP is the

optimal critical point with the coordinates of (XOCP, YOCP).
Obviously, there are many paths for Pi to reach the red or blue
solid lines, such as L1, L2, L3, L4 and L5. Each path means a
different reduction method for ci and tanϕi. For example, with
L2, P1 and P2 are the intersection points of L2 with the red solid
line and blue solid line, respectively, and their coordinates

should be tanϕ1;
c1
γH

� �
and tanϕ2;

c2
γH

� �
. In view of P1, P2, Pi

and O on the same straight line, the following equation holds:

ci=γH
tanϕi

¼
c1=γH
tanϕ1

¼
c2=γH
tanϕ2

⇒
ci
c1

¼ tanϕi

tanϕ1
¼ ci

c2
¼ tanϕi

tanϕ2
¼ K ð16Þ

where K is the equivalent proportional reduction parameter.
Thus, path L2 based on the traditional SRM is only one of many

(a) Slope angle=20 (b) Slope angle=40

(c) Slope angle=60 (d) Slope angle=80

Fig. 4 Two types of critical state
curves in the same coordinate
system for the slope angle of 20°,
40°, 60°and 80°

Table 4 Coordinates of the optimal critical point for different slope angles

Slope
angle

tanϕ(XOCP)
c
γH YOCPð Þ Slope

angle
tanϕ(XOCP) c

γH YOCPð Þ

15° 0.1840 0.0210 55° 0.6210 0.0489

20° 0.0862 0.0879 60° 0.5404 0.0679

25° 0.2168 0.0447 65° 0.9113 0.0445

30° 0.2002 0.0637 70° 0.6116 0.0833

35° 0.1907 0.0792 75° 0.4684 0.1132

40° 0.4282 0.0388 80° 0.5047 0.1218

45° 0.4534 0.0464 85° 0.3691 0.1577

50° 0.4769 0.0547

W. Yuan et al. 2942



possible paths that lead the slope to the critical state. In partic-
ular, it is difficult to make the slope close to the realistic ultimate
state along path L2 because the upper and lower bound theo-
rems only provide a range of realistic ultimate states that follow
this path. In other words, the realistic critical point of path L2
lies between P1 and P2. Similarly, other paths such as L1, L4 and
L5 cannot accurately lead the slope to the realistic ultimate state.

Because OCP is a critical point that simultaneously
satisfies the upper and lower bound theorems, the reduc-
tion path from the initial point Pi towards OCP is a fea-
sible path to search for the realistic ultimate state of the
slope, which is named the optimal reduction path. Thus,
the final realistic reduction parameters for ci and tanϕi can
be depicted as:

Kϕ ¼ tanϕi

X OCP
Kc ¼ 1

γH
� ci
YOCP

ð17Þ

The ratio of Kc toKϕ is defined as the mating coefficient Φ:

Φ ¼ Kc

Kϕ
¼ 1

γH
ci

tanϕi

X OCP

YOCP
ð18Þ

Obviously, Φ is not a constant and varies with the slope
angle, initial state, soil weight and slope height. The core of
the slope stability analysis based on the double reduction pa-
rameters is first to calculate the mating coefficient. To ensure
that the reduction of ci and tanϕi are exactly consistent with
the optimal reduction path, the ratio of Fsc to Fsf at each re-
duction step should be assigned to be equal to Φ. During the
entire reduction process, we should continue adjusting Fsc and
Fsf to acquire new ci and tanϕi; then, the elasto-plastic calcu-
lation for the slope is executed by importing these new shear
strength parameters. Once the slope reaches the critical state,
the reduction process should be terminated, and its corre-
sponding Fsc and Fsf are considered the final reduction

Fig. 5 Discussion on the reduction path of the strength reduction method

Fig. 6 Procedures of the strength
reduction method using two
reduction parameters
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parameters. Thus, the procedures of SRM using two reduction
parameters are shown in Fig. 6.

Definition of the global safety factor of the slope

In essence, the global safety factor of the slope should reflect
the secure situation of the slope at the initial state using its
critical state as a reference. The definition of the global safety
factor based on pure mathematical relations (as shown in Eqs.
(1)~(4)) may lack a certain mechanical significance. Thus, this
paper attempts to provide a definition of the global safety
factor based on Eq. (5). Specifically, the global sliding resis-
tance force on the critical sliding surface is selected as a phys-
ical index to represent the overall situation of the slope.

As shown in Fig. 7, the right slope at the critical state is
considered the reference, and the left slope is the objective
slope at the initial state. When the slope has developed from
the initial state to the critical state by SRM, the stress field and
critical sliding surface at the critical state can be determined.
The global sliding resistance force at the critical state can be
acquired by integrating the shear strength of each point along
the critical surface. Simultaneously, the location of the critical
sliding surface is transplanted into the left slope, and the glob-
al sliding resistance force at the initial state can be similarly
obtained. The ratio of these two sliding resistance forces is
considered the global safety factor of slope:

Fgsf ¼
∫
l
σitanϕi þ cið Þdl

∫
l
σctanϕc þ ccð Þdl ð19Þ

where σi and σc denote the normal stress of each point on the
critical sliding surface for the initial state and critical state,
respectively; tanϕi and ci are the friction coefficient and cohe-
sion of the slope at the initial state; tanϕc and cc are the friction
coefficient and cohesion of the slope at the critical state.

Examples

Five slopes with different slope angles are used to demonstrate
the slope stability analysis based on SRM using two reduction
parameters. The geometrical and mechanical parameters of
the five examples are shown in Table 5.

The slope with slope angle = 75°is taken as an example to
illustrate the searching procedures of its critical state and the
calculation of its global safety factor in detail. According to
the geometrical and mechanical parameters of this slope, the
coordinates of its initial state point in the “tanϕ − c/γH” coor-
dinate system are Pi(0.7813, 0.0500), and the coordinates of
the optimal critical point areOCP(0.4684, 0.1132). According
to Eq. (18), the mating coefficient Φ is equal to 0.2648. Thus,
during the process of adjusting the reduction parameters of ci
and tanϕi in each reduction step, the ratio of Fsc to Fsf is
identically equal to 0.2684.WhenFsc = 0.5 and Fsf = 1.89, this
slope reaches the ultimate state. According to the displace-
ment field of the critical state of the slope, the critical sliding
surface is acquired (its displacement nephogram and corre-
sponding critical sliding surface are shown in Fig. 8). Note
that the searching processes for the critical sliding surface
refer to the approach proposed by Wang et al. (2016). Next,

Fig. 7 Definition of the global
safety factor based on the
relationship of the global sliding
resistance force between the
initial state and the critical state of
slope

Table 5 Geometrical and
mechanical parameters for the
slope stability analysis

Slope angle Slope
height

Unit
weight

Elasticity
modulus

Poisson’s
ratio

Cohesion Friction
angle

15°, 30°, 45°, 60°,
75°

50.0 m 20.0
kN/m3

80.0 MPa 0.4 50.0 kPa 38°

Fig. 8 Displacement nephogram
and the corresponding critical
sliding surface (slope angle = 75
°)
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the normal stress of each point on the critical sliding surface
associated with initial stress field and critical stress field are
obtained. In addition, the shear strength parameters for the
initial state and critical state are determined: ci = 50KPa, tanϕ-
i = 0.7813, cc = 100KPa and tanϕc = 0.4138. According to the
normal stress, the shear strength of each point on the same
critical sliding surface for the initial state and critical state
can be obtained, as shown in Fig. 9. Finally, based on the data
in Fig. 9, the global safety factor is calculated to be 0.9853
according to Eq. 19.

Table 6 shows the global safety factors of five slope exam-
ples resulted from the traditional SRM and the proposedmeth-
od in this paper. The curves of all safety factors vary with the
increase in slope angle as shown in Fig. 10. The definition
approach of the global safety factors based on two reduction
parameters can significantly affect their results. The final
global safety factors resulted from Eq. (1) ~Eq. (4) and Eq.
(19) are notably different. Undoubtedly, when the slope
height, mechanical parameters and other influence factors
are identical, the stability of the slope decreases with the in-
crease in slope angle, and the global safety factor should re-
flect this basic rule. However, the global safety factors ac-
quired from Eq. (1), Eq. (2) and Eq. (3) do not monotonically
decrease with the increase in slope angle. Thus, these three
definitions have drawbacks. A comparison of the proposed
method to the traditional SRM shows that the evolution laws
of the global safety factors resulted from these two methods

coincide with each other. In addition, for each slope angle, all
global safety factors resulted from the proposed method are
greater than that resulted from the traditional SRM. Thus, the
traditional SRM based on the lower bound theorem may un-
derrate the slope stability.

Figure 11 shows the critical sliding surfaces of five slopes
resulted from the traditional SRM and the proposed method in
this study. For each slope, the sliding area resulted from the
traditional SRM is less than that from the proposed method.
The reason is that the critical state induced by the traditional
SRM generally satisfies the upper bound theorem, which may
underestimate the weakening degree of the shear strength pa-
rameters of soil, i.e., the cohesion and friction coefficient.
Thus, its corresponding sliding area may be less than that
resulted from the proposed method, which can lead the slope
into the critical state that simultaneously satisfies the upper
and lower bound theorems. In addition, for the slope with a
small slope angle, i.e., β = 15°and β = 30°in this study, the
sliding surfaces acquired by the proposed method contain a
straight line at their back edge, which indicates that the tensile
failure induces a drawing open surface at the back edge of the
sliding surface. However, the entire sliding surface for each
slope with a small slope angle acquired by the traditional SRM
performs as a gradually varied curve without any straight seg-
ment, which implies that the entire sliding body only exhibits
shear failure without tensile failure. In fact, when the slope is
led to the critical state in real engineering, a series of approx-
imately upright tensile cracks may appear at the back edge of

Table 6 Global safety factors for
five slope examples based on
different SRMs

Slope angle Traditional SRM SRM using two reduction parameters

Fsc Fsf Eq. (1) Eq. (2) Eq. (3) Eq. (4) Eq. (19)

15° 4.165 2.750 4.904 3.827 3.392 3.580 3.672 4.310

30° 2.298 0.825 4.102 2.4635 1.144 2.249 1.840 2.671

45° 1.553 1.125 1.799 1.462 1.349 1.479 1.423 1.675

60° 1.134 0.800 1.571 1.1855 1.008 1.453 1.121 1.362

75° 0.877 0.500 1.888 1.194 0.684 4.575 0.972 0.985

Fig. 10 Variation of all safety factors with increasing slope anglesFig. 9 Shear strength of each point on the same critical sliding surface for
the initial state and critical state (slope angle = 75 °)
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the sliding body. Thus, compared with the traditional SRM, the
proposed method in this paper can obtain a much more rea-
sonably realistic sliding surface.

Conclusions

This paper has proposed a new strength reduction method
using two reduction parameters to search for the critical state
of slope. The slope critical state obtained by the proposed
method in this paper simultaneously satisfies the upper and
lower bound theorem, which is considered the realistic ulti-
mate state. In addition, this paper has proposed a definition
approach for the global safety factor, which is not built on the
pure mathematical function of two reduction parameters but
established on the relationship of the sliding resistance force
between the initial state and the critical state of a slope. The
definition of the global safety factor in this paper has definite
physical and mechanical meanings. The results of the stability
analysis for five slope examples show that the global safety
factor acquired by the proposed method is greater than that
obtained through the traditional SRM for all situations. The
critical sliding surface obtained from the proposed method is
alsomuchmore reasonable than that from the traditional SRM.
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