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Abstract

Understanding the behavior of the top-coal caving mining face and immediate roof can be used to enhance buffering effects. The
mechanical properties of the coal-rock combined body (CRCB) play a vital role in the performance of overburden load trans-
mittance and support resistance design. We define and derive the relative physical and mechanical parameters of CRCB to
illustrate and analyze the influence of coal-rock height ratio (CRHR), coal and rock mass behavior, and interface parameters on
CRCB mechanical properties. We conducted uniaxial compression tests to obtain uniaxial compressive strength (UCS), elastic
modulus (EM), and the full range of stress—strain curves. Our results show that UCS is positively correlated with EM. However,
CRCB EM and UCS decrease with increasing CRHR or effective coal-rock height ratio (ECRHR) and the slope of the curves
gradually decreases. CRCB mechanical parameters increase linearly with EM of the coal or rock mass. Although increased coal-
rock interface angles (IA) lead to increased CRCB mechanical parameters, the incremental value can be ignored. Sensitive
analysis shows that the rank of influential factors on CRCB properties is CRHR/ECRHR > coal strength > rock strength > IA.

Keywords Coal-rock combined body - Mechanical parameters - Uniaxial compressive test - Influence factors

Abbreviation EM elastic modulus

AE acoustic emission FCR fine soil-cement ratio

CCR coal-cement ratio 1A interface angle

CRCB  coal-rock combined body RS rock strength

CRHR  coal-rock height ratio TCCM  top-coal caving mining

CS coal strength UCS uniaxial compressive strength
ECRHR effective coal-rock height ratio
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concerns (Dudley 2018) (Fig. 1). China is the largest coal producer
and consumer with roughly 45% of global exploration and thick
coal seam production (Qian et al. 2018; Wang 2018). Thick coal
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seams therefore play a vital role in providing the world’s annual coal
supplies. Top-coal caving mining (TCCM) presents a range of ad-
vantages compared with slice mining and large cutting height min-
ing. For example, TCCM greatly reduces the labor intensity and
material consumption in the workface, which substantially reduces
overhead costs. TCCM is also feasibly applied in complex geolog-
ical conditions, particularly in steeply-inclined and thick coal seams.
TCCM is therefore the dominant thick coal seam mining method
because of its technical and economic advantages (Wang 2009;
Meng et al. 2014).

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s10064-019-01613-z&domain=pdf
mailto:Z.Cheng.4@warwick.ac.uk

1948

Z.-b. Cheng et al.

Fig. 1 The coal reserves, production, and consumption of main countries

The top coal and immediate roof form a specific composite
structure in the TCCM face. The feature serves as a cushion layer
that undertakes and transfers overburden loads onto support
equipment. The deformation resistance ability of the cushion
layer is therefore critical for evaluating the resistance support
design. Reasonable selection of the support type plays a funda-
mental role in the assortment of three machines in the working
face. The excavation of underground openings leads to the for-
mation of disturbed and damaged zones (Tsang et al. 2005; Wang
et al. 2017a; Masri et al. 2014; Kong et al. 2019; Liu and Cheng
2019; Sun et al. 2019). Resistance support determination is used
to control the surrounding rock and is extremely important for
guaranteeing safe and efficient mining. Characterization and
analyses of the cushion layer, in addition to pure coal or rock
mass, is therefore necessary for appropriate support determina-
tion in the TCCM face (Hao et al. 2009; Li et al. 2002; Kirzhner
and Rozenbaum 2001; Ruppel and Langosch 2006; Zhang et al.
2019; Xinjie et al. 2019).

The stability determination of a two-body system composed
of a roof, floor, and coal was first proposed by Petukhov and
Linkov (1979). In recent years, many scholars have reported the
burst potential and energy dissipation of the coal-rock combined
body (CRCB) using acoustic emission (AE), infrared thermal
imaging, and other methods, and a series of beneficial results
were obtained (Wu and Wang 1998; Zhao et al. 2015; Xue
et al. 2012; Tan et al. 2016; Zhao et al. 2008; Jiang et al. 2007;
Li et al. 2012; Liu et al. 2004; Zhang et al. 2012; Yang et al.
2017; Zhao et al. 2014; Lv et al. 2019; Liu et al. 2018a). Wang
etal. (2014) performed a double-shear frictional test under biaxial
loading and illustrated the space-time evolution of the displace-
ment field as well as AE characteristics during sliding. Coal has
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been shown to mainly govern the mechanical properties and defor-
mation failure characteristics of CRCB, and cracks occurring in the
coal reduce the CRCB uniaxial compression strength (Chen et al.
2018). The results of experimental tests, theoretical analyses and
numerical simulations have shown that the UCS and EM of
CRCB significantly increase with decreasing CRHR and increasing
confining pressure and rock strength (Wang et al. 2017b; Liu et al.
2018b; Tan et al. 2018; Cheng et al. 2019a; Cheng et al. 2019b).
The rock strain recovery introduces a loading effect on the failure of
coal after CRCB failure. The incident and reflective energy of coal-
rock samples also sharply increases with loading rate, while the
transmitted energy remains largely unaffected. The entire CRCB
dynamic stress—strain curve shows a double-peak feature under high
loading rates, which can be divided into four stages (Gong et al.
2018). Wang and Tian (2018) used numerical simulations to explore
the mechanical properties, crack evolution characteristics, and prop-
agation forms of the initial and final crack distribution of coal-rock
specimens with different fracture holes. They concluded that frac-
ture angle significantly influences CRCB mechanical behavior.
Although previous studies have addressed many aspects of
CRCB behavior, the failure mechanism and mechanical behavior
remains poorly understood.

In this study, we deepen the fundamental understanding of
CRCB mechanical behavior and provide a theoretical founda-
tion for determining support resistance in the TCCM face. We
consider the influence of coal-rock height ratio (CRHR), coal
strength (CS), rock strength (RS), coal-rock interface angle
(IA), and effective coal-rock height ratio (ECRHR). Uniaxial
compressive tests were conducted to obtain the uniaxial com-
pressive strength (UCS), elastic modulus (EM), and full range
of CRCB stress—strain curves.
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(a) Moulds

(b) Partial samples
Fig. 2 Molds and samples

Experimental procedure
Sample preparation

The mechanical behavior of coal and rock masses was simu-
lated by adopting coal and fine soil mixed with different ce-
ment contents. The strength of each material generally in-
creases with cement content. The specimens were synthesized
to match engineering scenarios of coal and rock masses in a
typical TCCM face.

Fig. 3 Overall WAM-600B system

Table 1 Key parameters

of WAM-600B Parameter Value
Displacement range 150 mm
Displacement accuracy +1%
Displacement resolution 0.001 mm
Axial force accuracy +1%

Standard cubic 10 x 10 X 10 cm CRCB specimens were
prepared from coal and rock masses with different CRHR.
We used a coal-rock combination pattern with coal on the
bottom according to TCCM face conditions in the field.
Although cylindrical samples exhibit different failure patterns
and failure strength levels, we chose cubic samples in this
study because they are easier to prepare and test (Viso et al.
2008; Chang et al. 2015) and they meet the requirements for
determining CRCB physical and mechanical parameters.
Sketches of the molds and partial specimens are shown in
Fig. 2.

We employed a standard sample preparation proce-
dure to ensure consistent sample quality. The inside of
the cubic molds was first treated with grease to reduce
demolding friction. The mixed coal powder with differ-
ent cement contents and a suitable moisture content of
30% (ratio of water mass to all solid mass) was then
placed in the cubic molds. A piece of iron was used to
form uniform layers until reaching the setting height.
The same approach was used for the rock mass using
fine soil mixed with different cement contents and 30%
suitable moisture content. To minimize contamination, the
surface of the uppermost coal mass layer was scraped to a
depth of about 1 cm before inserting the rock mass to ensure
direct contact between the rock and coal without the use of
adhesives at the interface. The top of the specimens was then
covered with plastic film to prevent water loss. The molds
were dismantled after 24 h and specimens were kept at room
temperature for 7 days without the plastic film. The mass of
each specimen was measured to obtain the density prior to
testing.

Table 2 Details for analyzing coal-rock height ratio (CRHR)

CRHR CCR FCR Density (g/cm’)
Pure rock mass 1:1 1:1.5 1.96
2:8 1.85
4:6 1.73
5:5 1.68
6:4 1.62
7:3 1.56
8:2 1.50
Pure coal mass 1.39
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Table 3 Pure coal and rock mass conditions Table 5 Details for analyzing coal-rock interface properties
Material The ratio of material to cement Density (g/cm3) « ECRHR CCR FCR Density (g/cm3)
Coal 2:1 1.18 (a) Effective coal-rock height ratio (ECRHR)
1:1 1.39 0° 1:2 1:1 1:1.5 1.77
1:1.5 151 éi }gg
2 b 15° 1.2 1.72
Fine soil 1:0.8 1.87 11 1.68
1:1.2 1.93 241 1.63
I:1.5 1.96 (b) Interface angle (IA)
1:2 2.05 0° 1:1 1:1 1:1.5 1.68
10° 1.68
15° 1.68

Test apparatus

Samples were measured using a WAW-600B computerized
electro-hydraulic servo-controlled universal testing machine
(Fig. 3). The apparatus consisted of a 600-kN axial actuator,
axial load and displacement transducers, screen display, and
results treatment scheme. The key parameters of the apparatus
are listed in Table 1.

Testing schemes

Uniaxial compressive tests were performed with a
strain-controlled loading rate of 0.5 mm/min. The com-
prehensive mechanical behavior of CRCB was evaluated
considering the influence of CRHR, CS, RS, and coal-
rock interface properties IA and ECRHR. Pure coal and
rock masses were also tested with variable cement con-
tent to obtain mechanical parameters of the pure mate-
rials. Three specimens were tested under each condition
and the average of each series was adopted to improve
the accuracy and reproducibility of all tests. The testing
conditions are listed in Tables 2, 3, 4, and 5.

Theoretical solution of mechanical properties

In this section, we demonstrate the theoretical solution
of some mechanical and physical parameters. The UCS
is calculated as:

(1)
A="P (2)

where R, P, A, and [ are UCS, the maximum failure uniaxial
loading, specimen surface area, and specimen size, respectively.

CRCB exhibits a deformation-dependent behavior, similar
to most geomaterials. A typical CRCB stress—strain curve is
shown in Fig. 4. The process can be divided into six stages:
compaction, linear elastic deformation, inelastic deformation,
strain-hardening, post-peak softening, and residual strength.
The linear elastic deformation stage dominates the linear por-
tions of the stress—strain curves and matrix deformation. The
material exhibits intact geomaterial behavior characterized by

Table 4 Details for analyzing

coal strength (CS) and rock CRHR Coal strength Rock strength
strength (RS)
CCR FCR Density (g/cm’) FCR CCR Density (g/em®)
4:6 2:1 1:1.5 1.65 1:0.8 1:1 1.69
1:1 1.73 1:1.5 1.73
12 1.81 12 1.79
5:5 2:1 1.57 1:0.8 1.63
1:1 1.68 1:1.5 1.68
12 1.78 12 1.72
8:2 2:1 134 1:0.8 1.49
1:1 1.50 1:1.5 1.50
12 1.66 12 1.52
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Fig. 4 Typical stress—strain curve of a coal-rock combined body (CRCB)

constant stiffness during this stage. The EM can be expressed
as:

_Aa

E-=2
Ae

(3)

where E, Ao, and Ae are EM, and stress and strain incre-
ments, respectively.

In the occurrence of IA, the coal to rock height ratio in
CRCB is not effectively represented by a single side length.
It is therefore necessary to define an effective coal to rock
height ratio. A specimen schematic is shown in Fig. 5. The
effective height of a single material is represented by the ratio
of the cross-section of the single material parallel to the axial-
force direction of the entire CRCH length. Thus, ECRHR is
defined as the ratio of the effective coal height to that of rock.

A

Fig. 5 Coal-rock combined body (CRCB) with the occurrence of an
interface angle (IA)

Separate coal and rock coordinates in CRCB are established,
as shown in Fig. 6.

The equations of an interface line can be expressed as fol-
lows from different perspectives.

v = xtana + L, —Ltana (4)
y = -xtana + Ly (5)
The expressions of effective height of each material are
shown in Egs. (6) and (7), respectively.
Iﬁ (xtancr + Ly—Ltancar)dx
L

I =

- Ll—%Ltana (6)

where /. is the effective coal height.

-L
—xt Ly)d. 1
I = jo( aIlOléI‘f' 2) X _ Lz—thanoz (7)

where [, is the effective rock height. The ECRHR is expressed
as:

~

p_le
r_lr (8)

(a) Coal

(b) Rock

Fig. 6 Coordinate sketch map
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Cheng et al. (2018) proposed a theoretical solution of EM
of CRCB with or without IA:

K EEr+1)
A E| +E?+2r/E\E;

©)

where £ is pull-pressing rigidity, £, and E, are the EMs of the
coal and rock masses, respectively, and » is the CRHR in the
case of no contact angle in the CRCB. If a contact angle
occurs, 7 can be used as:

1+
7 ———tana
1_1 rr+1

21 + tana ana

L
I”// = —1
L,

Results and discussion
Coal-rock height ratio

The overall failure forms and stress—strain curves of speci-
mens with different CRHR are shown in Fig. 7. The peak axial
stress occurs in the range from 2% to 3.5%. Serious failure
occurred in the coal mass, and coal spalling was observed.
Figure 8 illustrates the curves of UCS and EM versus

28 T T T T T 20
—#— UCS (Experiment)

24+ ~——#— UCS (Theory Eq. (12))

- -®- - EM (Experiment) 116

20 \ ~ ®- -EM (Theory Eq. (9))

112
é: 16 &
= S
S12} S
<12 13
st
14
4}
0 1 1 1 1 1 0
0 1 2 3 4
r
(a) UCS and EM versus CRHR
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Q —a— UCS
250 -o-EM 4250
\
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S50t {1508
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(b) Incrementratio versus CRHR

Fig. 8 Influence of the coal-rock height ratio (CRHR) on the mechanical
parameters of coal-rock combined body (CRCB)

Fig. 7 Typical stress—strain
curves and failure forms with dif-
ferent coal-rock height ratios
(CRHR)

Axial stress/MPa
= s 8
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Fig. 9 Influence of the coal-rock height ratio (CRHR) on the coal-rock
combined body (CRCB) in the residual stage

CRHR using the same properties of the coal and rock masses.
Pure coal results are not shown in Fig. 8 because their CRHR
is essentially infinite. Sample preparation in a 10-cm-high
mold restricts the CRHR range to 0—4 (e.g., a CRHR of 4 is
obtained when the coal mass height is 8 cm). Nevertheless, the
CRHR range adopted in this study is consistent with most
engineering applications.

The CRCB mechanical parameters decrease with increas-
ing CRHR when the EM of pure coal and rock are 4 and
16 GPa, respectively, and the corresponding UCS are 8 and
24 MPa, respectively (Fig. 8a). Two critical CRHR values are
observed. When CRHR = 1.5, the negative slope decreases
and when CRHR =3, the CRCB mechanical parameters re-
main essentially constant (Fig. 8). The CRCB UCS is strongly

Fig. 10 Stress—strain curves and
failure forms of coal samples

Axial stress/MPa

and positively related with EM. The theoretical expression for
UCS can therefore be obtained as:
o R1R2 (I" =+ 1 )2
Ry + Ry +2rVR\ R,

(12)

where R, and R, are the UCS of the coal and rock mass,
respectively. The experimental results and theoretical calcula-
tions of the UCS and EM of CRCB are in generally good
agreement. Equation (12) can therefore be considered reason-
able for estimating the UCS of CRCB.

To more clearly illustrate the influence of CRHR on CRCB
mechanics parameters, we define two values to represent the
incremental values of UCS and EM under different CRHR:

s = [(R—Rl)/Rl] x 100% (13)

u = [(E-E)/E\] x 100% (14)

where s and u are the increment ratios of UCS and EM of
CRCB compared with those of pure coal, respectively. Both
values are shown in Fig. 8b as a function of CRHR. The
results indicate that CRHR has little influence on the CRCB
mechanical properties until the proportion of coal body
reaches a certain value.

The CRCB residual stress and its decrease ratio compared
with peak UCS are shown in Fig. 9. The decrease ratio can be
expressed as follows:

v=[(R,—R)/R,] x 100% (15)

where R, and R, are the peak and residual CRCB uniaxial
compressive strength, respectively.

2

3 4 5 6 7
Strain/%
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The residual axial stress decreases with increasing CRHR
at a gradually decreasing rate. The decrease ratio reduces to a
minimum at CRHR = 1.5 and then increases. The loss percent
in the residual stage tends to remain roughly 45% for CRHR
less than 1.

Coal strength

Cement has been shown in previous studies to provide suffi-
cient additional strength for weakened materials. The cement
content therefore significantly influences the coal and rock
mechanical parameters during sample preparation. The full
range of stress—strain curves and failure types of the four dif-
ferent coal-cement ratios (CCR) are shown in Fig. 10.

The UCS and EM of pure coal increases with cement con-
tent and the corresponding increment ratio decreases. The ba-
sic mechanical parameters of pure coal are similar to runs with
CCR of 1:1 and 1:1.5, as shown in Fig. 11. We select three
coal mass categories (CCR =2:1, 1:1, 1:2) to demonstrate the
influence of CS on CRCB under three different CRHR situa-
tions. The corresponding UCSs of pure coal with different
CCR are 4, 8, and 10 MPa, respectively, and the EMs of pure
rock are 2, 4, and 6 GPa, respectively. The UCS and EM of the
rock mass remain constant at 24 MPa and 16 GPa,
respectively.

The CRCB mechanical parameters increase with CS and
show good agreement between the experiments and calcula-
tions (Fig. 12). The UCS and EM of CRCB increase linearly
with increasing coal UCS and EM. The incremental slope of
UCS is similar to that of EM, and increasing CS is observed to
significantly influence the combined body. For example,
when the UCS of the coal samples increases from 4 to
10 MPa, the CRCB UCS increases in each of the three
CRHR conditions, from 10 to 19 MPa, 8 to 15 MPa, and 5
to 12 MPa.

32 —————r
—&—R,
28 —e—g,
ul T9E
—0—E,
20}
<
="
= 16}
=
nf IR
5 m]
’ o 14
at —

0 L L L L L L L L L L 0
0.0 0.2 04 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Cement-material ratio

Fig. 11 Uniaxial compressive strength (UCS) and elastic modulus (EM)
of coal and rock masses as a function of cement-material ratio
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Fig. 12 Influence of coal strength (CS) on the mechanical parameters of
the coal-rock combined body (CRCB)

Rock strength

To assess the influence of RS on CRCB, we prepared and
performed uniaxial loading tests on samples with four differ-
ent fine soil-cement ratios (FCR). The full range of stress—
strain curves and failure forms are shown in Fig. 13.

From Egs. (9) and (14), the UCS and EM of rock mass are
shown to increase with cement content, as shown in Fig. 11.
No difference is observed for samples with FCR between
1:1.2 and 1:1.5. We therefore adopt three rock mass types with
FCR =1:0.8, 1:1.2, and 1:2 to efficiently and accurately com-
pare the effects of RS on the mechanical properties of CRCB.
The corresponding UCS values increase from 20 to 22 to
31 MPa, and the EM increases from 13 to 15 to 22 GPa.
The UCS and EM of the coal mass remain constant at
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Fig. 13 Stress—strain curves and
failure forms of rock specimens
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8 MPa and 4 GPa, respectively. The CRCB uniaxial compres-
sion results with different CRHR are shown in Fig. 14. The
experimental results match well with the theoretical analysis.

The UCS and EM of CRCB increase linearly with increas-
ing rock UCS and EM. The incremental UCS slope is also
similar to that of EM. All CRCB mechanical parameters are
smaller than those of the pure rock mass. However, RS shows
a range of effects on CRCB under different CRHR.
Specifically, RS affects CRCB progressively less with increas-
ing CRHR. For example, when CRCR =8:2, the CRCB UCS
increases only from 8 to 9 MPa, whereas the rock UCS in-
creases from 20 to 31 MPa. The mechanical properties of
CRCB change marginally with increasing RS when the
CRHR is greater than approximately 5:5, and the sensitivity
of RS influence on CRCB is smaller than that of CS.

Coal-rock interface properties

We consider two factors involving IA and ECRHR to deter-
mine the influence of the coal-rock contact surface on CRCB
mechanical properties. Two kinds of preparation schemes
were designed separately with variable IA and ECRHR. The
CCR and FCR were selected as 1:1 and 1:1.5, respectively,
and laboratory tests were conducted to study the effects of
contact properties on the mechanical properties of the com-
posite material.

Effective coal-rock height ratio
As previously mentioned, the ECRHR is defined when A

occurs. To analyze the effect of ECRHR on CRCB mechani-
cal parameters, we select three ECRHR values (1:2, 1:1, 2:1)

under two IA situations. The theoretical solution of UCS and
EM is obtained from Egs. (9)—(12). Figure 15 illustrates the
experimental and theoretical results of CRCB with increasing
ECRHR.

The ECRHR is equal to CRHR if the coal-rock contact
surface is horizontal and substantially better agreement is ob-
tained between the experiments and calculations (Fig. 15).
Overall, the mechanical properties of CRCB decrease with
increasing ECRHR with a gradually decreasing trend. For
example, for samples with IA = 15°, the CRCB EM decreases
from 10 to 8 GPa when the ECRHR increases from 0.5 to 1,
and then to 6 GPA when the ECRHR = 2. The same behavior
is observed for samples with different IA.

Interface angle

We select samples with three [As (0°, 10°, 15°) and
ECRHR =1 to assess the effect of IA on CRCB mechanical
parameters. The CRCB UCS increases linearly from 12 to 13
MPA with increasing IA, and the CRCB EM increases
from 7 to 8 GPA (Fig. 16). Good agreement is observed
between the experimental and theoretical results.
However, the influence of IA on CRCB mechanical pa-
rameters is only marginal, which is consistent with the results
of Li et al. (2012).

Limitations and future work
The results obtained in this study show that the mechanical

properties of CRCB are affected by several factors, including
CRHR/ECRHR, CS, RS, and IA. Nevertheless, some

@ Springer
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Fig. 14 Influence of rock strength (RS) on the mechanical parameters of
coal-rock combined body (CRCB)

limitations are also encountered. First, the current study con-
siders top coal and rock as complete materials, whereas grad-
ual failure of these materials is known to occur owing to cyclic
normal stress as well as continuous unloading of confining
pressure during excavation. Additional attention is therefore
required on the law of energy transfer and dissipation during
the entire uniaxial compressive process and specimens should
be prepared with joint cracks. The testing procedures can also
be improved, particularly for situations of CS >RS and for
mudstone. The CRCB mechanical parameter behavior under
these conditions warrants further discussion. Variable IA and
loading rate are also important to simulate CRCB in
complex mining environments. The mechanical proper-
ties of CRCB can be combined with determination
methods of support working resistance, which is
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(b) Increment ratio versus ECRHR

Fig. 15 Influence of the effective coal-rock height ratio (ECRHR) on the
mechanical parameters of coal-rock combined body (CRCB)

fundamental for selecting the support type and controlling
the stability of surrounding rock in the TCCM face, and will
be addressed in future studies.
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Fig. 16 Uniaxial compressive strength (UCS) and elastic modulus (EM)
as a function of interface angle (IA)
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Conclusions

We performed extensive experimental investigations to eval-
uate the mechanical behavior of CRCB under uniaxial com-
pression. The experiments involved CRHR (pure coal mass,
8:2, 7:3, 6:4, 5:5, 4:6, 2:8, pure rock mass), S with different
CCR (2:1, 1:1, 1:2), RS with different FCR (1:0.8, 1:1.5, 1:2),
ECRHR (2:1, 1:1, 1:2), and IA (0°, 10°, 15°). The following
conclusions may be drawn from the present study.

The CRCB UCS is strongly and positively related with
EM, and theoretical determination of UCS can be obtained
via analogy. The results demonstrate good agreement between
experiments and calculations in terms of the CRCB UCS and
EM for all samples. Tensile failure is observed in the CRCB
specimens.

The mechanical parameters of CRCB decrease with in-
creasing CRHR. A dramatic change is observed for CRHR
less than 1.5, whereas the mechanical behavior remains essen-
tially unchanged after reaching CRHR >3. Compared with
peak UCS, the decreasing ratio in the residual stage first de-
creases and then increases with CRHR. The lowest loss per-
cent is obtained when CRHR = 1.5; however, the loss percent
is roughly 45% if CRHR <1.

The influence of CS and RS on CRCB is similar. The
CRCB UCS and EM increase linearly with increasing UCS
and EM of pure coal or rock mass. However, the CRHR af-
fects the influence of RS on CRCB. Greater CRHR reduces
the effect of changing RS.

When IA occurs between the rock and coal parts in CRCB,
the CRCB mechanical properties decrease with increasing
ECRHR and the decreasing trend tends to slow. The UCS
and EM of CRCB increase linearly with 1A, although the
influence is marginal. Sensitive analysis among all influential
factors reveals the following ranking of factors that influence
CRCB: CRHR/ECRHR > CS>RS>1A.
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