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Abstract
Performance prediction in mechanized tunnel projects utilizing a tunnel boring machine (TBM) is a prerequisite to accurate and
reliable cost estimation and project scheduling. A wide variety of artificial intelligence methods have been utilized in the
prediction of the penetration rate of TBMs. This study focuses on developing a model based on deep neural networks
(DNNs), which is an advanced version of artificial neural networks (ANNs), for prediction of the TBM penetration rate based
on the data obtained from the Pahang–Selangor raw water transfer tunnel inMalaysia. To evaluate and document the success and
reliability of the new DNN model, an ANN model based on five different data categories from the established database was
developed and compared with the DNN model. Based on the results obtained of the coefficient of determination and root mean
square error (RMSE), a significant increase in the performance prediction of the penetration rate is achieved by developing a
DNN predictive model. The DNN model demonstrated better performance for penetration rate estimation compared with the
ANN model and it can be introduced as a newly developed model in the field of TBM performance assessment.
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Introduction

Performance prediction of tunnel boring machines (TBMs) is
a significant factor for timetable planning and estimating the
project cost in mechanical tunneling construction (Shijing
et al. 2006). Proper estimation of the TBM performance pa-
rameters is needed for reduction of tunneling project risks.
Over the past few decades, many techniques have been devel-
oped to introduce more accurate TBM performance predictive
models. These techniques can be categorized into three
groups; theoretical and empirical (based on laboratory testing
and field observation), statistical (based on mathematical
rules), and computational (based on artificial intelligence
techniques).

Several theoretical and empirical models have been devel-
oped to predict performance parameters of TBMs (Farmer and
Glossop 1980; Sato et al. 1991; Rostami and Ozdemir 1993).
Farmer and Glossop (1980) proposed a model that calculates
penetration rate (PR) values using the rock tensile strength and
average cutter force. A strong relationship between the uniaxial
compressive strength (UCS) of rock and the specific energy
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was introduced by Sanio (1985). The Colorado School of
Mines (CSM) model has been developed and named after
research works at the Colorado School of Mines. The first
version of this model was developed by Ozdemir (1977) and
updated by Rostami (1997). The CSM model was proposed
based on rock properties and cutter and cutting geometry, and
can predict the cutter forces for a given penetration (mm/rev).
Yagiz (2002) made a modification of the CSM model through
the addition of brittleness of intact rock and the fracture prop-
erties of the rock masses as indices to the model. Review of the
previous investigations showed that the empirical and theoret-
ical models are mainly based on the machine performance in
given geological conditions, rock mass properties, and labora-
tory test results. The advantages of these models are their ca-
pability to use the ground conditions, especially the rock mass
behavior. These models are limited in their use for scenarios
where new machine parameters are introduced and also lack
the ability to be used in machine design and optimization.
Some of the empirical models are based on a single rock or
machine property and, according to Ramezanzadeh (2005),
these are not sufficient to give an acceptable prediction of the
TBM performance when there are many influential parameters
on the TBM performance. In general, as mentioned by several
studies (e.g., Grima et al. 2000; Yagiz et al. 2009; Gong et al.
2016), the performance prediction of empirical and theoretical
models is relatively low and there is a need to develop new
methods/models for TBM performance prediction.

Another group of TBM performance prediction models is
considered as statistical approaches, which have been widely
developed for the estimation of TBM performance. For exam-
ple, Gong and Zhao (2009) performed a non-linear regression
analysis on the data collected from two tunnels that were con-
structed in granitic rockmasses in Singapore. They introduced
an equation for estimating the rockmass boreability and stated
that there is a meaningful relationship between the rock mass
boreability index and four rock material and mass parameters
(i.e., brittleness, UCS, orientation of joints, and joint count
number). Statistical approaches suggest a relationship (i.e.,
linear and non-linear) between the independent/input and
dependent/output parameters. Several researchers pointed
out that these methods are not always robust enough to solve
non-linear and complex problems (e.g., Grima and Babuška
1999). Additionally, the performance of the methods may be
affected by the outliers and extreme values in the data. It can
be mentioned that, in several cases, the performance of the
statistical models is higher than that of the empirical and the-
oretical models (e.g., Benardos and Kaliampakos 2004;
Benato and Oreste 2015), while in some other cases, the em-
pirical and theoretical models are better (e.g., Rostami 1997).
In order to improve the accuracy and reliability of the TBM
performance predictive models, some other computational
techniques, such as artificial intelligence (AI), may be consid-
ered as a suitable alternative.

AI techniques have been extensively developed to solve
various problems in the field of geotechnical engineering
(Hasanipanah et al. 2018; Koopialipoor et al. 2018a, b). To
estimate TBM performance parameters such as PR and ad-
vance rate (AR), several techniques such as fuzzy logic
(Ghasemi et al. 2014), artificial neural networks (ANNs)
(Benardos and Kaliampakos 2004), particle swarm optimiza-
tion (PSO) (Yagiz and Karahan 2011), adaptive neuro-fuzzy
inference system (ANFIS) (Grima et al. 2000), imperialist
competitive algorithm (ICA) (Armaghani et al. 2017), gene
expression programing (Armaghani et al. 2018), and support
vector regression (SVR) (Mahdevari et al. 2014) have been
utilized. Grima et al. (2000) developed an ANFIS model for
predicting PR values and found that the use of the ANFIS
method is more accurate than using statistical methods.
Benardos and Kaliampakos (2004) offered an ANN model
to predict AR values. The SVR technique was modeled by
Mahdevari et al. (2014) for the database collected from awater
tunnel in the United States. Salimi et al. (2016) utilized ANFIS
and SVR models to recommend a model for TBM PR
prediction. They demonstrated that SVR was more efficient
compared to an ANFIS model. Furthermore, Armaghani et al.
(2017) developed hybrid models (combinations of ANN with
ICA and PSO) to predict the PR values of TBMs.

There are many published/developed ANN-based models for
solving geotechnical engineering problems (Gordan et al. 2018;
Koopialipoor et al. 2018d). AlthoughANNs benefit fromvarious
gradient-based learning approaches to establish the prediction
model, two major problems may occur during the learning pro-
cess: (a) getting trapped in local minima and (b) slow conver-
gence rate (Lee et al. 1991; Wang et al. 2004). One efficient way
of alleviating these problems is to design an extended version of
a pre-developed ANN, namely, deep neural networks (DNNs),
which have been developed and used recently (Hinton and
Salakhutdinov 2006; Hinton et al. 2006; Salakhutdinov et al.
2013). The DNNs model can provide a better implementation
and, consequently, a higher performance prediction using the
same database. DNNs have been successfully utilized in many
bodies of applications, such as image classification and speech
recognition (Hinton et al. 2012; Zeng et al. 2016). This study
investigates the potential of DNNs in predicting the PR of TBM.
Awater transfer tunnel in Malaysia is studied and, based on the
most influencing factors on the PR, a DNN model is established
and tested against an ANN model. Finally, to identify the most
accurate and reliable predictive model for PR estimation, both of
the developed models are compared with each other.

Structure of DNNs

In recent years, according to the available evidence on the pres-
ence of structures in the human brain, researchers have tended to
focus on the training of deep-layered neural networks (Serre et al.
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2007). This is despite the fact that the usual network trainingwith
more than two hidden layers often leads to poor results. So when
all layers are tested to be trained through a standard function such
as the degree of similarity to inputs or similarity to desirable
classes, the results may be worse than shallow models (Erhan
2011). This is due to the increase in the number of active local
minima in these structures, which depends on the type of func-
tions and initialization of the network parameters (Bengio 2012).
In other words, in teaching the deep structures of the network, the
problem of localizedminima becomesmore tangible as the num-
ber of layers and neurons increases (Plath et al. 2008). Therefore,
initializing appropriate network weights in order to converge
their education seems to be necessary. It is necessary to have

several successive stages of pre-education such that each stage
of pre-education is a prerequisite for the next educational stage to
pass the teaching process from the barriers of the local minimum.

Training a deep belief neural (DBN) is the first important
contribution in the field of DNNs, which includes a neural
network with a lot of hidden layers and without any intra-
layer connection (Hinton et al. 2006). To build blocks for
DBN training, a restricted Boltzmann machine (RBM) was
used, which is a generative stochastic neural network with
no intra-layer connection. The majority of DBN training was
based on greedy layer-wise unsupervised learning of the
RBM. To train DNNs, the greedy layer-wise unsupervised
training concept by application of denoising autoencoders as

Fig. 1 Architecture of a deep
neural network (DNN)

Table 1 Summary of the equations used in deep neural network (DNN) design

Equation
no.

Equation Definition Variables

1 p v; hð Þ ¼ 1
z exp −E v; hð Þ½ � p(v, h) = valid

probability
distribution

E(v, h) = energy
function

Z = partition function

v and h = observable variables, bv and bh = bias vectors of v and h,
respectively, Wvh =weight matrix between v and h2 E v; hð Þ ¼ − bTv vþ bTh hþ vTWvhh

� �
3 E v; hð Þ ¼ 1

2 v−bvð ÞT v−bhð Þ−bTh h−vTWvhh

4 y = F(x; θ) F(x; θ) = mapping
function

x and y are the input and output, respectively.

5 E ¼ 1
R ∑

R

r¼1
II ŷr−yrII22 E = error function R = samples, W and b denote all of the weight and bias parameters of

the DNN
6 EDNN ¼ 1

R ∑
R

r¼1
llF xr;W; bð Þ−yrll22 EDNN = objective

function
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building blocks was used (Vincent et al. 2010). A denoising
autoencoder is a standard autoencoder trained by minimizing
reconstruction error with added noise to the input. The ap-
proach of using a denoising autoencoder in DNN training is
called a stacked denoising autoencoder. To train a DNN, sev-
eral algorithms have been suggested (Rifai et al. 2011a, b;
Goodfellow et al. 2013). Figure 1 shows the architecture of
a DNN training procedure, which includes supervised fine-
tuning and unsupervised pre-training. The procedure of pre-
training treats each consecutive pair of layers as an RBMwith
the joint probability (see Eq. 1 in the first row of Table 1). The
variables in Fig. 1 are presented in the last column of Table 1.

Here, it is assumed that the visible units follow the
Gaussian noise model with an identity covariance matrix if
the input data are pre-processed by mean and variance nor-
malization (Hinton et al. 2006). By increasing the likelihood
over training visible samples with the contrastive divergence

algorithm approximation, the RBM parameters can be trained
in an unsupervised fashion efficiently. In DNN training, for
the first layer, a Gaussian–Bernoulli RBM is used, while a pile
of Bernoulli–Bernoulli RBMs can be stacked behind the
Gaussian–Bernoulli RBM. Then, the RBM’s parameters can
be trained layer-by-layer.

A supervised fine-tuning of the parameters in the whole
neural network with the final output layer will be done after
pre-training for initializing the weights of the first several
layers, which are shown in Eq. 4 of Table 1.

To learn the mapping function, with the set of parameters
Θ, given the set of training samples pairs {(xr, yr)| r = 1,…, R},
it is needed to focus on the minimizing mean squared error
(MMSE) function that can be formulated as shown in Eq. 5 of
Table 1. In this equation, ŷr is the predicted output vector
using Eq. 4. Equation 6 is an objective function which can
be optimized with a back-propagation procedure with conju-
gate gradient method in mini-batch mode.

As mentioned earlier, the pre-training procedure treats each
consecutive pair of layers as an RBM with the joint probabil-
ity defined in Eq. 1 and, when both v and h are binary terms,
i.e., the Bernoulli–Bernoulli RBM, the energy function can be
calculated using Eq. 2, and, when h is binary and v is real-
valued data, i.e., the Gaussian–Bernoulli RBM, the energy
function is given in Eq. 3 of Table 1. The fourth row of
Table 1 shows the general multivariate regression problem.
In order to decrease MMSE values, Eqs. 5 or 6 can be used.
Figure 2 shows a flowchart of the DNN. Based on this flow-
chart, first, the data are divided into two parts: training and
testing. Based on the training data, the DNN model is de-
signed/developed. Each implementation section of the model
involves different layers, i.e., training layer, hidden layer, and
output layer, and then all layers will be examined. This pro-
cess continues until the system error reaches the desired/
defined level.Fig. 2 Flowchart of the DNN

Fig. 3 The tunnel route and its location between Pahang and Selangor
states in Malaysia
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Table 2 Some of the data used for modeling the penetration rate (PR)

Number RQD (%) UCS (MPa) RMR BTS (MPa) WZ TF (KN) RPM (rev/min) PR (m/h)

1 75 167.9 87 14.56 Fresh 107.39 4.83 1.87

2 77.5 150 87 11.00 Fresh 191.96 7.33 2.01

3 95 158 80 12.56 Fresh 305.63 5.96 1.90

4 76.25 140 87 10.80 Fresh 287.04 6.00 2.12

5 77.5 141 84 10.80 Fresh 273.44 6.00 2.14

6 80 130 87 10.80 Fresh 291.39 6.00 2.22

7 80 117.9 87 10.02 Fresh 291.15 10.95 2.31

8 70 125 76.5 10.02 Fresh 281.34 10.94 2.23

9 75 105 77.5 7.56 Fresh 247.32 10.96 2.53

10 70 125 80 10.02 Fresh 272.14 11.01 2.28

11 92.5 150 69 12.00 Fresh 282.12 6.90 2.00

12 70 185 93.5 11.10 Fresh 306.09 5.70 1.82

13 75 163.7 80.5 11.10 Fresh 107.39 5.70 1.71

14 67.5 163.7 91 11.10 Fresh 107.39 5.70 1.87

15 75 163.7 85.5 11.10 Fresh 249.82 5.70 1.97

16 80 152 80.5 11.10 Fresh 107.39 6.00 1.96

17 67.5 155 65 11.10 Fresh 195.00 9.88 2.07

18 70 143 80 10.80 Fresh 271.89 10.00 2.18

19 70 107 80 7.56 Fresh 293.39 10.77 2.48

20 75 125 84 10.02 Fresh 297.34 9.75 2.25

21 72.5 100 73.5 7.56 Fresh 276.69 9.51 2.62

22 95 156 80.5 11.10 Fresh 280.30 6.00 1.92

23 72.5 100 73.5 7.56 Fresh 234.05 8.80 2.62

24 77.5 106 70 7.56 Fresh 270.22 10.83 2.52

25 85 125 69 10.02 Fresh 263.89 10.94 2.29

26 80 125 69 10.02 Fresh 270.50 10.99 2.29

27 55 90 76.5 7.56 Fresh 218.96 10.71 2.68

28 40 88 55 7.56 Fresh 322.15 11.02 2.75

29 55 107 76.5 8.99 Fresh 226.39 10.60 2.43

30 50 140 76.5 10.80 Fresh 228.26 10.43 2.10

31 45 123.5 63.5 8.54 Slightly weathered 211.29 6.88 2.57

32 85 153.5 87 11.57 Slightly weathered 110.04 5.80 1.38

33 92.5 153.5 87 11.57 Slightly weathered 112.94 6.00 1.30

34 35 148 65 12.01 Slightly weathered 149.86 6.76 2.07

35 38.75 99.4 68 8.54 Slightly weathered 275.84 11.70 2.62

36 32.5 99.4 65 8.54 Slightly weathered 302.31 11.71 2.48

37 35 113 68 8.54 Slightly weathered 303.79 11.03 2.57

38 35 99.4 65 8.54 Slightly weathered 287.64 11.79 2.37

39 33.75 99.4 54 5.92 Slightly weathered 282.41 11.62 3.05

40 90 182 89 12.01 Slightly weathered 150.52 7.49 1.84

41 25 78.2 54 8.54 Slightly weathered 259.78 11.69 2.77

42 31.25 82.2 60 4.69 Moderately weathered 183.12 7.49 2.45

43 35 82.2 60 4.69 Moderately weathered 495.39 7.18 2.80

44 26.25 158.9 60 10.80 Moderately weathered 177.08 7.39 2.13

45 22.5 50.2 58 7.84 Moderately weathered 495.39 10.67 3.42

46 22.5 50.2 58 7.84 Moderately weathered 488.62 10.46 3.39

47 26.25 78.2 65 8.54 Slightly weathered 270.50 11.73 2.65

48 31.25 78.2 54 8.54 Slightly weathered 238.51 10.35 2.77

49 80 140 69 10.80 Fresh 298.19 10.26 2.13
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Table 2 (continued)

Number RQD (%) UCS (MPa) RMR BTS (MPa) WZ TF (KN) RPM (rev/min) PR (m/h)

50 55 88 56 8.99 Fresh 339.19 10.00 2.75

51 45 105 70 8.99 Fresh 260.21 8.74 2.52

52 55 100 76.5 8.99 Fresh 267.01 10.01 2.62

53 85 177 95 13.66 Fresh 140.23 5.70 1.50

54 85 155 84 11.10 Fresh 140.23 5.70 1.95

55 85 155 80 11.10 Fresh 140.23 5.70 1.95

56 85 155 84 11.10 Fresh 140.23 5.70 1.95

57 28.75 78.2 54 5.92 Slightly weathered 465.52 11.66 3.03

58 26.25 78.2 50 5.92 Slightly weathered 465.52 10.55 3.34

59 32.5 64.6 58.5 5.92 Slightly weathered 465.52 10.87 3.15

60 90 180 92 14.89 Fresh 126.16 5.35 1.28

61 92 178 89 13.66 Fresh 126.16 5.35 1.53

62 80 178 82.5 13.50 Fresh 126.16 5.35 1.73

63 92 178 86.5 13.66 Fresh 126.16 5.35 1.57

64 92 178 86.5 13.50 Fresh 126.16 5.35 1.77

65 92 178 86.5 13.50 Fresh 126.16 5.35 1.77

66 70 141 73.5 10.80 Fresh 212.50 5.35 2.16

67 95 150 76.5 11.00 Fresh 221.04 7.33 2.02

68 95 150 76.5 11.00 Fresh 214.54 7.33 2.02

69 80 140 84 11.00 Fresh 256.79 5.35 2.13

70 95 178 83 15.10 Fresh 155.24 5.35 1.62

71 90 178 71.5 13.50 Fresh 155.24 5.35 1.78

72 70 100 56 8.00 Fresh 272.21 10.93 2.66

73 25 108.2 56 8.00 Fresh 277.60 9.22 2.86

74 25 88 51 8.00 Fresh 360.24 6.94 2.79

75 11.25 59 50 5.92 Slightly weathered 471.34 11.10 3.25

76 11.25 87.4 50 5.92 Slightly weathered 471.34 11.08 3.40

77 12 87.4 46 5.92 Slightly weathered 471.34 11.11 3.39

78 31.25 100.9 63.5 8.54 Slightly weathered 276.71 8.20 2.40

79 26.25 135.6 63.5 8.54 Slightly weathered 261.31 7.70 2.55

80 36.25 135.6 63.5 8.54 Slightly weathered 287.30 8.20 2.30

81 35 84 54 5.92 Slightly weathered 465.52 10.61 3.03

82 35 140.1 63.5 8.54 Slightly weathered 274.66 11.30 2.27

83 30 140.1 63.5 10.80 Slightly weathered 148.00 7.34 2.11

84 33.75 140.1 63.5 10.80 Slightly weathered 148.00 7.34 2.12

85 31.25 93.4 63.5 8.54 Slightly weathered 271.61 8.20 2.38

86 31.25 93.4 63.5 8.54 Slightly weathered 272.35 8.20 2.33

87 22.5 59 53.5 4.87 Moderately weathered 511.53 10.70 3.24

88 27.5 59 58.5 4.87 Moderately weathered 511.53 9.52 3.07

89 23.75 49 53.5 8.54 Moderately weathered 511.53 11.70 3.75

90 23.75 100.9 50 8.54 Moderately weathered 511.53 11.36 3.36

91 26.25 100.9 57 8.54 Moderately weathered 488.62 8.57 2.73

92 16.25 81 53.5 8.54 Moderately weathered 511.53 8.57 2.85

93 75 148 58.5 11.67 Moderately weathered 215.84 5.42 2.02

94 12 59 58.5 7.11 Moderately weathered 511.53 9.81 3.24

95 10 60 50 7.11 Moderately weathered 511.53 11.77 3.33

96 21.25 78.4 51.5 7.11 Moderately weathered 255.23 8.57 2.65

97 27.5 106.8 61.5 5.43 Moderately weathered 459.52 10.49 3.05

98 32.5 106.8 61.5 10.80 Moderately weathered 148.59 8.57 2.17
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Case study and data collection

A tunnel project (Pahang–Selangor raw water transfer,
PSRWT) with a total length of 44.6 km and diameter of
5.23 m was constructed in Malaysia. The purpose was to
transfer water from Pahang state to Selangor state. At the
end of this tunnel, through pipelines, the water is distributed
with the gravity flow in order to receive basins of a planned
treatment plant. The tunnel route and its location between
Pahang and Selangor states in Malaysia is shown in Fig. 3.
The PSRWT tunnel was excavated in the mountain area of
Peninsular Malaysia with an elevation range of 100 to
1400 m. Six major faults were observed in this tunnel. As
expected, the rock strength is poor in areas of fault intersec-
tions. Additionally, in fault areas, highly to moderately weath-
ered zones were observed. Different rock types, including
shale, coarse-grained granite, and medium-grained granite,
were observed in various tunnel distances (TDs) of the
PSRWT tunnel.

Three sections of TBMs and four sections of conventional
drilling and blasting were planned to be excavated in the
PSRWT tunnel project. The mentioned TBMs were used to
excavate various ground conditions in different mass
weathering zones from fresh to highly weathered. In the
PSRWT tunnel project, 11,761 m in mixed ground,
11,761 m in very hard ground, and 11,218 m in blocky ground
were excavated by TBM numbers 1 to 3, respectively. The
dominant rock type was granite, with average rock quality
designation (RQD) and rock mass rating (RMR) values of
(40%, 67), (68%, 80), and (34%, 57) in mixed ground, very
hard ground, and blocky ground, respectively.

In order to establish a proper database for solving TBM PR
values, the collected data were divided into two categories: (a)

field observations and (b) laboratory tests. In total, a distance
of 12,649 m of the PSRWT tunnel in different TBMs was
investigated. To do this, panels with a typical length of 10 m
were selected and, finally, 1286 panels were observed/mea-
sured. Parameters such as the degree of weathering, rock mass
strength, spacing of discontinuities, number of joint sets, de-
gree of roughness, alteration, infilling material, groundwater
condition, cutterhead thrust force (TF), revolutions per minute
(RPM), stroke speed, rate of penetration, boring energy, and
cutterhead torque were measured and recorded carefully in
every panel. It should be noted that, among the studied panels,
560 panels, 553 panels, and 173 panels were identified as
fresh, slightly weathered, and moderately weathered zones,
respectively. In addition, laboratory tests were conducted on
more than 150 block samples collated from the tunnel site.
Relevant tests such as Schmidt hammer, Brazilian tensile
strength (BTS), UCS, point load strength, and p-wave velocity
were carried out in accordance with the International Society
for Rock Mechanics (ISRM) (Ulusay and Hudson 2007).

Effective parameters and input selection

Investigation of the influential parameters on TBM perfor-
mance is considered as a necessary task to select input param-
eters in implementing AI techniques. According to Grima
et al. (2000), all influential parameters on TBM performance
can be classified into three categories: (1) rock mass proper-
ties, (2) machine characteristics, and (3) tunnel geometry. In
this section, the previous related investigations are reviewed
and, subsequently, the most influential factors on TBM per-
formance are selected.

Table 2 (continued)

Number RQD (%) UCS (MPa) RMR BTS (MPa) WZ TF (KN) RPM (rev/min) PR (m/h)

99 30 106.8 61.5 8.95 Moderately weathered 195.53 8.48 2.36

100 33.75 106.8 61.5 5.43 Moderately weathered 495.39 10.30 2.95

Table 3 Results of the artificial
neural network (ANN) models for
predicting the PR

Model no. Network result Ranking Total rank

Training Testing Training Testing

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 0.6971 0.0621 0.6738 0.0664 1 1 5 5 12

2 0.701 0.0606 0.6433 0.0739 2 2 2 2 8

3 0.721 0.0594 0.6533 0.0697 4 4 3 4 15

4 0.7087 0.0598 0.6379 0.0746 3 3 1 1 8

5 0.7282 0.0578 0.6659 0.0714 5 5 4 3 17
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Based on the previous investigations, the most influential
parameter of intact rock that can affect the PR is the rock
compressive strength (Roxborough and Phillips 1975;
Farmer and Glossop 1980; Rostami 1997; Bieniawski and
Grandori 2007; Yagiz et al. 2009). Greater rock strength gen-
erally results in a lower PR (Grima et al. 2000). Sapigni et al.
(2002) mentioned that RMR and rock compressive strength
may influence TBM performance significantly. RMR, RQD,
and UCS were considered as the most effective rock proper-
ties on TBM performance in the study conducted by Benardos
and Kaliampakos (2004). Simoes and Kim (2006) conducted
a research study of TBM performance estimation and
considered RQD, RMR, and groundwater inflow as the most
influential factors. In another study, Gong and Zhao (2009)
used parameters related to joint condition, BTS, and UCS as
independent variables in the analysis of PR prediction.
Additionally, rock tensile strength was successfully applied
for prediction of the PR in several studies (Eftekhari et al.
2010; Yagiz and Karahan 2011; Salimi and Esmaeili 2013;
Shao et al. 2013). As stated by several researchers such as

Yagiz (2008), rock mass weathering can affect the TBM per-
formance significantly.Mogana (2007) mentioned that tunnel-
ing conditions and TBM performance are sensitive to the
effects of increased degrees of weathering. Benardos and
Kaliampakos (2004) also used the weathering degree of the
rock mass as an influential parameter in their TBM perfor-
mance model.

According to Grima et al. (2000), the most significant char-
acteristic of a TBM machine is the TF. The number of
mounted cutters on a TBM lets users compute the maximal
thrust per cutter, which is employed in the majority of the
models. In addition, the maximal torque, maximal power,
and maximal RPM are functions of the TF. A database
comprising of more than 600 TBM projects was established
by Grima et al. (2000) to estimate TBM performance when
developing an ANFIS predictive technique. In terms of ma-
chine characteristics, they used TF, RPM, and cutter diameter
in their model and found that the PR values increased as the
values of RPM increased. According to Maidl et al. (2008),
the spacing of disk tracks, disk type, thrust, and torque are the

Fig. 4 Structure of the DNN
model for predicting the PR

Table 4 Results of the DNN
models for predicting the PR Model no. Network result Ranking Total rank

Training Testing Training Testing

R2 RMSE R2 RMSE R2 RMSE R2 RMSE

1 0.9364 0.0265 0.9101 0.0373 4 4 2 2 12

2 0.9348 0.0275 0.9275 0.0284 2 1 4 5 12

3 0.9414 0.0244 0.9074 0.0383 5 5 1 1 12

4 0.9339 0.0266 0.9325 0.0319 1 3 5 4 13

5 0.9356 0.0267 0.9212 0.0333 3 2 3 3 11
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most effective parameters of TBMs on the PR. In another
study conducted by Farrokh et al. (2012) for prediction of
the PR, RPM and normal force of the disk cutter were consid-
ered as model inputs and effective parameters. Mahdevari
et al. (2014), in their developed model, utilized different types
of machine factors, such as cutterhead torque, cutterhead pow-
er, TF, and TBM-driven direction, and, after performing sen-
sitivity analysis, they concluded that TF is the most effective
factor (in terms of machine characteristics) on TBM perfor-
mance prediction.

The geometry of the tunnel is known as a parameter of a
great importance. According to Grima et al. (2000), many
parameters, including the rock mass stability, torque, RPM,
and the total amount of consumed power, are affected by the
tunnel diameter. Generally, the increase in diameter leads to
the decrease of the PR per length (Maidl et al. 2008).
Moreover, the tunnel diameter was considered by Farrokh
et al. (2012) as independent variable for TBM performance
prediction. Note that, in the case of tunnel geometry (e.g.,
tunnel diameter), since in the PSRWT tunnel such parameters
are constant, the geometry-related parameters are not taken
into consideration in this study.

It seems that a degree of multicollinearity among several
parameters i.e., RQD, UCS, and RMR, can be found that may
impact the final results. However, each of them defines a par-
ticular subject and their information can be used for deeper
understanding and clarification of further related problems.
RMR classification comprises six different parameters, in-
cluding RQD, UCS, the groundwater condition, the condition
of discontinuities, the spacing of discontinuities, and an ad-
justment for discontinuity orientation. To include the effects of
other RMR factors, such as the condition of discontinuities,
which are significant parameters, this classification (RMR)
can be set as a model input to estimate the PR.

According to the above discussion, five parameters, includ-
ing weathering zone (WZ), RQD, RMR, UCS, and BTS, as
rock mass and material properties and two parameters of RPM
and TF as machine characteristics were chosen as model in-
puts to predict the PR of TBMs. Although some other effec-
tive factors could be considered as independent variables, ac-
cording to Armaghani et al. (2015), a model with a lower
number of inputs has an advantage as it can reduce the model
complexity. A database comprising 1286 datasets (1286
panels) of data was established and used in the modeling of

AI techniques in this study. In order to use WZ as an input, a
rating system to each zone was assigned and utilized in the
established database. Therefore, values of 1 to 3 were assigned
to fresh, slightly weathered, and moderately weathered zones,
respectively. For RQD, UCS, RMR, BTS,WZ, TF, and RPM,
minimum, maximum, and average values of (6.25, 95, and
44.15), (40, 185, and 107.45), (44, 95, and 64.73), (4.69,
15.68, and 8.43), (1, 3, and 1.7), (80.6, 565.84, and 321.5),
and (4.08, 11.95, and 8.84) were considered, respectively.
Additionally, values of 0.12, 5.82, and 2.61 were measured
for the minimum, maximum, and average PR, respectively. In
Table 2, 100 datasets out of all the data used (1286 datasets)
are presented to have a better description for the readers. In the
following sections, ANN and DNN models are established in
order to predict the PR, then the obtained results are evaluated,
and, finally, the best model is selected.

Model development

ANN model

In this study for TBM PR prediction, the ANN model is de-
veloped to demonstrate the capabilities of a DNN predictive
model. In general, in dealing with problems that have complex
relationships between its variables, applications of ANNs can
be appropriate and useful. In implemented ANNs, the success-
ful use of the feed-forward method is reported (Simpson
1990). This method adjusts network weights. ANNs must be
trained with learning algorithms to approximate the problems.
The most commonly used algorithm for the training of ANNs
is back-propagation (BP) (Dreyfus 2005). Model errors be-
tween output and target (obtained by the system) values can
be decreased by using BP algorithms. The model error should
be smaller than defined errors like the root mean square error
(RMSE), unless the system will be propagated back to adjust
the network weights.

To develop intelligent systems for predicting TBM PR, as a
first step of modeling, the established database should be di-
vided into random datasets of training and testing datasets. To
perform this task, five different random datasets were created
from all of prepared data (for use in both ANN and DNN
models). Different percentage values of (80, 20), (75, 25),
and (70, 30) were suggested for training and testing datasets,
respectively, in previous investigations. However, according
to Swingler (1996), the best model developments and model
evaluations can be obtained using a combination of (80, 20).
Therefore, in this study, 80% of the whole data, being 1029
datasets, was used for network training or model development
and 20% of the whole data, being 257 datasets, was consid-
ered for network testing or model evaluation. Based on the
created datasets, five ANN models were developed to predict
TBM PR and their evaluations were performed based on the

Table 5 The best DNN and ANN models for predicting the PR

The best
model

R2,
training

RMSE,
training

R2,
testing

RMSE,
testing

ANN 0.7282 0.0578 0.6659 0.0714

DNN 0.9339 0.0266 0.9336 0.0319
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coefficient of determination (R2) and RMSE, as presented in
Table 3. The formulas for calculating R2 and RMSE are
shown in the following equations:

R2 ¼ 1−
ΣN

i¼1 y−y0ð Þ
ΣN

i¼1 y−~y
� �2 ð1Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
ΣN

i¼1 y−y0ð Þ2
r

ð2Þ

where y and y′ are the measured and predicted values, respec-
tively, ỹ is the mean of the y values, and N is the total number
of data. A perfect model with excellent predictability can
achieve an R2 value of 1 and an RMSE of 0.

As shown in Table 3, R2 value ranges of (0.6971–0.7282)
and (0.6379–0.6738) were obtained for the five training and
testing sets, respectively, which indicate an acceptable accu-
racy level in predicting TBM PR. However, selection of the
best ANN model is often challenging because the obtained
values for the R2 and RMSE results are very close to each
other (Koopialipoor et al. 2017, 2018c; Ghaleini et al. 2019).

A ranking technique developed by Zorlu et al. (2008) was
used to solve this problem. Based on this method, the
RMSE and R2 were ordered in their class and the best perfor-
mance index (highest R2 and lowest RMSE) was assigned the
highest rating. For instance, values of 0.6971, 0.701, 0.721,
0.7087, and 0.7282 were obtained for R2 of the training
dataset for models 1 to 5, respectively. The ranking results
of the fivementioned dataset models were respectively obtain-
ed as 1, 2, 4, 3, and 5. Then, a summation of all ranking values
for each model is calculated as the total rank (the last column
of Table 3). As can be seen, the last ANN model with a total
rank of 17 outperforms the other ANN models.

DNN model

The DNN structure for the purpose of predicting the PR is
displayed in Fig. 4. As shown in this figure, the network is
created with three hidden layers. The number of neurons in the
mentioned hidden layers are equal to 8, 32, and 8 for hidden
layers 1 to 3, respectively. The mentioned structure should be

Fig. 6 RMSE results of the DNN
and ANN models for predicting
the PR

Fig. 5 R2 results for all five
datasets of the DNN and ANN
models for predicting the PR
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performed to increase the system’s efficiency. In these analy-
ses, a layer-wise pre-training method was considered and
used. In fact, when considering an RBM, the initial weights
of the system will be created and automatically transferred to
the next layer.

In the next step, the BP error algorithm was used for accu-
rate determination of the size of DNNweights. This process is
repeated for subsequent layers to reach the output layer. This
network, like the ANN model, was implemented for the five
different data categories. The results of the DNN technique are
presented in Table 4 for all five categories. According to the
ranking method mentioned previously, total rank values of 12,
12, 12, 13, and 11 were achieved for DNN models 1 to 5,
respectively. These total ranks are very close to each other
and the models are similar. Model number 4 has slightly better
rank and is selected as the best DNN model. It seems that, by
developing DNN models, the performance capacity of the
network can be improved significantly in terms of both the
R2 values and the RMSE. When the R2 results are considered,
an increase of about 0.2 and 0.3 is observed for the training
and testing datasets, respectively, by proposing a DNN tech-
nique in the estimation the TBM PR.

Results and discussion

In this section, the best developed DNN and ANN models in
estimating the TBMPR are evaluated in detail. The evaluation
was performed based on the two performance indices of R2

and RMSE. Table 5 shows the obtained R2 and RMSE results
for the best DNN and ANN models in estimating the TBM
PR.

As shown in Table 5, the best model of DNN in comparison
with the best model of ANN gives much better results (R2 =
0.7282 and 0.6659 for the training and testing of the ANN and
R2 = 0.9339 and 0.9336 for the training and testing of the
DNN). Additionally, in terms of system error, a significant
reduction can be observed by proposing the DNN model,
especially when testing datasets are taken into consideration
(from 0.07144 by the ANN to 0.0319 by the DNN). As shown
in Fig. 5, in all five datasets, the R2 results of the DNNmodels
are better than those of the ANN models. In addition, Fig. 6
shows a comparison between the errors obtained by the ANN
and DNNmodels. As a result, system errors can beminimized
by developing a new learning algorithm based on DNNs in
estimating the TBM PR. The predicted and actual PR values

Fig. 7 Predicted and actual PR
values by the ANN model for the
training and testing datasets
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for the best ANN and DNN predictive models are displayed in
Figs. 7 and 8, respectively. These figures clearly show that the
DNN model can provide a higher degree of accuracy because
of the higher R2 values. It is worthwhile to mention that the
DNN model developed in this study is among the first few
models in the field of rock mechanics and tunnel engineering.

In order to show the capability of the DNN developed in
this study (with a R2 value of 0.934), a comparison (based on
the R2 results) with the existing intelligent techniques for pre-
diction of the PR has been made. As mentioned earlier, an
ANN predictive model has been developed for prediction of
the PR. Results for the R2 value equal to 0.9, 0.69, and 0.72
were obtained by Yagiz et al. (2009), Eftekhari et al. (2010),
and Gholami et al. (2012), respectively, for prediction of the
PR using an ANN model. Ghasemi et al. (2014) proposed a
fuzzy logic model with an R2 value of 0.89 in estimating the
PR of TBMs. In another study of intelligent systems, a PSO
predictive model with an R2 value of 0.67 was developed by
Yagiz and Karahan (2011) for PR prediction. Oraee et al.
(2012) conducted a research based on an ANFIS predictive
model to predict the PR and concluded that the performance of
their model is suitable (with an R2 value of 0.69) in this field.
Armaghani et al. (2017) used two hybrids of ANN models

(PSO-ANN and ICA-ANN) for predicting TBM PR. The best
R2 results were not higher than 0.92 for the ICA-ANN hybrid
model. According to the above discussion, the developed
DNN model yields better performance than the existing intel-
ligent systems and it can be used in various applications of
geotechnics.

Conclusions

A deep neural network (DNN) model for the performance
prediction of a water tunnel in Malaysia was developed. The
tunnel boring machine’s (TBM) penetration rate was estimat-
ed using the DNN model. A review of existing theoretical,
empirical, and statistical models for the prediction of TBM
performance was provided and an artificial intelligence (AI)
technique was focused in this study as a suitable alternative.
After describing the structure of the DNN network, a case
study was presented and the collected database was discussed.
The total length of 12,649 m of the tunnel was investigated
and used in the model development. To predict the penetration
rate (PR) of the tunnel, five parameters, including weathering
zone, rock quality designation (RQD), rock mass rating

Fig. 8 Predicted and actual PR
values by the DNN model for the
training and testing datasets
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(RMR), uniaxial compressive strength (UCS), and Brazilian
tensile strength (BTS), were selected as the rock mass inde-
pendent variables and the two parameters revolutions per min-
ute (RPM) and thrust force (TF) were selected as the machine
characteristics independent variables. Using the same data-
base, several DNN models for prediction of the PR were de-
veloped and compared with each other and with five artificial
neural network (ANN)models. The evaluation was performed
based on two performance indices, R2 and the root mean
square error (RMSE). The best model of DNNs in comparison
with the best model of ANNs provided much better results.
The developed DNN model achieved better performance than
the existing intelligent systems and demonstrated potential for
use in other geotechnical applications.
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