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Abstract
Probabilistic analysis of slopes has been used as an effective tool to evaluate uncertainty that is so prevalent in variables. In this
paper, the jointly distributed random variables (JDRV) method is used as an analytical method to compare the reliability of four
widely used limit equilibrium methods for slope stability analysis. These methods include the simplified Bishop, simplified
Janbu, Morgenstern–Price, and Spencer’s methods. The selected stochastic parameters are angle of shearing resistance (φ),
cohesion intercept (c), and unit weight (γ) of soil, which are modeled using a truncated normal probability distribution function.
Geometric parameters such as height and angle of the slope relative to the horizontal are regarded as constant parameters. For
reliability assessment, the reliability indices of the limit equilibrium methods for the critical surface with minimum factor of
safety are determined by the particle swarm optimization (PSO) technique. It is shown that, among the assessed methods, the
Janbu and Bishop methods are those with upper and lower probabilities of failure, respectively, in two conditions with and
without considering cross correlation between c and φ.
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Introduction

There are various methods used in slope stability analysis.
Among these methods, the limit equilibrium method (LEM)
of slices (Bishop 1955; Fellenius 1936; Janbu 1954, 1973;
Moregenstern 1963; Morgenstern and Price 1965, 1967;
Spencer 1967) has attracted considerable attention, because
of its simplicity and accuracy. In this method, the ratio of
resisting to driving forces on a potential sliding surface is
defined as the factor of safety (FS).The limit equilibrium tech-
niques are the most commonly used analytical methods to
investigate the stability of landslides.

A slope is considered safe only if the calculated FS clearly
exceeds unity. The LEM considers the material of the sliding
body as a rigid body (Cheng and Zhou 2015; Zhou and Cheng
2013). However, due to the model and parameter

uncertainties, even an FS greater than one does not confirm
the safety against failure of the slope. Therefore, it is important
to calibrate the deterministic methods considering the effect of
different sources of model and parameter uncertainties. A
common approach in the stochastic analysis of a slope by
the LEM of slices is to determine the reliability index corre-
sponding to the critical surface with the minimum FS.

The reliability analysis of slope stability has attracted con-
siderable attention in the research community in the past few
decades (Griffiths and Fenton 2004; Husein Malkawi et al.
2000). Many probabilistic methods have been used for slope
stability analysis. These methods can be grouped into five
main categories: approximate methods, Monte Carlo simula-
tion (MCS), numerical methods, analytical methods, and arti-
ficial intelligence methods.

& Initial research works on the probabilistic evaluation of
slope stability were done by using approximate methods.
Most of the approximate methods are modified versions of
two methods, namely, the first-order second-moment
(FOSM) method (Ang and Tang 1984) and the point esti-
mate method (PEM) (Rosenblueth 1975). These ap-
proaches require knowledge of the mean and variance of
all input variables, as well as the performance function that
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defines the FS (e.g., Bishop’s equation). Many attempts
have been made to apply the PEM and FOSM method in
the reliability analysis of slope stability. Some important
researches by these methods are listed in Table 1.

& MCS (Metropolis and Ulam 1949) is a computational
algorithm that relies on repeated random sampling to
address risk and uncertainty in quantitative analysis
and decision-making. This method provides a range
of possible outcomes and the probabilities that will oc-
cur for any choice of action. Many attempts have been
made to analyze the stability of slopes using MCS.
Some important researches by this method are listed
in Table 1.

& In numerical methods, a deterministic numerical method
like the finite element method (FEM) has been merged by
probabilistic approaches. These methods can be grouped
into two main categories: random finite element method
(RFEM) and stochastic finite element method (SFEM).
RFEM combines elastoplastic finite-element analysis with
random fields generated using the local average subdivi-
sion method. SFEM is an extension of the classical deter-
ministic FE approach to the stochastic framework, i.e., to
the solution of stochastic (static and dynamic) problems
involving finite elements whose properties are random. A
number of researches based on RFEM and SFEM are
presented in Table 1.

& In analytical methods, the probability density functions
(PDFs) of input variables are joined together to derive a
mathematical expression for the density function of the
FS. These approaches can be grouped into the jointly
distributed random variables (JDRV) method (Hoel
et al. 1971; Stirzaker 1999; Tijms 2007) and the first-
order reliability method (FORM) (Hasofer and Lind
1973). Considerable researches have been done on the
application of the FORM to slopes. Limited attempts
have been made to apply the JDRV method in the reli-
ability analysis of slope stability, which are listed in
Table 1.

& Artificial intelligence is an approach based on the concepts
of natural biological evolution to process information.
This technique has the capability to respond to input stim-
uli, produce the corresponding response, and adapt to the
changing environment by learning from experience. This
method has been applied to the reliability analysis of slope
stability. Some important researches using this approach
are listed in Table 1.

& The response surface method (RSM) is an approach that
models and analyzes by a finite element. The simulation is
repeated a limited number of times to give a point estimate
of the response corresponding to uncertainties in the mod-
el parameters. A graduating function is then fitted to these
point estimates (Wong 1985). The approximating function
is called the response surface.

In this study, the reliability of four widely used limit
equilibrium-based methods [including simplified Bishop
(Bishop 1955), simplified Janbu (Janbu 1954, 1973),
Morgenstern–Price (Morgenstern and Price 1965, 1967),
and Spencer’s (Spencer 1967) methods] in the stability
analysis of slopes is compared using the JDRV method.
For this purpose, the FS relationships for PDFs of the
above mentioned methods are derived analytically based
on the selected stochastic parameters for any arbitrary
slope. In numerical simulation methods such as MCS, the
probability distribution of output parameters is obtain by a
considerable number of iterations of deterministic analysis.
Since iterative slope stability analysis is time-consuming,
at the first step of this research, the JDRV method as a
substitution method has been used, in which the results
are approaching more accurately those of Monte Carlo in
a lower computational time. In the next step, using the
PDFs and mean values of the stochastic parameters, the
critical surface with the minimum FS is determined by
the particle swarm optimization (PSO) (Cheng et al.
2007; Kennedy 2010) technique. The reliability indices
of the above four methods are calculated in two condi-
tions with and without considering the correlation be-
tween c and φ.

Limit equilibrium methods

LEM is the most popular approach in slope stability
analysis. This method is well known to be a statically
indeterminate problem, and assumptions on the interslice
shear forces are required to render the problem statically
determinate.

In the LEM of slices, the sliding body is discretized into a
number of columns with vertical interfaces (Zhou and Cheng
2015). The actual number of slices depends on the slope ge-
ometry and soil profile. Some methods assume a circular slip
surface, while others assume an arbitrary noncircular slip sur-
face. Procedures that assume a circular slip surface consider
equilibrium of moments about the center of the circle for the
entire free body composed of all slices. In contrast, the proce-
dures that assume an arbitrary shape for the slip surface usu-
ally consider equilibrium in terms of the individual slices. In
this paper, the slope stability analysis is evaluated by using
simplified Bishop, simplified Janbu, Morgenstern–Price, and
Spencer’s (Fredlund and Krahn 1977) methods. These
methods are presented in the Appendix.

The JDRV method

The JDRV method is an analytical probabilistic method. In
this method, the PDFs of input variables are expressed
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mathematically and joined together by statistical relations. By
integrating into the adopted model, a mathematical expression
of the PDF of the output parameter is derived (Hoel et al.
1971; Johari and Javadi 2012; Johari and Khodaparast 2013;
Johari et al. 2013; Stirzaker 1999; Tijms 2007). If the joint
PDF of continuous random variables k1, k2,…, kn is
fK1,K2,…,Kn(k1, k2,…, kn), the PDF of the output parameter
(FS) is:

f FS FSð Þ ¼ ∬
RXi

⋯∫fK1;K2 ; :::;Kn
k1; k2; :::; knð Þ dk1 dk2:::dki−1 dkiþ1 :::dkn

ð1Þ
where:

fK1;K2;:::;Kn k1; k2; :::; knð Þ
¼ jJ u1; u2; :::; unð Þj: fK1;K2;:::;Kn h1 u1; u2; :::; unð Þ; :::; hn u1; u2; :::; unð Þð Þ

ð2Þ
where u1, u2,…, un are change of variables k1, k2,…, kn, hi is a
function of ui, and ∣J(u1, u2,…, un)∣ is the determinant of
J(u1, u2,…, un):

J u1; u2; :::; unð Þ ¼ j

∂k1
∂u1

∂k1
∂u2

⋯
∂k1
∂un

∂k2
∂u1

∂k2
∂u2

⋯
∂k2
∂un

⋮ ⋮ ⋱ ⋮
∂kn
∂u1

∂kn
∂u2

⋯
∂kn
∂un

j ð3Þ

Stochastic parameters

To account for the uncertainties in slope stability, three input
parameters, including the angle of shearing resistance (φ),
cohesion intercept (c), and unit weight (γ), have been defined
as stochastic variables. The statistical distributions of these
uncertainties have been studied by many researchers.
Numerous researchers emphasized that the normal, truncated
normal, and lognormal distributions are more compatible with
the behavior of soil parameters (Brejda et al. 2000; Fenton and
Griffiths 2003; Lumb 1966, 1970; Tobutt 1982). However,
other distributions, such as triangular, Gumbel, Weibull, ver-
satile beta, and generalized gamma, are also reported
(Christian and Baecher 2002). In this paper, for simplicity in
analytical calculations, the truncated normal distributions are
used for modeling of the stochastic soil parameters. The pa-
rameters related to the geometry of a slope are regarded as
constant parameters. The PDFs of truncated normal distribu-
tions for the stochastic parameters are as follows (Olive 2008):

f c cð Þ ¼ 1

σc
ffiffiffiffiffiffi
2π

p exp −0:5
c−μc

σc

� �2
 !

cmin≤c≤cmax ð4Þ

f φ φð Þ ¼ 1

σφ

ffiffiffiffiffiffi
2π

p exp −0:5
φ−μφ

σφ

� �2
 !

φmin≤φ≤φmax ð5Þ

f γ γð Þ ¼ 1

σγ

ffiffiffiffiffiffi
2π

p exp −0:5
γ−μγ

σγ

� �2
 !

γmin≤γ≤γmax ð6Þ

Table 1 Literature review of the
various methods Method Literature review

Approximate methods PEM Li (1992); Thornton (1994); Wang and Huang (2012)

FOSM Alonso (1976); Christian et al. (1994); Duncan (2000); Hong and
Roh (2008); Suchomel and Mašín (2010); Tang et al. (1976);
Vanmarcke (1977); Xue and Gavin (2007)

Monte Carlo simulation Abbaszadeh et al. (2011); Au and Beck (2001, 2003); Au et al.
(2010); Cho (2007, 2010); Dai et al. (1993); Duncan (2000);
El-Ramly et al. (2002, 2005, 2006); Hassan and Wolff (1999);
Husein Malkawi et al. (2000); Salgado and Kim (2014);
Tobutt (1982); Wang (2012); Wang et al. (2011)

Numerical methods Griffiths et al. (2009, 2011); Hicks and Samy (2002); Huang et al.
(2010, 2017); Jiang et al. (2014); Liu et al. (2014, 2015); Phoon
and Kulhawy (1999); Xu and Low (2006); Zhou et al. (2018)

Analytical methods FORM Bhattacharya et al. (2017); Cho (2007, 2013); Goh and Zhang
(2012); Hong and Roh (2008); Ji (2014); Low and Tang
(1997a, b, 2004, 2007); Low (2007); Low et al. (1998);
Wu (2013); Zeng and Jimenez (2014); Zhang and Goh (2012)

JDRV Johari and Javadi (2012); Johari and Khodaparast (2013);
Johari et al. (2013)

Artificial intelligence methods Ahangar-Asr et al. (2012); Cho (2009); Cui and Sheng (2005);
Ma et al. (2017); Xue and Gavin (2007)

Response surface method Huang and Zhou (2017); Li et al. (2011, 2016); Low and Tang
(2007); Zhang et al. (2013); Zhou and Huang (2018)
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where:

φmin ¼ φmean−4σφ

φmax ¼ φmean þ 4σφ
cmin ¼ cmean−4σc

cmax ¼ cmean þ 4σc
γmin ¼ γmean−4σγ

γmax ¼ γmean þ 4σγ

8>>>>><
>>>>>:

ð7Þ

where:

φmin Minimum values of soil angle of shearing resistance
φmax Maximum values of soil angle of shearing resistance
σφ Standard deviation of soil angle of shearing resistance
cmin Minimum values of soil cohesion intercept
cmax Maximum values of soil cohesion intercept
σc Standard deviation of soil cohesion intercept
γmin Minimum values of soil unit weight
γmax Maximum values of soil unit weight
σγ Standard deviation of soil unit weight

By considering the stochastic variables within the
range of their mean plus or minus four times the stan-
dard deviation [Eq. (7)], 99.994% of the area beneath the
normal density curve is covered. It should be noted that,
for choosing the initial data, the following conditions
must be observed for the angle of shearing resistance,
cohesion intercept, and unit weight of soil in the sliding

surface:

φmean−4σφ > 0
cmean−4σc > 0
γmean−4σγ > 0

8<
: ð8Þ

Probabilistic analysis

For reliability assessment of the FS of slopes using the JDRV
method, the suggested FS equations of simplified Bishop,
simplified Janbu, Morgenstern–Price, and Spencer’s methods
are rewritten into terms of k1 to k4. The terms k1 to k4 are
introduced in Eq. (9). The PDFs of each term and for each
method are derived separately.

k1 ¼ c
k2 ¼ tanφ
k3 ¼ γ
k4 ¼ FS

8>><
>>: ð9Þ

Using the new form of independent input parameters, the
PDFs of k1 to k3 are obtained by Eqs. (10) to (12):

fK1 k1ð Þ ¼ 1

σc

ffiffiffiffiffiffi
2π

p exp −0:5
k1−cmean

σc

� �2
 !

cmin≤k1≤cmax ð10Þ

fK2 k2ð Þ ¼ 1

1þ k2
2

� �
σφ

ffiffiffiffiffiffi
2π

p exp −0:5
tan−1 k2ð Þ−φmean

σφ

� �2
 !

tanφmin≤k2≤ tanφmax ð11Þ

fK3 k3ð Þ ¼ 1

σγ

ffiffiffiffiffiffi
2π

p exp −0:5
k3−γmean

σγ

� �2
 !

γmin≤k3≤γmax ð12Þ

The derivation of probabilistic relations based on
Morgenstern–Price’s method is presented as follows
(the other methods are presented in the Appendix).
The Morgenstern–Price method assumes that the shear
forces between slices are related to the normal forces as
(Morgenstern and Price 1965, 1967):

X ¼ λ: f xð Þ:E ð13Þ

where X and E are the vertical and horizontal forces
between slices, respectively, λ is an unknown scaling
factor that is solved for as part of the unknowns, and
f(x) is an assumed function that has prescribed values at
each slice boundary. In Morgenstern–Price’s method, the
FS is determined by the following equation (Zhu et al.
2005):

FS ¼
∑
n−1

i¼1
Ri ∏

n−1

j¼i
ψ j

 !
þ Rn

∑
n−1

i¼1
Ti ∏

n−1

j¼i
ψ j

 !
þ Tn

ð14Þ

where Ri is the sum of the shear resistances contributed by all
the forces acting on the slices except the normal shear interslice

H

L

Fig. 1 A typical slope
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forces and Ti is the sum of the components of these forces
tending to cause instability (Zhu et al. 2005).

ψi ¼ sinαiþ1−λ: f i:cosαiþ1ð Þ:tanφþ cosαiþ1 þ λ: f i:sinαiþ1ð Þ:FS½ �=ϕi ð15Þ
ϕi ¼ sinαi−λ: f i:cosαið Þ:tanφþ cosαi þ λ: f i:sinαið Þ:FS ð16Þ
where αi is the base inclination and fi is f(xi) of the ith slice.
According to variable conversion, u1, u2, and u3 are defined as
independent and arbitrary parameters of variables such as k1,
k2, and k3 as follows:

u1 ¼ g1 k1; k2; k3ð Þ ¼ FS
u2 ¼ g2 k2ð Þ ¼ k2
u3 ¼ g3 k3ð Þ ¼ k3

8<
: ð17Þ

As the function between two series of points (k1, k2, k3) and
(u1, u2, u3) is considered as an injective function, the following
functions are defined as below. In this case, Eq. (14) is defined
by the independent parameter k1:

k1 ¼ h1 u1; u2; u3ð Þ ¼ c ¼
u1: ∑

n−1

i¼1
u3:bi:hi:sinαi: ∏

n−1

j¼i
ψ j

" #
þ Tn

 !
− ∑

n−1

i¼1
u3:bi:hi:cosαi:u2: ∏

n−1

j¼i
ψ j

" #
−wn:cosαn:u2

∑
n−1

i¼1
bi:secαi: ∏

n−1

j¼i
ψ j

" #
þ bn:secαn

k2 ¼ h2 u2ð Þ ¼ u2
k3 ¼ h3 u3ð Þ ¼ u3

8>>>>>>>><
>>>>>>>>:

ð18Þ

Consequently, according to Eq. (1), the PDF of u1, u2, and
u3 is calculated as below:

fK4 k4ð Þ ¼ ∫
α1

β1

∫
α2

β2

j J u1; u2; u3ð Þ j: fK1 h1 u1; u2; u3ð Þð Þ: fK2 h2 u2ð Þð Þ: fK3 h3 u3ð Þð Þ dk2:dk3 ð19Þ

jJ u1; u2; u3ð Þj ¼ M1 þM6ð Þ: M3 þ bn:secθnð Þ−M7: FS: M1 þ wn:sinθnð Þ−M2−wn:cosθn:k2ð Þ
M3 þ bn:secθnð Þ2 ð20Þ
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ytilibaborP
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Fig. 2 Probability density function (PDF) of the factor of safety (FS) by
simplified Bishop’s method

Table 2 Arbitrary stochastic parameters

Parameters Mean Standard deviation Minimum Maximum

c (kPa) 10.0 2.0 2.0 18.0

ϕ (°) 28.0 3.0 16.0 40.0

γ (kN/m3) 18.0 1.0 14.0 22.0

Table 3 Arbitrary deterministic parameters

Height of slope (m) Horizontal length of slope (m) γwater (kN/m
3)

12.0 12.0 10.0

An analytical probabilistic analysis of slopes based on limit equilibrium methods 4337



where:

M1 ¼ ∑
n−1

i¼1
wi:sinθi: ∏

n−1

j¼i
ψ j

" #
ð21Þ

M2 ¼ ∑
n−1

i¼1
wi:cosθi:k2: ∏

n−1

j¼i
ψ j

" #
ð22Þ

M3 ¼ ∑
n−1

i¼1
wi:secθi: ∏

n−1

j¼i
ψ j

" #
ð23Þ

M4 ¼ ∑
n−1

j¼i

dψ
dx

� �
j
: ∏
n−1

k¼i
ψk

ψ j

2
664

3
775 ð24Þ

M5 ¼ M1 þ FS: ∑
n−1

i¼1
wi:sinθi:M4½ � þ wn:sinθn ð25Þ

M6 ¼ − ∑
n−1

i¼1
wi:cosθi:k2:M4½ � ð26Þ

M7 ¼ ∑
n−1

i¼1
bi:secθi:M4½ � ð27Þ

Equation (19) is the PDF of the slope stability safety factor,
while the integral bounds are specified as below:

α1 ¼ min k3ð Þ
β1 ¼ max k3ð Þ

�
ð28Þ

α2 ¼ min k2ð Þ
β2 ¼ max k2ð Þ

�
ð29Þ

Using the mathematical functions for k1 to k3 [Eqs. (10) to
(12)] and fK1(k1) to fK3(k3), a computer program was devel-
oped (coded inMATLAB) to determine the PDF curve for the

safety factor of slope stability. In addition, for comparison,
determination of the safety factor using MCS was also coded
in the same computer program. To show the capabilities of the
proposed method, an example with arbitrary data is presented
in the following sections.

The JDRV method assumes that the parameters are uncor-
related. In this method, the governing mathematical equations
cannot be solved by considering the correlation coefficient
between the cohesion and the friction angle. To overcome this
limitation, in this study, the two parameters c1 and φ are con-
sidered independent with truncated normal distributions and
the distribution of parameter c was determined with the cor-
relation coefficient ρ using the following equation:

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
0

0.5

1.0

1.5
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Factor of safety

noitcnuf
ytisned

citsilibaborP

JDRV method

MC simulation

Fig. 3 PDF of the FS by simplified Janbu’s method
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Fig. 4 PDF of the FS by Spencer’s method
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Fig. 5 PDF of the FS by Morgenstern–Price’s method
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c ¼ ρ� φþ
ffiffiffiffiffiffiffiffiffiffi
1−ρ2

p
c1 ð30Þ

Using Eq. (18), it can be seen that the parameter k1 is a
function of u1, u2, and u3. In this equation, the values
of k1 were determined using the numeric values defined
for k2 and k3 and other input parameters. Accordingly,
the values given for k1 and k2 in this step can be con-
sidered as c1 and φ in the above equation, respectively.
Consequently, the probabilistic distribution of the cohesion
can be defined by the given correlation coefficient of ρ with
the internal friction angle.

Illustrative example

To examine the accuracy of the proposed method in determin-
ing the PDF of the FS, an illustrative example with arbitrary
parameter values is demonstrated. A typical slope shape for
this example is shown in Fig. 1. The stochastic parameters
with truncated normal distributions are given in Table 2 and
the deterministic parameters are given in Table 3.

Probabilistic analysis of slope stability

Using the selected deterministic and mean of stochastic pa-
rameters, the slip surface with minimum FS is determined by
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Fig. 6 Comparison of the PDFs of the FS using the four methods
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Fig. 7 Comparison of the cumulative distribution functions (CDFs) of the
FS using the four methods
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Fig. 8 Comparison of the PDFs of the safety factor of the methods
considering the correlation coefficient between c and φ
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Fig. 9 Comparison of the CDFs of the safety factor of the methods
considering the correlation coefficient between c and φ
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the PSO algorithm (Cheng et al. 2007; Kennedy 2010). Using
Eqs. (A.1) to (A.26), a computer program was developed
(coded in MATLAB) to determine the PDF of slope stability
FS. In order to verify the results of the presented
methods against those of MCS, the final PDFs for the
FS are determined using the same data for both methods. For
this purpose, 2,000,000 generations are used for MCS and for
the four methods.

The results are shown in Figs. 2, 3, 4, and 5 for simplified
Bishop, simplified Janbu, Spencer, and Morgenstern–Price’s
methods. As can be seen in these figures, the results obtained
using the developed methods are very close to those obtained
using MCS.

To compare the four slope stability methods (i.e., Bishop,
Janbu, Spencer, and Morgenstern–Price), the predictions of
the PDF and cumulative distribution function (CDF) of the

FS by the proposed method are plotted in Figs. 6 and 7, re-
spectively. It can be seen that the simplified Janbu’s method
predicted the upper probability of failure with respect to the
other assessed methods. Additionally, for assessing the influ-
ence of the correlation coefficient between c and φ, the PDF
and CDF of the FS are determined with the correlation coef-
ficient − 0.5. Figures 8 and 9 show these curves for the above
methods. It can be seen that, again, the simplified Janbu’s
method predicted the upper probability of failure with respect
to the other assessed methods.

Based on the governing assumptions of the simplified
Janbu method, the predicted average slope stability safety fac-
tor by this method is lower than the corresponding values by
the other methods (Fig. 10). In this method, the shear force
between the components is not directly considered; however,
the correction coefficient is used to account for this force.
Comparison of the reliability coefficient with different
LEMs of slices has been presented in the literature (Fredlund
and Krahn 1977). In this figure, lambda (λ) is a ratio of
interslice forces for slices.

Based on the PDF of the FS, the reliability indices of the
four methods are determined using the following equation
(Husein Malkawi et al. 2000):

Fig. 10 Comparison of the limit equilibrium methods (LEMs) of slices
(Fredlund and Krahn 1977)

Table 4 Comparison of the reliability indices of the four methods

Method Simplified
Bishop

Simplified
Janbu

Spencer Morgenstern–
Price

Reliability index
(β)

0.9247 0.4850 0.8463 0.8576

Table 5 Comparison of the reliability indices of the four methods when
considering a correlation coefficient of − 0.5 between c and φ

Method Simplified
Bishop

Simplified
Janbu

Spencer Morgenstern–
Price

Reliability index
(β)

1.2797 0.6722 1.1535 1.1774

Fig. 11 Comparison of the reliability indices obtained by the four
methods
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β ¼ E FSð Þ−1
σ FSð Þ ð31Þ

where β is the reliability index, E(FS) is the mean value of the
FS, and σ(FS) is the standard deviation of the FS.

Comparisons of reliability indices for the different methods
without and with considering the correlation coefficient are
given in Tables 4 and 5, respectively. It can be seen that the
simplified Janbu’s method shows the lower reliability index or
upper probability of failure with respect to the other methods
in both conditions with and without considering the correla-
tion coefficient between c and φ. However, the reliability
indices of the LEMs is greater for the cases where the corre-
lation coefficient is considered compared with those without
considering cross correlation.

For direct comparison, the reliability indices determined by
the methods are plotted using a bar chart in Fig. 11.

Parametric analysis

For further verification of the proposed model, a parametric
analysis is performed using Janbu’s method. The main goal is
to determine how each parameter affects the stability of
slopes. Figure 12 presents the predicted values of the proba-
bility of failure (instability) as a function of each parameter,
with the others remaining constant. For this purpose, in six
steps, the PDF of each stochastic input parameter is increased
based on their standard deviation (new pdf = old pdf +
1/3 × std). For further explanation, the values used for this
analysis are listed in Table 6. The results of the parametric
analysis indicate that, as expected, the probability of failure
(instability) continuously increases due to increasing
unit weight. The probability of failure decreases with
increase in the internal friction angle and cohesion.
Also, it can be seen that the curve of change in the
internal friction angle with respect to the probability of failure
has a steeper slope than the others, indicating that it is the most
influential parameter.

Comparison of the JDRV method and MCS

To compare the proposed method and MCS in predicting the
probability of failure, Janbu’s method is selected. Figures 13
and 14 indicate the variation of the probability of failure with
respect to the number of generations while Janbu’s method is
used by JDRV and MCS, respectively. From these figures, it
can be understood that, for reaching the same probability of
failure, more generations (samples) is required in MCS com-
pared with the JDRV method. Additionally, the required com-
putational time for the two approaches is compared in
Tables 7 and 8. As demonstrated in these tables, the time
required to reach the same probability of failure is great-
er for MCS than the JDRV method. The analysis was per-
formed using a desktop computer with a Core i7 CPU
@3.50 GHz and 24.0 GB of RAM.

Original PDF+ 1*std/3 +2*std/3 +1*std +4*std/3 +5*std/3 +2*std
0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Shift in PDF of input parameters

eruliaffo
ytilibaborP

Fig. 12 Parametric analysis of the probability of failure with respect to
change of the PDFs of the input parameters

Table 6 Inputs for the distribution of soil parameters

Parameter selected for parametric analysis Parameter std. Mean

+1/3 × std. +2/3 × std. +1 × std. +4/3 × std. +5/3 × std. +2 × std.

c c (kPa) 2.0 10.7 11.3 12.0 12.7 13.3 14.0

ϕ (°) 3.0 28.0 28.0 28.0 28.0 28.0 28.0

γ (kN/m3) 1.0 18.0 18.0 18.0 18.0 18.0 18.0

ϕ c (kPa) 2.0 10.0 10.0 10.0 10.0 10.0 10.0

ϕ (°) 3.0 29.0 30.0 31.0 32.0 33.0 34.0

γ (kN/m3) 1.0 18.0 18.0 18.0 18.0 18.0 18.0

γ c (kPa) 2.0 10.0 10.0 10.0 10.0 10.0 10.0

ϕ (°) 3.0 28.0 28.0 28.0 28.0 28.0 28.0

γ (kN/m3) 1.0 18.3 18. 7 19.0 19. 3 19.7 20.0
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The number of requiredMCS iterations is dependent on the
desired level of confidence in the solution and the number of
variables. It can be estimated using the following equation
(Harr 1987):

N ¼ d2

4 1−Eð Þ2
" #n

ð32Þ

where N is the number of Monte Carlo simulations, d is

the standard normal deviate corresponding to the level
of confidence, E is the desired level of confidence (0 to
100%) expressed in decimal form, and n is the number
of variables.

Conclusion

In this paper, the jointly distributed random variables
(JDRV) method was used to compare the reliability of
four limit equilibrium methods (LEMs), including the
simplified Bishop, simplified Janbu, Morgenstern–Price,
and Spencer’s methods, in the slope stability analysis of
slices. The selected soil stochastic parameters were in-
ternal friction angle, cohesion, and unit weight, which
were modeled using a truncated normal probability den-
sity function (PDF). The parameters related to the ge-
ometry, height, and angle of the slope were regarded as
constant parameters.

The factor of safety (FS) relationships for the PDFs
of the mentioned methods were derived analytically
based on the selected stochastic parameters and for an
arbitrary slope. For this purpose, first using the mean
value of the stochastic parameters, the critical surface
with the minimum FS was determined by the particle
swarm optimization (PSO) technique. Then, by consid-
ering the soil parameters’ uncertainty, the PDFs of the
FS of the methods were obtained by the JDRV method.

For reliability assessment, the reliability indices of
the LEMs were calculated. It was shown that the
Janbu’s method is the method with the upper probability
of failure with respect to the assessed methods in two
conditions with and without considering the correlation
coefficient between c and φ. However, the reliability
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Fig. 13 Variation of the generation number and probability of failure
using the jointly distributed random variables (JDRV) method by
Janbu’s method
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Fig. 14 Variation of the generation number and probability of failure
using Monte Carlo simulation (MCS) by Janbu’s method

Table 7 Computational time required to obtain a constant probability of
failure by the jointly distributed random variables (JDRV) method

Generation number 10 20 30 40 50 60 70

Time (second) 0.16 0.66 2.01 4.62 8.88 15.34 24.32

Probability of
failure

19.62 18.95 18.82 18.77 18.75 18.74 18.74

Table 8 Computational time required to obtain a constant probability of
failure by Monte Carlo simulation (MCS)

Generation numbers 1e2 1e3 1e4 1e5 1e6

Time (s) 1.71 2.40 12.27 212.74 1461.3

Probability of failure 23.00 19.60 19.11 18.75 18.58
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indices of the LEMs is greater for the cases where the
correlation coefficient is considered compared with
those without considering cross correlation.

In another part of the paper, to assess the efficiency of the
proposed method with respect to Monte Carlo simulation
(MCS), the time required to reach the same probability of
failure by the JDRV method and MCS was compared. The
results show that the time required by MCS is several times
greater than the JDRV method.

Furthermore, the results of the parametric analysis indicate
that the probability of failure continuously increases due to
increasing unit weight. The probability of failure decreases
with increase in the internal friction angle and cohesion.
Also, it can be seen that the curve of change in the internal
friction angle with respect to the probability of failure has a
steeper slope than the others, indicating that it is the most
influential parameter.

Appendix

The slope stability methods and derivations of mathematical
functions k1 to k4 and factor of safety (FS) for all of the
methods are presented in this appendix:

Simplified Bishop’s method

In the simplified Bishop’s method, the forces on the sides of
the slice are assumed to be horizontal (i.e., there are no shear
stresses between slices). This method considers equilib-
rium of moments about the center of the circle. The FS is
determined by the following equation (Bishop 1955; Duncan
and Wright 2005):

FS ¼
∑
n

i¼1

c:Δli:cosαi þ wi:tanφ
cosαi þ sinαi:tanφð Þ=FS
� 	

∑
n

i¼1
wi:sinαi

ðA:1Þ

where:

wi γ.bi.hi
c Cohesion intercept
Δli Area of the base of the slice for a slice of unit thickness
αi Angle of the base of the slice
wi Weight of the slice
γ Unit weight of soil
bi Width of the slice
hi Height of the slice at the centerline
φ Internal friction angle
FS Factor of safety

By the change of variables:

k1 ¼ c
k2 ¼ tanφ
k3 ¼ γ
k4 ¼ FS

8>><
>>: ðA:2Þ

the following equations can be written:

u1 ¼ g1 k1; k2; k3ð Þ ¼ FS ¼
∑
n

i¼1

k1:Δli:cosαi þ k3:bi:hi:k2
cosαi þ sinαi:k2ð Þ=FS

� 	

∑
n

i¼1
k3:bi:hi:sinαi

u2 ¼ g2 k1; k2; k3ð Þ ¼ k2
u3 ¼ g3 k1; k2; k3ð Þ ¼ k3

8>>>>>><
>>>>>>:

ðA:3Þ

k1 ¼ h1 u1; u2; u3ð Þ ¼ c ¼
u1: ∑

n

i¼1
u3:bi:hi:sinαið Þ− ∑

n

i¼1

u3:bi:hi:u2
cosαi þ sinαi:u2ð Þ=u1

� 	

∑
n

i¼1

Δli:cosαi

cosαi þ sinαi:u2ð Þ=u1

� 	
k2 ¼ h2 u1; u2; u3ð Þ ¼ u2
k3 ¼ h3 u1; u2; u3ð Þ ¼ u3

8>>>>>><
>>>>>>:

ðA:4Þ

The PDF of the FS can be obtained by Eq. (A.5). This
equation is developed by Eq. (1) directly.

f X i
xið Þ ¼ ∬

RXi

:::∫ f X 1;X 2
; :::;Xn

x1; x2; :::; xnð Þdx1dx2:::dxi−1dxiþ1:::dxn ðA:5Þ

where:

f X 1;X 2;:::;Xn
x1; x2; :::; xnð Þ ¼ jJ x1; x2; :::; xnð Þj: f X 1;X 2;:::;Xn

h1 x1; x2; :::; xnð Þ; :::; hn x1; x2; :::; xnð Þð Þ ðA:6Þ

and

f X 1;X 2 ;:::;X n
x1; x2; :::; xnð Þ ¼ f X 1

x1ð Þ: f X 2
x2ð Þ:::: f X n

xnð Þ ðA:7Þ J u1; u2; u3ð Þ ¼ j

∂k1
∂u1

∂k1
∂u2

∂k1
∂u3

∂k2
∂u1

∂k2
∂u2

∂k2
∂u3

∂k3
∂u1

∂k3
∂u2

∂k3
∂u3

j ðA:8Þ
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J ¼
∑
n

i¼1
k3:bi:hi:sinαi− ∑

n

i¼1

k3:bi:hi:sinαi:k2
2

k4
2: B1ð Þ2

" #

∑
n

i¼1

Δli:cosαi

B1

� 	 þ
∑
n

i¼1

Δli:cosαi:sinαi:k2

k4
2: B1ð Þ2

" # !
� ∑

n

i¼1

k3:bi:hi:k2
B1

� 	
−k4: ∑

n

i¼1
k3:bi:hi:sinαið Þ

� �

∑
n

i¼1

Δli:cosαi
B1

h i� �2 ðA:9Þ

B1 ¼ cosαi þ sinαi:k2ð Þ=k4 ðA:10Þ

Simplified Janbu’s method

The simplified Janbu’s method is based on the assumption that
the interslice forces are horizontal. This assumption alone al-
most always produces FS that are smaller than those obtained
bymore rigorous procedures that satisfy complete equilibrium
(Janbu 1954). Janbu proposed some correction factors based
on a number of slope stability computations (Janbu 1973).
The FS is determined as (Duncan and Wright 2005):

FS ¼ f 0:
∑
n

i¼1

c:Δli:cosαi þ wi:tanφ
cos2αi þ sinαi:cosαi:tanφð Þ=FS
� 	

∑
n

i¼1
wi:tanαi

0
BB@

1
CCA ðA:11Þ

where

For c;φ > 0 f 0 ¼ 1þ 0:5
d

L
−1:4

d

L

� �2
" #

ðA:12Þ

where:

f0 Correction factors
L The length joining the left and right exit points
d The maximum thickness of the failure zone with

reference to this line

u1 ¼ g1 k1; k2; k3ð Þ ¼ FS ¼ f 0:
∑
n

i¼1

k1:Δli:cosαi þ k3:bi:hi:k2
cos2αi þ sinαi:cosαi:k2ð Þ=FS
� 	

∑
n

i¼1
k3:bi:hi:tanαi

0
BB@

1
CCA

u2 ¼ g2 k1; k2; k3ð Þ ¼ k2
u3 ¼ g3 k1; k2; k3ð Þ ¼ k3

8>>>>>><
>>>>>>:

ðA:13Þ

k1 ¼ h1 u1; u2; u3ð Þ ¼ c ¼
u1
f 0
: ∑

n

i¼1
u3:bi:hi:tanαið Þ− ∑

n

i¼1

u3:bi:hi:u2
cos2αi þ sinαi:cosαi:u2ð Þ=u1

� 	

∑
n

i¼1

Δli:cosαi

cos2αi þ sinαi:cosαi:u2ð Þ=u1

� 	
k2 ¼ h2 u1; u2; u3ð Þ ¼ u2
k3 ¼ h3 u1; u2; u3ð Þ ¼ u3

8>>>>>><
>>>>>>:

ðA:14Þ

J ¼
∑
n

i¼1

k3:bi:hi:tanαi

f 0

� 	
− ∑

n

i¼1

k3:bi:hi:sinαi:cosαi:k2
2φ

k4
2: J1ð Þ2

" #

∑
n

i¼1

Δli:cosαi

J1

� 	 þ
∑
n

i¼1

Δli:cos2αi:sinαi:k2

k4
2: J1ð Þ2

" # !
� ∑

n

i¼1

k3:bi:hi:k2
J1ð Þ

� 	
−
k4
f 0
: ∑

n

i¼1
k3:bi:hi:tanαið Þ

� �

∑
n

i¼1

Δli:cosαi
J1

h i� �2 ðA:15Þ

J1¼ cos2αi þ sinαi:cosαi:k2ð Þ=k4 ðA:16Þ

Spencer’s method

Spencer’s method is based on the assumption that the
interslice forces are parallel (i.e., all interslice forces
have the same inclination). The specific inclinations of
the interslice forces are unknown and are computed as
one of the unknowns in the solution of the equilibrium
equations. Spencer originally presented this procedure

for circular slip surfaces, but the procedure is easily
extended to noncircular slip surfaces (Duncan and
Wright 2005; Spencer 1967).

The equation for force equilibrium can be written as:

∑
n

i¼1
Qi ¼ 0 ðA:17Þ

where Qi is the resultant of the interslice forces. For moment
equilibrium, moments can be summed about any arbitrary
point. Taking moments about the origin (x = 0, y = 0) of a
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Cartesian coordinate system, the equation for moment equi-
librium is expressed as:

∑
n

i¼1
Qi: xbi :sinθ−ybi :cosθ
� � ¼ 0 ðA:18Þ

where xb is the x (horizontal) coordinate of the center of the
base of the slice and yb is the y (vertical) coordinate of the
point on the line of action of the force, Qi, directly above the
center of the base of the slice. Qi is determined by following
equation:

Qi ¼
wi:sinαi−c:Δli þ wi:cosαi:tanφ=FS

cos αi−θð Þ þ sin αi−θð Þ:tanφ=FS
ðA:19Þ

where θ is the interslice force inclination. By change in
variation:

u1 ¼ g1 k1; k2; k3ð Þ ¼ FS
u2 ¼ g2 k1; k2; k3ð Þ ¼ k2
u3 ¼ g3 k1; k2; k3ð Þ ¼ k3

8<
: ðA:20Þ

k1 ¼ h1 u1; u2; u3ð Þ ¼ c ¼
∑
n

i¼1

u3:bi:hi:sinαi−u3:bi:hi:cosαi:u2=u1ð Þ
cos αi−θð Þ þ sin αi−θð Þ:u2=u1 : 1þ xbi :sinθ−ybi :cosθ

� �� �� 	

∑
n

i¼1

Δli=u1ð Þ
cos αi−θð Þ þ sin αi−θð Þ:u2=u1 : 1þ xbi :sinθ−ybi :cosθ

� �� �� 	
k2 ¼ h2 u1; u2; u3ð Þ ¼ u2
k3 ¼ h3 u1; u2; u3ð Þ ¼ u3

8>>>>>><
>>>>>>:

ðA:21Þ

J ¼
∑
n

i¼1

k3:bi:hi:cosαi:k2:S3
k4

2:S2

� 	
þ ∑

n

i¼1

sin αi−θð Þ:k2:S1:S3
k4

2: S2ð Þ2
" #

S4
þ

∑
n

i¼1

Δli:S3
k4

2:S2

� 	
− ∑

n

i¼1

Δli:sin αi−θð Þ:k2:S3
k4

3: S2ð Þ2
" # !

� ∑
n

i¼1

S1:S3
S2

� 	� �

S4ð Þ2 ðA:22Þ

where:

S1 ¼ k3:bi:hi:sinαi−k3:bi:hi:cosαi:k2=k4 ðA:23Þ
S2 ¼ cos αi−θð Þ þ sin αi−θð Þ:k2=k4 ðA:24Þ
S3 ¼ xbi :sinθ−ybi :cosθ

� � ðA:25Þ

S4 ¼ ∑
n

i¼1

Δli:S3
k4:S2

ðA:26Þ
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