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Abstract
Understanding the anisotropic behavior of jointed rock mass subjected to various confining pressures is crucial for designing,
evaluating the performance and assessing the stability of rock engineering structures. We report here our numerical investigation
of the response of stress-dependent anisotropy of a jointed rock mass sourced from the weakly weathered zone of the water inlet
slope of the Xiaowan Hydropower Station, China. The finite element method (FEM) that incorporates material heterogeneity and
joint network was utilized. Two-dimensional models were established based on the Monte-Carlo method and loaded in different
rotational angles with changing confining pressures at the representative elementary volume (REV) size (14 × 14 m). The stress–
strain behaviors, failure patterns, deformation modulus and peak strength of the REV models exhibited noticeable stress depen-
dency and directionality. The cohesive strength was anisotropic, whereas there was only an insignificant change in the friction
angle with changes in the rotational angle. The effect of confining pressure on the anisotropy index of the deformation modulus
was negligible, while the anisotropy index of peak strength decreased gradually with confining pressure. Based on these results,
we conclude that stress conditions need to be considered for accurate prediction of the mechanical behavior of a jointed rock
mass.
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Introduction

Rock masses in practical engineering works generally contain
non-uniform and non-regular joints of varying sizes, orienta-
tions and locations. The presence of joints in rock mass is
associated with a high scale effect (Wu and Kulatilake 2012;
Bahaaddini et al. 2014; Wang et al. 2016) and anisotropy
(Kohl et al. 1995; Al-Harthi 1998; Kim et al. 2012).
Anisotropy is one of the distinct mechanical properties of
jointed rock mass and is influenced not only by the geometric
features of the joint systems, but also by the state and evolu-
tion of the in situ stress fields of the study zone. Confining
pressure can contribute significantly to the strength and
deformability of anisotropic rocks (Singh et al. 2015) and is
a particularly significant factor in various fields of safety

assessments of rock engineering projects, such as rock slopes,
dam foundations and underground excavations (Kulatilake
et al. 2004). Therefore, it is necessary to evaluate and quantify
the effects of stress on the anisotropic characters of strength
and deformability of jointed rock mass.

The effects of confining pressure on the mechanical parame-
ters of the rock mass of anisotropic rock samples have been
effectively reviewed in laboratory measurements (Attewell and
Sandford 1974; Tiwari and Rao 2007; Gonzaga et al. 2008;
Sahoo 2011; Maji and Sitharam 2012; Fan et al. 2017).
Chappell (1990) studied the effect of in situ stresses on aniso-
tropic rock mass and showed that rock mass modulus is very
sensitive to in situ stresses. Kumar (2006) concluded that the
strength of specimens for a given orientation increases
nonlinearly with increasing confining pressure. One of the most
important advantages of conducting laboratory experiments in
this field is that more accurate results can be obtained on the
influence of confining pressure on the anisotropy of strength
and deformability of rocks. However, laboratory experiments
are generally not adequate to estimate experimentally the vari-
ability of anisotropic mechanical parameters of jointed rockmass
due to the scale effect of the samples at field scales (Bieniawski
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1968; Singh and Rao 2005). Furthermore, such experiments are
expensive and impractical for studying complex jointed rock
mass (Kulatilake et al. 1994; Baghbanan 2008).

With the rapid growth of computing capacity, numerical
modeling provides an effective means to facilitate an improved
understanding of the stress-dependent mechanical properties of
jointed rock mass (Min and Jing 2004; Bidgoli et al. 2013;
Bidgoli and Jing 2015; Alshkane et al. 2017). Yang et al.
(2015a) used the finite element method (FEM) to examine the
dependency of strength on confining pressure based on 12-m
models. They found that strength increases with confining
pressure and varies with study direction. Khani et al. (2013) used
the discrete elementmethod (DEM) and determined the confined
pressure dependency of elastic strength of a fractured rock mass.
These authors showed that elastic strength increaseswith increas-
ing confining pressure and that elasto-plastic behaviors follow a
strain-hardening trend in the stress–strain curves. Bidgoli and
Jing (2014) investigated the strength and deformability of frac-
tured rocks with changing confining pressures using the DEM.
Their results indicated that the strength envelopes and elastic
deformability parameters of discrete element models show sig-
nificant anisotropy under different confining pressures. The
above-mentioned studies reveal that confining pressure plays a
significant role in the strength and deformation parameters of an
anisotropic rock mass.

The ratio between the maximum and minimum anisotropic
parameters of a rock mass is defined as the anisotropy index and
used to quantify the anisotropy degree of a rock mass. The an-
isotropic degree of rock mass is generally sensitive to confining
pressure. A large number of studies have been carried out on the
anisotropic parameters of rock masses, with many of these fo-
cusing n on sedimentary and metamorphic rocks, such as
phyllite, slate and sandstone (Ramamurthy et al. 1993;
Behrestaghi et al. 1996; Kumar 2006; Zhang et al. 2011, 2013;
Fereidooni et al. 2016; Xu et al. 2018). The results of these
studies show that the anisotropic ratio of sedimentary and meta-
morphic rocks decreases with increasing pressure. However, lit-
tle attention has been paid to the anisotropic parameters of com-
plex jointed rock mass. Different rock materials may show dif-
ferent responses in various confining pressures. Therefore, the
stress-dependent anisotropy index of jointed rock mass needs
further investigation to determine whether it is necessary to con-
sider anisotropy before certain engineering operations are initiat-
ed. Furthermore, the model size for numerical experiments
should be properly established so that the overall properties of
rocks at field scales are statistically representative. Consequently,
the representative elementary volume (REV) size of the numer-
ical model should be evaluated (Jing andHudson 2002; Esmaieli
et al. 2010) before starting on any study of the mechanical prop-
erties of jointed rock mass associated with stress effects.

Here we report our attempt to examine the influence of con-
fining pressure on the anisotropy of complex jointed rock mass,
with the aim to gain a better understanding of the mechanical

behaviors of the rock. We used the jointed rock mass of the
weakly weathered zone of the water inlet slope of the Xiaowan
Hydropower Station, China as study material and a FEM in
which a wide variety of joint distributions were applied. First, a
stochastic two-dimensional discrete fracture network (DFN)
model was established using the field joint data of the slope of
the powerhouse intake and the Monte Carlo method. The REV
size of the jointed rock mass was obtained in the uniaxial com-
pression tests. A set of biaxial compression experiments was then
loaded in different rotational angles at REV size with changing
confining pressures. The influence of confining pressure on the
anisotropic degree of the jointed rock mass is discussed in quan-
titative terms.

Numerical modeling

Description of the Realistic Failure Process Analysis
code

The computer code used in this research is the Realistic
Failure Process Analysis (RFPA) code, which was developed
based on the FEM. It is a powerful numerical tool to model
non-linear deformability by introducing the heterogeneity of
material properties into the model. It is also a numerical stress
analysis tool that can handle discontinuous mechanics prob-
lems of heterogeneousmaterials using the continuummechan-
ics model by incorporating the reduction of material parame-
ters after element failure. In RFPA, the numerical model is
made up of numerous mesoscopic elements, and the four-
node isoparametric elements are used to describe the basic
element which is considered to be elastic and isotropic. In
order to consider the heterogeneity of the numerical model,
mechanical parameters of the mesoscopic elements, such as
elastic modulus, strength and Poisson’s ratio, are assumed to
conform to a Weibull distribution (Weibull 1951), as defined
by the following probability density function:

f uð Þ ¼ m
u0

u
u0

� �m−1

exp −
u
u0

� �m

ð1Þ

Where u is the specific mechanical parameter of finite ele-
ments, such as Poisson’s ratio or the elastic modulus; uo is the
scale parameter related to the average value of the finite ele-
ment parameter; m is the homogeneity index that can describe
the degree of heterogeneity that determines the shape of the
distribution function. Generally, a larger m implies more het-
erogeneity and vice versa. The heterogeneous medium pro-
duced by the computer is analogous to a real specimen tested
in the laboratory, and so it is often deemed the numerical
specimen.More details on the heterogeneity indexm are avail-
able in Tang (1997).
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In RFPA, the elastic damage constitutive law is applied to
describe the stress–strain curve of each mesoscopic element.
Initially, all mesoscopic elements of the numerical model are
considered to be elastic and their properties are defined by the
parameters of the elastic modulus and Poisson’s ratio.
Correspondingly, the stress–strain curve of the mesoscopic
element is linearly elastic until the given damage threshold
is reached, and then the elastic modulus of the element de-
grades gradually with the development of damage (Liang et al.
2004). The elastic modulus of damaged material can be de-
scribed as follows:

E ¼ 1−Dð ÞE0 ð2Þ
where E and E0 represent the elastic modulus of the damaged
and undamaged elements, respectively, and D is the damage
variable representing the degree of damage. It should be noted
that the elements of the numerical model are assumed to be
isotropic, therefore the E, E0 and D are all scalars.

In the RFPA, the maximum tensile strain (or stress) criteri-
on and the Mohr–Coulomb (M-C) criterion are chosen as the
damage thresholds when the element is damaged. The consti-
tutive relationship illustrated in Fig. 1 is adopted for the two
failure modes. Generally, the maximum tensile strain (or
stress) criterion takes the higher priority to determine whether
the element is damaged or not. If the element is not damaged
in tensile mode, the M-C criterion is then used to assess
whether the element is damaged in shear modes.
Correspondingly, the damage variable D is calculated when
the different damage thresholds are adopted, respectively.
Failure modes have been studied in detail by Zhu and Tang
(2004) and Tang et al. (2005). Here, we provide a brief
summary.

If the model element is subjected to uniaxial tension state
and the tensile stress in the element reaches its tensile strength,
ft0, then

σ3≤ f t0 ð3Þ
where σ3 and ft0 are minimum principal stress and the uniaxial
tensile strength of mesoscopic element, respectively.

The constitutive relations of elasto-brittle damage with giv-
en specific residual strength is presented in the third quadrant
of Fig. 1. With regard to the corresponding constitutive law
where the element is damaged in tension mode, the parameter
D can be expressed in Eq. (4) as:

D ¼
0; ε > εt0

1−
λεt0
ε

; εtu < ε≤εt0
1; ε≤εtu

8><
>: ð4Þ

where λ is the residual strength coefficient and λ = ftr/fto, and
fto and ftr are the uniaxial tensile strength and residual tensile
strength, respectively; εto is the strain at the elastic limit, while
εtu is the ultimate tensile strain of the element. The ultimate
tensile strain is defined by εtu = ηεto, where η is the ultimate
strain coefficient.

Additionally, the constitutive described before can be ex-
tended to three-dimensional stress fields according to the
method of extending a one-dimensional constitutive law un-
der uniaxial tensile stress to a multiaxial stress condition
(Mazars and Pijaudier-Cabot 1989). In a multiaxial stress
state, the tensile damage still occurs when the equivalent max-
imum tensile strain ε reaches the above threshold strain εt0.
The equivalent principal strain ε is described in Eq. (5):

ε ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−ε1h i2 þ −ε2h i2 þ −ε3h i2

q
ð5Þ

where ε1, ε2 and ε3 are three principal strains; the term within
the angular bracket is a function expressed in Eq. (6):

xh i ¼ x; x≥0
0; x < 0

�
ð6Þ

Therefore, the constitutive law for an element subjected to
multiaxial stresses can be further expressed in Eq. (4) by
substituting the strain ε with the equivalent strain ε defined
by Eqs. (5) and (6). The damage variable D is then defined in
Eq. (7):

D ¼
0; ε > εt0

1−
λεt0

ε
; εtu < ε≤εt0

1; ε≤εtu

8>>><
>>>:

ð7Þ

However, if the model elements are subjected to compres-
sive and shear stresses, compressive softening also occurs.

 

 

 

 

 

εεc0

- ft0

- ftr

fc0

fcr
εtu εt0

Fig. 1 Elastic-brittle damage constitutive law of elements under uniaxial
stress. fc0, fcr, ft0 and ftr denote uniaxial compressive strength, residual
uniaxial compressive strength, uniaxial tensile strength and residual
tensile strength, respectively; εc0, εt0 and εtu represent uniaxial
compressive strain, tensile strain at the elastic limit and ultimate tensile
strain of the element, respectively
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Therefore, shear damage of the modeling elements is assumed
to exist, and the constitutive relationship of the M-C criterion is
selected as the second damage, which is described by Eq. (8):

σ1−
1þ sinφ
1−sinφ

σ3≥ f c0 ð8Þ

where σ1 and σ3 are the maximum and minimum principal
stress values, respectively. In RPFA, compressive stress is pos-
itive and tensile stress is negative. In addition, fco and φ are the
uniaxial compressive strength (UCS) and internal friction angle
of the mesoscopic element, respectively. With regard to the
corresponding constitutive law where the element is damaged
in shear stress, the parameter D under uniaxial tension can be
expressed in Eq. (9):

D ¼
0; ε < εc0

1−
λεc0
ε

; ε≥εc0

(
ð9Þ

where λ is also the residual strength coefficient, and λ = fcr/fco is
assumed to be true when an element is under uniaxial tension or
compression. Among these, fco and fcr are the UCS and residual
UCS, respectively, as shown in Fig. 1; εc0 is the strain at the
peak compressive principal stress.

If an element is under multiaxial stress and its stress con-
dition satisfies the M-C criterion, the element can still be dam-
aged in the shear mode. The effect of intermediate principal
stresses on the damage process should be considered in this
model. When the M-C criterion is satisfied, the minimum
principal strain (or maximum compressive principal strain)
εc0 can be obtained at the peak of the maximum principal
stress (or maximum compressive principal stress) value, as
follows:

εc0 ¼ 1

E0
f c0 þ

1þ sinφ
1−sinφ

σ3−μ σ1 þ σ2ð Þ
� �

ð10Þ

where ν, Eo, fco and φ are Poisson’s ratio, original elastic
modulus element, UCS and internal friction angle of the nu-
merical element, respectively. In this regard, it is assumed that
shear damage evolution is only induced by the maximum
compressive principal strain ε1. Correspondingly, the damage
variable D can be easily obtained by replacing the uniaxial
compressive strain εc0 in Eq. (9) with the maximum compres-
sive principal strain ε1. Consequently, the parameter D under
triaxial stress states for shear damage as follows:

D ¼
0; ε1 < εc0

1−
λεc0
ε1

; ε1≥εc0

(
ð11Þ

In summary, the damaged elastic modulus of each element
at the stress or strain state can be calculated from the above
expression on the damage variable D together with Eq. (2),
which is generally named the damage evolution law in

damagemechanics. Further, the initial element is linearly elas-
tic and no damage occurs, i.e.D = 0, so the damage variableD
ranges from 0 for the undamaged element to 1 for the com-
plete failure element.

RFPA can not only take into account the heterogeneity of
rock mass at the micro- and macroscopic levels, but also cap-
ture the key behaviors of rock deformation and failure, includ-
ing the initiation and development of cracks under different
loading conditions and loading stages, and reproduce the lo-
calization of deformation, stress redistribution, strain soften-
ing, failure modes, etc. This code has been widely used to
simulate mechanical properties in rocks (Tang 1997; Zhu
and Tang 2004). The validity and reliability of the RFPA code
have been assessed in a number of typical laboratory tests on
idealized jointed rock samples to evaluate the anisotropic be-
havior of jointed rock samples (Tang et al. 2001; Xu et al.
2013; Yan et al. 2013; Liang et al. 2004). In addition, the
RFPA code has been widely applied to investigate slope sta-
bility (Li LC et al. 2009; Liu et al. 2017), scale effect and
anisotropy (Yang et al. 2015b; Zhou et al. 2018) of jointed
rock mass in a number of engineering fields. Therefore, the
RFPA can be considered to be an effective tool to investigate
the anisotropic behavior of jointed rock mass. In addition, as a
FEM-based method, axial stress, axial strain and equilibrium
are calculated in the RFPA code in the samemanner as in other
finite element methods.

Determination of REV size

The Xiaowan Hydropower Station is located in the middle
reaches of the Lancang river between Nanjian county (Dali
prefecture) and Fengqing county (Lincang city, Yunnan prov-
ince). The water inlet slope of the Xiaowan Hydropower
Station is located on the right size of Dachunshugou. The
foundation elevation of the water inlet platform is 1140 m,
and the elevation of the gate well platform is 1245 m. The
lithology of the rock body in the water inlet slope is mainly
long gneiss and black cloud granite gneiss. There is no large
fault in the area, and the stability of the slope is mainly con-
trolled by small faults and joint developed in the rock mass.
According to the rock mass weathering degree, the water inlet
slope is divided into a strong weathering zone, weak
weathering zone and micro-new rock mass in the direction
from the surface to the interior. Of these, the weakly weath-
ered zone of the water inlet slope of the Xiaowan Hydropower
Station contains three sets of joints, which were estimated by
Wang et al. (2010) in a field investigation using the scanline
method (see Table 1). In order to characterize the stochastic
fracture system for the numerical simulation, a 30 × 30-m
DFN model was generated based on the probability model
and Monte Carlo method.

REV is a critical value beyond which the mechanical pa-
rameters of jointed rock mass tend to stabilize as model size
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increases. The existence of REV is capable of reproducing the
representative mechanical property of jointed rock mass,
based on which the continuous-media theory can be applied
(Pariseau et al. 2008; Li JH et al. 2009). In order to determine
the REV size of jointed rock mass, square models (n = 10)
with the size ranging from 2 to 20 m, each with an increment
of 2 m, were used to investigate the scale effect in the uniaxial
compression tests. For each square model, six rotational an-
gles θ (θ = 0°, θ = 30° to θ = 150°) in the counter-clockwise
direction were chosen based on the suggestions of previous
studies (Bidgoli and Jing 2014; Yang et al. 2015a; Kumar and
Verma 2016), as shown in Fig. 2. The blue lines in Fig. 2
represent generated joints. The concentric squares formed by
black lines represent research regions for computational FEM
models. The RFPA2D codewas adopted and the basic mechan-
ical properties of intact rock in RFPA2D were acquired based

on the results of field and laboratory tests. In the RFPA, the
joint elements are simplified to be a kind of special intact rock
material. The mechanical parameters of the joint include UCS,
elastic modulus, friction angle, among others. Generally, the
mechanical parameters of joints are relatively lower than those
of intact rocks, and the joint parameter selection would influ-
ence the analysis results (Wu et al. 2017). However, the ratios
of mechanical properties between joint and intact rock have
not yet been reported. In previous studies, the values of UCS
and elastic modulus of joint have generally been set within the
range of 1–20% (Kemeny 1991; Pariseau et al. 2008; Li et al.
2011; Yang et al. 2015b; Zhou et al. 2018). Additionally, in
our study the magnitude of joint parameters is seemly less
important because it is the impact of joint on the trend of the
calculation results that is the focus of our research. We set the
ratios of elastic modulus and UCS to 4.36 and 4.22%, respec-
tively. The properties of intact rock and joint are listed in
Table 2. The top of the FEM model was applied as an axial
displacement-controlled constant load per step until model
failure. The strain rate of 2.0e-5 per step was used in the
numerical simulation based on the suggestions of Yang and
Jing (2011).

The variations in UCS with FEM model sizes for six rota-
tional angles are shown in Fig. 3. The results indicate that the
variation trend of UCS with FEM model size is similar for
each rotational angle. The UCS first increases and then grad-
ually decreases until it tends to stabilize as FEM size in-
creases. It is clearly seen that the values of the UCS for six
rotational angles remain almost unchanged when the FEM
model size is greater than 14 × 14 m. Therefore, the REV of
the jointed rock mass is determined to be 14 × 14 m.

Biaxial compression tests

To study the effects of confining pressure on the anisotropic
behaviors of jointed rock mass, we constructed six square
models at REV size (14 × 14 m) from the DFN model at an-
gles of 0° to 180° at an interval of 30° in the counter-clockwise
direction under different levels of confining pressure. The me-
chanical parameters of intact rock and joint under biaxial

60°
120°

2 m

4 m

20 m

6 m

90°

…
...

30°

150°

0°

Fig. 2 Illustration of the finite element method (FEM) model used to
study the mechanical properties of jointed rock mass. Blue lines
represent generated joints; concentric squares formed by black lines
represent research regions for computational FEM models

Table 1 The probability distribution of joint geometric parameters in the weakly weathered zone of the water inlet slope of the Xiaowan Hydropower
Station. There are three joint sets (JA, JB and JC) in this zone

Joint
set

Dip angle (°) Trace length (m) Spacing (m)

Distribution
patterna

Mean
value

Standard
deviation

Distribution
patterna

Mean
value

Standard
deviation

Distribution
patterna

Mean
value

Standard
deviation

JA I 80.26 9.91 II 2.54 1.39 III 0.3 0.3

JB I 89.3 9.52 II 1.56 1.01 II 0.31 0.44

JC I 42.88 6.54 II 1.52 0.87 II 0.29 0.29

Values in table are from in a field investigation using the scanline method conducted by Wang et al. (2010)
a I represents normal distribution, II represents logarithmic normal distribution and III represents negative exponential distribution, respectively
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compression test are the same as those in the uniaxial com-
pression test, as listed in Table 2. A typical illustration of set-
ups and boundary conditions of the biaxial compression tests
is provided in Fig. 4. In the biaxial compression tests, the
bottom of the REV model was fixed in the y-direction, the
confining pressures were applied on the vertical boundary
surfaces of the REV model and a constant axial
displacement-controlled load (U) at a strain rate of 2.0e-5
per step (0.28 mm/step) was applied to the top of the REV
model until failure occurred. In addition, the various confining
pressures (P) were in turn set at the values of 0, 0.5, 1.0, 1.5,
2.0 and 2.5 MPa, respectively.

Results and analysis

Stress–strain behaviors and failure patterns of jointed
rock mass under confining pressure

The axial stress–strain curves and failure patterns of the REV
models for six rotational angles under different confining pres-
sures are shown in Figs. 5 and 6. Figure 5 shows that the trend
in axial stress–strain behaviors of the REV models for each
rotational angle is closely similar under the various confining
pressures. During the initial loading stage, the REV model
deforms linearly and elastically before the axial stress reaches
the yield strength, which is defined as the stress point at which
the elastic deformation starts changing into the plastic defor-
mation on a stress–strain curve. As loading further increases,

the REV models follow an elasto-plastic deformation behav-
ior up to the peak strength and show a stress-hardening man-
ner. These results are in agreement with those of previous
studies (Bidgoli et al. 2013; Yang et al. 2015a). Finally, the
axial stress–strain curve constantly decreases with multi-peak
strengths and exhibits strain-softening behavior. This similar
trend in axial stress–strain behavior at different rotational an-
gles can be explained by the failure patterns of the REV
models under different confining pressures, as shown in
Fig. 6. It can be seen that the REV models for 0° rotational
angle mainly show tensile failure along the pre-existing joints
and shear failure at the tips of the pre-existing joints under
various confining pressures and that the stress–strain curve
is generally related to the failure process of the model.
Moreover, the results also show that the REV size of the mod-
el, 14 × 14 m, is adequate for studying the average strength
and deformability of the jointed rock mass under study.

Furthermore, the slope of the stress–strain curve during the
elastic deformation stage and the peak strength of the REV
models increase with increasing confining pressure, as shown
in Fig. 5. The mechanical behaviors of the REV models also
become increasingly ductile as confining pressure increases
(Attewell and Sandford 1974; Rao 1984). This behavior can
be explained in terms of the distribution of microcrack in the
REV models with the increasing of confining pressure, as
shown in Fig. 6. When the confining pressure is small, i.e. 0,
0.5 and 1MPa, the microcracks initiate and propagate along the
flaw of the models. However, the microcracks are only

U

P P

Fig. 4 Typical set-ups and boundary conditions for biaxial compression
tests. P Confining pressure, U axial displacement-controlled load
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Fig. 3 Variation in uniaxial compressive strength (UCS) with changes in
FEM model size for six different rotational angles

Table 2 The mechanical
parameters for rocks and joints
used in the compression
numerical tests

Material
type

Heterogeneity
index

Elastic modulus
(GPa)

Uniaxial compressive
strength (MPa)

Friction
angle (°)

Poisson’s
ratio

Rock 5 42.2 105.2 51 0.28

Joint 2 1.84 4.44 28 0.34
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generated along the upper-left and lower-right joints of the REV
models, and the other joints and lateral dilation of the REV
models are restrained as confining pressure further increases.

Anisotropy behaviors of stress–strain and failure
patterns of jointed rock mass

Figure 7, as an example, shows the axial stress–strain curves of
the rotated REVmodels under a confining pressure of 1.5MPa,
and the existence of joints has an important impact on themacro
behavior of the rock mass (Fan et al. 2018; Zhang et al. 2018).
The numerical results indicate that the axial stress–strain curves
of the REV models loaded in various rotational angles have
significant anisotropy and directionality. The main reason for
this significant anisotropy and directionality is the complex
geometry of the joint system. Moreover, the slopes of the

straight line portions of the axial stress–strain, peak strain and
peak strength change with rotational angle.

The fracture patterns and micro crack distributions of the
rotated REV models under a confining pressure of 1.5 MPa
are shown in Fig. 8. According to the distribution of micro-
fractures in the REV models, multiple failure planes are ob-
served along the pre-existing joints whereas the anisotropy of
macro failure patterns of the REV models was found to be
significant. When the rotational angles are at 0°, 30°, 60° and
120°, respectively, the REV models are damaged by the shear
zones running through the whole models and follow a shear
failure pattern. However, the distributions of the shear zones
in the REV models are dominated by the joint direction. For
the 90° rotational angle, the damaged zones occupy the lower-
left and upper-right corners of the REV model, and the REV
model mainly shows the combined action of a shear-tension
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failure pattern. For the 150° rotational angle, the micro-cracks
mainly occur along the pre-existing joints that nearly parallel
the model diagonals, and the REV model mainly shows sur-
face failure. Therefore, the distribution and direction of joints
have a dominating influence on the failure patterns of jointed
rock mass. Furthermore, the anisotropy behaviors of jointed
rock mass, as shown in Fig. 7, might be explained by the
anisotropy of the failure patterns of the rotated REV models.

Equivalent strength and deformation parameters
of jointed rock mass under confining pressure

We obtained the mechanical parameters of the deformation
modulus and peak strength in this study. Among these, defor-
mation modulus was taken as the ratio of stress to strain of the

stress–strain curve during the elastic deformation stage, and
the peak strength was obtained as the maximal axial stress of
the stress–strain curve during the loading process.

Variations in the deformation modulus and peak strength as
a function of confining pressures for different rotational angles
are shown in Figs. 9 and 10. It can be seen that a higher
confining pressure is correlated with higher deformation mod-
ulus and peak strength, results which agree with those of pre-
vious studies. Moreover, the deformation modulus increases
linearly with increasing confinement, whereas the same in-
crease in confining pressure causes a different increase in peak
strength for various rotational angles. Engineering applica-
tions in various in situ stress conditions should consider this
aspect for design and analysis.

Anisotropy of equivalent strength and deformation
parameters

The relation of the deformation modulus and peak strength as
a function of rotational angles under different confining pres-
sures are shown in Figs. 11 and 12, respectively. The defor-
mation modulus and the peak strength have obvious anisotro-
py and directionality, due to the different orientations of joints
relative to the loading direction. As shown in Fig. 11, the
deformation modulus first increases slightly with increases
in the rotational angle from 0° to 30°; this is followed by a
decrease in the deformation modulus from 0° to 120° rotation-
al angles and an increase from 120° to 180° rotational angles.
The property of the deformation modulus exhibits a shoulder-
shaped form based on the classification of Ramamurthy et al.
(1993). For groups at different confining pressures, the max-
imum and minimum deformation modulus are observed at a
rotational angle of 30° and 120°, respectively.
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As plotted in Fig. 12, peak strength decreases initially at a
rotation angle of between 0° and 60°, then increases at a rota-
tion angle of between 60° and 120° and finally decreases and
increases again when the rotation angle is between 120° to
180°. The property of peak strength displays a undulatory type
based on the classification of Ramamurthy et al. (1993). The
maximum and minimum values of the peak strength are at
around 0° and 150° rotational angles for groups with different
confining pressures, respectively.

The equivalent cohesive strength and friction angle of the
rotated REV models can be reasonably reviewed by fitting
numerical experiment data based on M-C and Hoek–Brown
(H-B) (Hoek and Brown 1980) strength criteria. Both of these
strength criteria are widely accepted in the international rock
mechanics community, but the M-C strength criterion is the
better criterion for jointed rock mass under low confining

pressure (Bidgoli et al. 2013; Bidgoli and Jing 2015).
Hence, the equivalent cohesive strength and friction angle of
the rotated REVmodels are determined based on linearlyM-C
strength criterion.

The M-C strength criterion of a rock may be written as:

σ1

σ3
¼ 1þ sinθ

1−sinθ
þ

2ccosθ
1−sinθ
σ3

ð12Þ

where c is the cohesive strength; θ is the friction angle; σ1 is
the major principal stress at failure; and σ3 is the confining
pressure.

Figures 13 and 14 show the distributions of cohesive
strength and friction angle with the rotational angles, when
the M-C strength criterion w adopted. It can be seen that the
jointed rock mass has obvious directionality and anisotropy in

Fig. 8 The failure patterns of the
rotated REV models under a
confining pressure of 1.5 MPa
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cohesive strength. However, the change in the friction angle
with rotational angle is insignificant. The main reason for the
results is the slight changes in the slope angles of the fitted
linear curves in Fig. 10 based on M-C strength criterion. This
result agrees with that of Bidgoli and Jing (2014). The numer-
ical models show that the maximum and minimum cohesive
strengths are 3.471 and 1.667 MPa at around 90° and 150°
rotational angles, respectively. Moreover, the maximum and
minimum friction angles are close to 54.015° and 47.795° at
around 0° and 60° rotational angles, respectively.

Effect of confining pressure on the anisotropy index

The anisotropy index is an important evaluation criterion to
quantify the anisotropy degree of rock mass. In order to ana-
lyze the impact of confining pressure on the anisotropy index
of jointed rock mass, we must first establish the anisotropy
index:

CVαj ¼ αij

αij minð Þ
ð13Þ

where CVαj is the anisotropy index represented in terms of
deformation modulus or peak strength of the REV model un-
der the intermittent confining pressure j (0 MPa, 0.5 MPa to

2.5 MPa); αij is the deformation modulus (or peak strength)
when the intermittent rotational angle i (0°, 30°,…, 150°) and
the corresponding confining pressure is j; αij(min) is the mini-
mum deformation modulus (or peak strength) among αij. It
can be seen from Eq. (13) that the smallest anisotropy index,
with a magnitude of 1, exists when αij(min) =αij; the value of 1
is a reference value to evaluate to which extent the confining
pressure impacts on the anisotropic behavior of jointed rock
mass. The greater the anisotropy index is, the stronger the
anisotropy becomes.

Figures 15 and 16 show the variation in the anisotropy
indexes of deformation modulus and peak strength, respec-
tively, as a function of confining pressure for different rota-
tional angles. As plotted in Fig. 15, the results indicate that the
anisotropy index of the deformation modulus has a decreasing
trend with increases in confining pressure, with the exception
of at a rotation angle of 120°, when the value is equal to 1. An
interesting feature is that changes in the anisotropy index of
the deformation modulus are smaller than the relative experi-
mental errors (8%) with increases in confining pressure. Thus,
the effect of confining pressures on the anisotropy index of the
deformation modulus can be neglected. When various rota-
tional angles are compared, the anisotropy index of the defor-
mation modulus shows directionality and anisotropy. The
maximum and minimum anisotropy indexes of the
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deformation modulus under a confining pressure of 2.5 MPa
are about 1.493 and 1 at a rotational angle of approximately
30° and 120°, respectively.

As seen in Fig. 16, the anisotropy index of the peak
strength moves in an obvious downward trend with increases
in confining pressure, with the exception of at a rotational
angle of 150° rotational, when the value is equal to 1.
However, the changes in the reduction trend are moderate.
At 0° and 60° rotational angles, the anisotropy index of the
peak strength first shows a large drop and then remains almost
constant with increasing confining pressure. Furthermore, the
anisotropy index of the peak strength first decreases gradually,
then remains almost unchanged before finally decreasing
again at rotational angles of 30°, 90° and 120°, respectively,
as confining pressure increases. When various rotational an-
gles are compared, the anisotropy index of the peak strength
also shows directionality and anisotropy. In relative terms, the
maximum and minimum anisotropy indexes of the peak
strengths under a confining pressure of 2.5 MPa are about
1.505 and 1 at a rotational angle of approximately 0° and
150°, respectively.

Discussion

Jointed rock mass displays significant anisotropy in uniaxial
and biaxial compression tests. The mechanical parameters of
jointed rock mass, such as deformation modulus and peak
strength, vary with rotational angle and have obvious anisot-
ropy and directionality under various confining pressures. The

anisotropy index quantifies the anisotropy degree of a rock
mass and this index is sensitive to confining pressure. Our
simulation results show that an increase in the confining pres-
sure reduces the anisotropic degree of jointed rock mass in
terms of strength parameters, which is consistent with those
of sedimentary and metamorphic rocks (Ramamurthy et al.
1993; Behrestaghi et al. 1996; Zhang et al. 2013; Fereidooni
et al. 2016; Xu et al. 2018). A high confining pressure can
restrain lateral dilation, enhance rock strength and encourage
homogenization. However, the confining pressure has little
influence on the anisotropic degree of the deformation modu-
lus—i.e. the effect of confining pressure on the anisotropy
index of the deformation modulus can be neglected.
Furthermore, the mechanical parameters of jointed rock mass
may be considered as isotropy when the confining pressure is
sufficiently high.

Fig. 15 Variation in the anisotropy index of deformation modulus as a
function of confining pressure for different rotational angles

Fig. 16 Variation in the anisotropy index of peak strength as a function of
confining pressure for different rotational angles

Fig. 13 Distribution of cohesive strength for the rotated REV models

Fig. 14 Distribution of friction angle for the rotated REV models
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Conclusions

The effects of confining pressure on anisotropy of the
strength and deformation properties of jointed rock were
investigated using the DFN–FEM approach at the REV
size. The method may play an important role in the an-
isotropy of jointed rock mass at the field scale and pro-
vides more reasonable estimations, which requires reliable
fracture system characterization.

Significant scale-dependency of the peak strength of the
jointed rock mass for different rotational angles was observed
in uniaxial compression experiments. The REV size of jointed
rock mass existed and was approximated to be 14 × 14 m.

To systematically investigate the stress-dependent an-
isotropy of the equivalent strength and deformation be-
haviors of jointed rock mass, a series of biaxial compres-
sion experiments was then carried at different rotational
angles at REV size, with varying confining pressures. The
results indicated that stress–strain behaviors, failure pat-
terns, deformation modulus and peak strength exhibited
significant stress dependency and anisotropy. In addition,
the cohesive strength and friction angle were obtained
based on the M-C strength criterion. These results clearly
showed that the friction angle changed insignificantly
with changes in rotational angle, while the cohesive
strength exhibited significant anisotropy.

The influence of confining pressure on the anisotropic de-
gree of jointed rock mass was quantified using an index
termed the ‘anisotropy index’. The results indicated that con-
fining pressure weakened the anisotropy features of jointed
rock mass. It is emphasized that the effect of confining pres-
sures on the anisotropy index of deformation modulus can be
neglected, whereas the anisotropy index of peak strength grad-
ually decreased with increasing confining pressure.
Furthermore, the anisotropy indexes of both the deformation
modulus and the peak strength showed directionality and
anisotropy.

The present study is based on a two-dimensional analysis,
which is more suitable for plane–strain problems, such as
tunnel projects with random joint sets. The effect of complex
stress combinations on the anisotropy of strength and
deformability of engineering rock mass demands are further
revealed.
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