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Abstract
Globally, and in China, landslides constitute one of the most important and frequently encountered natural hazard events. In the
present study, landslide susceptibility evaluation was undertaken using novel ensembles of bivariate statistical-methods-based
(evidential belief function (EBF), statistical index (SI), and weights of evidence (WoE)) kernel logistic regression machine
learning classifiers. A landslide inventory comprising 222 landslides and 15 conditioning factors (slope angle, slope aspect,
altitude, plan curvature, profile curvature, stream power index, sediment transport index, topographic wetness index, distance to
rivers, distance to roads, distance to faults, NDVI, land use, lithology, and rainfall) was prepared as the spatial database.
Correlation analysis and selection of conditioning factors were conducted using multicollinearity analysis and classifier attribute
evaluation methods, respectively. The receiver operating characteristic curve method was used to validate the models. The areas
under the success rate (AUC_T) and prediction rate (AUC_P) curves and landslide density analysis were also used to assess the
prediction capability of the landslide susceptibility maps. Results showed that the EBF-KLR hybrid model had the highest
predictive capability in landslide susceptibility assessment (AUC values of 0.814 and 0.753 for the training and validation
datasets, respectively; AUC_T value of 0.8511 and AUC_P value of 0.7615), followed in descending order by the SI-KLR
and WoE-KLR hybrid models. These findings indicate that hybrid models could improve the predictive capability of bivariate
models, and that the EBF-KLR is a promising hybrid model for the spatial prediction of landslides in susceptible areas.
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Introduction

Landslides are important natural hazard events that occur
frequently in China and around the world. Steep topogra-
phy, heavy precipitation, weak lithological units, adverse
anthropologic treatments to land, and earthquakes are
among the factors primarily responsible for landslide oc-
currence (Althuwaynee et al. 2015; Hong et al. 2017; Ma
et al. 2015; Yuan et al. 2013, 2015, 2016). Because the
occurrence location, size, and volume of landslides are
reasonably predictable parameters, the potential for miti-
gation of their adverse effects is much greater compared
with earthquakes. Specifically, landslide susceptibility
maps that show the spatial occurrence probability of such
events have been used for regional land use management
by decision makers because of their effectiveness and ease
of production. In this context, many studies conducted in
the last two decades have focused on landslide suscepti-
bility mapping.

Close inspection of published reports of landslide suscep-
tibility studies reveals that several datasets and assessment
methodologies have been developed and discussed (Broeckx
et al. 2018; Hong et al. 2018; Pham et al. 2018; Pourghasemi
and Rahmati 2018; Reichenbach et al. 2018; Shirzadi et al.
2017). Although there is no consensus regarding the optimal
dataset and assessment methodology, some datasets (e.g.,
slope angle, lithology, and land use/cover) have been accepted
widely as fundamental in landslide susceptibility mapping
(Youssef et al. 2015). Certain assessment methodologies have
also been adopted in many landslide susceptibility studies,
e.g., the analytical hierarchy process (Kumar and Anbalagan
2016; Pourghasemi and Rossi 2016), frequency ratio (Regmi
et al. 2014; Wang et al. 2016), statistical index (SI) (Nasiri
Aghdam et al. 2016; Zhang et al. 2016a), evidential belief
function (EBF) (Ding et al. 2017; Pourghasemi and Kerle
2016; Zhang et al. 2016b), logistic regression (LR) (Raja
et al. 2017; Tsangaratos et al. 2017), and weights of evidence
(WoE) (Ding et al. 2017; Wang et al. 2016). Given this variety
in datasets and methodologies, it is important to compare the
results obtained by different methods and datasets to deter-
mine the optimal combination.

In addition to the above statistical methods, more so-
phisticated machine learning methods, such as artificial
neural networks (Chen et al. 2017b; Tien Bui et al.
2016; Yilmaz 2010), kernel logistic regression (KLR)
(Tien Bui et al. 2016), support vector machine (Chen
et al. 2017c; Pham et al. 2015; Pradhan 2013; Tien Bui
et al. 2016), random forests (Chen et al. 2017g; Hong
et al. 2016; Pourghasemi and Kerle 2016), decision trees
(Althuwaynee et al. 2014; Hong et al. 2015; Pradhan
2013), multivariate adaptive regression splines (Chen
et al. 2017d; Pourghasemi and Rossi 2016), and derivative
approaches of artificial neural networks (Chen et al.

2017a; Nasiri Aghdam et al. 2016; Pradhan 2013; Tien
Bui et al. 2012) have also become popular assessment
methodologies through integration with developing GIS
technologies.

Two of the major drawbacks of bivariate statistical ap-
proaches, such as EBF, SI, and WOE, are that strict as-
sumptions must be defined prior to conducting any study
(Benediktsson et al. 1989) and that the relationships be-
tween conditioning factors are largely neglected.
Conversely, machine learning methods do not require
any statistical assumptions and they are capable of han-
dling data with various measurement scales; however,
they cannot be used to evaluate the relationships between
individual factor classes and landslides.

Given the above, it may be concluded that complex and
nonlinear problems could be handled using ensemble methods
(Tehrany et al. 2014). In this context, the main aim of this
study was to investigate the effectiveness of the ensemble
methodologies of KLR with bivariate EBF, SI, and WoE
models based on comparison of the results obtained. The sec-
ond purpose, of course, was to build a landslide susceptibility
map for the study area that could be used by local decision
makers for effective land use planning purposes. The investi-
gation of the use of the EBF, SI, WoE, and KLR ensembles
constitutes the novelty of this study.

Materials and methods

The methodology design comprised five steps: (1) spatial data
preparation including landslide inventory and conditioning
factors; (2) estimation of the EBF, SI, and WOE methods;
(3) selection of conditioning factors; (4) construction of land-
slide susceptibility maps using three bivariate models and
three ensemble models; and (5) assessment and validation of
model performance (Fig. 1).

Study area

The study area (Chongren County), which is located in
the region 27°25′N–27°56′N, 115°49′E–116°17′E, covers
an area of about 1520 km2 in Jiangxi Province (China)
(Fig. 2). Chongren County has a subtropical monsoon
climate. The average annual temperature is 17.7 °C
(Hong et al. 2017). The high frequency of intense rainfall
during April–August accounts for 79.5% of the annual
total. The average rainfall in May and June is 265 and
305 mm, respectively.

The rivers in Chongren County belong to the Fu River
system. The total flow path is up to 910 km, and the drainage
density is 0.6 km−2. The main rivers within the study area are
the Chongren and Yihuang rivers. Geologically, the Chongren
area is located within the depression belt uplift in central–
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southern Jiangxi Province, and it is a transition zone between
the Yu Mountains and the Gan-Fu Plain. The strata
outcropped in the study area are mainly pre-Sinian, Sinian,
Cambrian, Carboniferous, Triassic, Jurassic, Cretaceous, and
Quaternary. The main lithologies are limestone, shale, sand-
stone, slate, and igneous rocks (Fig. 3).

Database

Landslide inventory

The compilation of a landslide inventory is the first step in
landslide susceptibility modeling, and various methods for
this process have been applied in different studies (Harp
et al. 2011; Moosavi et al. 2014). Landslide inventory maps
are effective and easily comprehensible products for geomor-
phologists, decision makers, planners, and civil defense man-
agers (Galli et al. 2008). However, the advantages and limita-
tions of applying new remote sensing data and technologies in

the production of landslide inventory maps have been
discussed in previous work (Guzzetti et al. 2012). Thus, in
light of the above analysis, this study adopted field surveys,
historical records, and high-resolution satellite images
coupled with Google Earth™ technology to produce the land-
slide inventory map.

In the current study, 222 landslide events were identi-
fied and mapped with projected area in the Chongren
area. Through investigation of the landslide inventory
map, the largest landslide was found to be 15,000 m2,
the smallest landslide was 2.5 m2, and the average was
841.3 m2 (Hong et al. 2017). In the Chongren area, local
government reports show only 19.1% of the total number
of landslides are large-sized landslides (>800 m2) that
affect 1365 people (http://www.jxcr.gov.cn/). Medium-
sized (200–800 m2) landslides account for 25.4% of the
total, and they affect 1019 people. Small-sized landslides
(<200 m2) account for 55.5% of the total, and they affect
875 people.

Fig. 1 Flowchart of the used methodology
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Conditioning factors

The causes of landslide development and occurrence are com-
plex and diverse, and there is no clear agreement with respect to

the precise reasons for their manifestation (Domínguez-Cuesta
et al. 2007). The complex nature of the development of land-
slides (Jiménez Sánchez et al. 1999) has caused many re-
searchers to investigate how landslide occurrence might be

Fig. 2 Location map of the study
area
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affected by various conditioning factors, e.g., the topographical,
geological, and environmental conditions (Zêzere et al. 1999).
Therefore, the selection of appropriate conditioning factors is a
challenging task. Some previous studies have assumed that the
use of increased numbers of conditioning factors would en-
hance the precision of a landslide susceptibility map (van
Westen et al. 2003). However, other research has indicated that
conditioning factors with reasonable quality are necessary for
producing accurate landslide susceptibility maps (Jebur et al.
2014). Thus, according to a literature review (Broeckx et al.
2018; Pourghasemi 2014; Reichenbach et al. 2018) and our
actual analysis of the geo-environmental characteristics of the
study area and data availability, this study considered 15 land-
slide conditioning factors that were grouped into three catego-
ries: topographical, geological, and environmental.

Topographical factors Topographical factors, such as slope
angle, slope aspect, altitude, plan curvature, profile curvature,
stream power index (SPI), sediment transport index (STI), and
topographic wetness index (TWI), were derived based on
1:50,000 topographic maps (http://www.jxgtt.gov.cn/).
Among them, slope angle was used to classify the degree of
steepness of hills and mountains (Iwahashi et al. 2003). The
initial slope angle is an important factor that affects the peak
strength of the slope material, and it controls the source of
material available for landslides (Chen et al. 2016).
Therefore, in this study, slope was selected as a conditioning
factor.

Slope aspect is defined as the direction in which a
slope faces and it relates to the degree of solar expo-
sure. Aspect also influences both the vegetation

Fig. 3 Geological map of the
study area
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coverage and the daily ranges of temperature and rela-
tive humidity of a slope (Jonathan et al. 2006). Many
articles have discussed the relationship between slope
aspect and landslides; however, there is a lack of con-
sensus regarding its adoption as a conditioning factor.
Because slope aspect has been shown to influence land-
slides triggered by rainfall (Beullens et al. 2014), slope
aspect was selected as a conditioning factor in this
study.

Altitude is defined as the elevation above a ground refer-
ence point, which is commonly the terrain elevation. Altitude
is considered an important landslide conditioning factor be-
cause of its gravitational potential energy.

Plan curvature influences the convergence and divergence
of flow across a surface. Profile curvature affects the acceler-
ation and deceleration of downslope flows, and it influences
the processes of erosion and deposition (Kritikos and Davies
2015). These two factors were also accepted as conditioning
factors in this study.

SPI is a term that describes the potential flow erosion of the
topographic surface at a given point. STI also characterizes the
processes of erosion and deposition. TWI can be used to quan-
tify the effects of hydrological processes in relation to topog-
raphy. Therefore, these three factors were also accepted as
conditioning factors.

Geological factors The lithological data were collected from
the China Geology Survey (http://www.cgs.gov.cn/) (1:
200,000 scale). The lithology map was reclassified into ten
groups according to their geological ages and lithofacies
(Hong et al. 2017). The distance to fault map was constructed
by generating buffers along the fault lines using ArcGIS soft-
ware (ESRI 2014).

Environmental factors The NDVI was derived from Landsat-8
Operational Land Imagery (Path/Row: 121/41; date: November
01, 2017; Product ID: LC81210412017305LGN00; available at
http://www.gscloud.cn). The value of the NDVI was estimated
using the formula: NDVI = (NIR−R)/(NIR+R), whereNIR and
R are the near-infrared band and red band, respectively. The land
use map was also obtained from the same Landsat 7/ETM+
satellite images. Land use was classified into six categories: res-
idential, bare, water, forest, farmland, and grass. The distance to
rivers and the distance to roads maps were also constructed by
buffering 1:50,000-scale topographic maps.

The rainfall data were provided by the Jiangxi Province
Meteorological Bureau (http://www.weather.org.cn). The
mean annual precipitation data for the period of 1960–
2012 at 18 rainfall stations were used to construct the
rainfall map by application of the inverse distance weighted
method (Hong et al. 2017).

Finally, all landslide conditioning factors were converted
into raster format with 25-m spatial resolution for application

with the models (Fig. 4a–o). The detailed classification of the
landslide conditioning factors is shown in Table 1. The area
grid comprised 2286 rows by 1782 columns, which
corresponded to 2,427,151 cells, 222 of which included land-
slide occurrences.

Methods

Evidential belief function (EBF)

In 1967, Dempster first proposed the basis of the
Dempster–Shafer theory of evidence (Dempster 1967),
which was developed further by Shafer in 1976 (Shafer
1976). This method incorporates four basic EBFs: degrees
of belief (Bel), disbelief (Dis), uncertainty (Unc), and
plausibility (Pls), of which Bel = low probability and
Pls = upper probability constitute the main elements of
the theory (Dempster 1967). Unc represents the ignorance
of one’s belief in a proposition based on given evidence
and its value is Pls – Bel. Dis is the belief that a propo-
sition is not true based on given evidence, the value of
which is equal to 1 – Pls or 1 – Bel – Unc. The EBF
method is popular in many fields of study, such as forest
fire susceptibility mapping (Pourghasemi 2016), landslide
susceptibility mapping (Ding et al. 2017; Pourghasemi
and Kerle 2016; Pradhan et al. 2014; Tien Bui et al.
2015), and groundwater potential mapping (Mogaji et al.
2016; Tahmassebipoor et al. 2016). The estimation of
EBFs can be calculated as follows:

Bel Cijð Þ ¼ WCij landslideð Þ

∑n
j¼1WCij landslideð Þ

; ð1Þ

WCij landslideð Þ¼
N T∩Cij
� �

=N Tð Þ
N Cij
� �

−N T∩Cij
� �� �

= N Cð Þ−N Tð Þ½ � : ð2Þ

The numerator in Eq. (2) is the proportion of landslide
pixels that occur in factor class Cij, and the denominator is
the proportion of non-landslide pixels that occur in factor class
Cij. WCij landslideð Þ is the weight of Cij that supports the belief that

landslides are present more than absent.

WCij non−landslideð Þ¼
N Cij
� �

−N T∩Cij
� �� �

=N Tð Þ
N Cð Þ−N Tð Þ−N Cij

� �þ N T∩Cij
� �� �

= N Cð Þ−N Tð Þ½ � :

ð3Þ

The numerator in Eq. (3) is the proportion of landslide
pixels that do not occur in factor class Cij, and the denom-
inator is the proportion of non-landslide pixels in other
attributes outside factor class Cij. WCij non−landslideð Þ is the

weight of Cij that supports the belief that landslides are
absent more than present. Therefore, we have the follow-
ing equations:
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Fig. 4 Thematic maps of the study area: (a) Slope angle; (b) Slope aspect; (c) Altitude; (d) Plan curvature; (e) Profile curvature; (f) SPI; (g) STI; (h) TWI;
(i) Distance to rivers; (j) Distance to roads; (k) Distance to faults; (l) NDVI; (m) Landuse; (n) Lithology; (o) Rainfall
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Fig. 4 (continued)
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Fig. 4 (continued)
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Fig. 4 (continued)
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Dis Cij
� � ¼ WCij non−landslideð Þ

∑n
j¼1WCij non−landslideð Þ

; ð4Þ

UncCij ¼ 1−BelCij−DisCij; ð5Þ
PlsCij ¼ BelCij þ UncCij: ð6Þ
Statistical index (SI)

The SI was proposed by vanWesten (1997). In the SI method,
a weight value of a parameter class is characterized by the
natural logarithm of the landslide density in the class divided
by the landslide density in the entire map. The equation to
calculate the weights is as follows (van Westen 1997):

WSI ¼ ln
Densclass
Densmap

Þ ¼ ln
N Sið Þ
N Nið Þ=

∑N Sið Þ
∑N Nið Þ

� �
;

�
ð7Þ

where WSI is the weight for the given parameter class,
Densclass is the landslide density within the parameter class,
and Densmap is the landslide density within the entire map.
N(Si) is the number of landslide pixels in parameter class i,
and N(Ni) is the number of pixels in the same parameter class.

Weights of evidence (WoE)

As one of the most popular models, the WOE method adopts
the Bayesian theory of conditional probability to quantify spa-
tial associations between evidence layers and known mineral
occurrences (Agterberg 1989; Bonham-Carter 1994). In this

study, we use the WOE for modeling large-scale landslide
susceptibility spatial prediction. Recently, many researchers
have applied WoE in various ways, such as mineral prospec-
tive mapping (Zeghouane et al. 2016), flood susceptibility
(Rahmati et al. 2016), landslide susceptibility mapping
(Ding et al. 2017), and groundwater potential (Mogaji et al.
2016; Tahmassebipoor et al. 2016). It is worth noting that
conditional independence is the most important issue to be
considered in the WOE method (Zhang et al. 2014). Hence,
the WOE is determined by the calculation of positive and
negative weights W+ and W−, which can be expressed as fol-
lows:

Wþ ¼ ln
p BjAf g
p BjA
n o ; ð8Þ

W− ¼ ln
p BjA
n o

p BjA
n o : ð9Þ

In the above two equations, p represents the probabil-
ity, ln is the natural log, B is the presence of a potential

landslide predictive factor, B is the absence of a potential
landslide predictive factor, A is the presence of a land-

slide, and A is the absence of a landslide. Thus, W+ indi-
cates that the predictable variable is present at the land-
slide locations and W− indicates the absence of the pre-
dictable variable. In landslide susceptibility prediction, we

Table 1 Classes of landslide
conditioning factors Conditioning

factors
Classes

Slope angle (°) (1) 0–10; (2) 10–20; (3) 20–30; (4) 30–40; (5) > 40

Slope aspect (1) Flat; (2) North; (3) Northeast; (4) East; (5) Southeast; (6) South; (7) Southwest; (8)
West; (9) Northwest

Altitude (m) (1) < 1,00; (2) 1,00–200; (3) 200–300; (4) 300–400; (5) 400–500; (6) > 500

Plan curvature (1) < −1.17; (2) −1.17–−0.32; (3) −0.32–0.45; (4) > 0.45
Profile curvature (1) < −0.65; (2) −0.65–0.21; (3) 0.21–1.15; (4) > 1.35
SPI (1) < 1; (2) 1–4; (3) 4–9; (4) > 9

STI (1) < 1; (2) 1–4; (3) 4–10; (4) > 10

TWI (1) < 5; (2) 5–7; (3) 7–9; (4) > 9

Distance to rivers
(m)

(1) 0–200; (2) 200–400; (3) 400–600; (4) 600–800; (4) 800–1000; (6) > 1000

Distance to roads
(m)

(1) 0–200; (2) 200–400; (3) 400–600; (4) 600–800; (4) 800–1000; (6) > 1000

Distance to faults
(m)

(1) 0–1000; (2) 1000–2000; (3) 2000–3000; (4) 3000–4000; (5) > 4000

NDVI (1) < 0.1; (2) 0.1–0.2; (3) 0.2–0.3; (4) 0.3–0.4; (5) > 0.4

Land use (1) Bare; (2) Farmland; (3) Forest; (4) Grass; (5) Residential; (6) Water

Lithology (1) A; (2) B; (3) C; (4) D; (5) E; (6) F; (7) G; (8) H; (9) I; (10) J

Rainfall (mm/yr) (1) 765.3–957.3; (2) 957.3–1041.6; (3) 1041.6–1109.6; (4) 1109.6–1189.2; (5)
1189.2–1362.5
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use the studentized contrast C/S(C) to measure and reflect
the spatial association between the landslide conditioning
factors and landslide occurrence, where C is the weight
contrast and S(C) is the standard deviation of C. These
can be expressed as follows:

C ¼ Wþ−W−; ð10Þ

S Cð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2Wþ þ S2W−

p
; ð11Þ

where S2W+ is the variance of the positive weights and S2W− is
the variance of the negative weights.

Kernel logistic regression (KLR)

KLR is one type of logistic regression that applies kernel theo-
ry. The main aim of this approach is to classify a large quantity
of data in a high-dimensional space because it might be difficult
to distinguish in the current dimensional space using a linear
logistic regression model (Cawley and Talbot 2005; Tien Bui
et al. 2016). We can express the KLR as follows:

logit pf g ¼ w⋅φ uð Þ þ c; ð12Þ
wherew is the vector of the landslide conditioning factors,φ(u)
is a nonlinear transformation to each input variable, and c is a
bias term. For convenience, φ(u) can be simply calculated, i.e.,
the cause φ(u)φ'(u) is a certain outcome during the calculation
procedure, which evaluates the inner product between the im-
age of input vectors in the feature space:

K u; u
0


 �
¼ φ uð Þ⋅φ0

uð Þ: ð13Þ

For a kernel to support the interpretation as an inner prod-
uct in a fixed feature space, the kernel must obey Mercers’
condition (Mercer 1909). Many kernel functions have been
suggested, such as the radial basis function (RBF) and the
linear kernel (Lin and Lin 2003). In this study, KLR was used
to describe the problem:

K u; u
0


 �
¼ e

− u−u0k k2
2δ2

h i
; ð14Þ

where δ is a turning parameter that controls the sensitivity of
the kernel. According to the represented theorem (Kimeldorf
and Wahba 1971; Schölkopf et al. 2001), vector w can be
determined by minimizing a cost function, which can be
expressed as follows:

w ¼ ∑n
i−1αiφ uð Þ ð15Þ

where αi,i=(1,2,…,n) is the vector of the landslide condition-
ing factors. Thus, we obtain the following formula:

logit pf g ¼ ∑n
i−1αiK u; u

0

 �

þ c: ð16Þ

Construction of training and validation datasets

The values of 15 conditioning factors for the three bivar-
iate models were extracted to the landslide inventory in
this study. Landslide locations (grid pixels) were assigned
to 1, whereas the same number of non-landslide locations
(grid pixels) outside the landslides were assigned to 0. To
evaluate the prediction capability of landslide susceptibil-
ity models, the landslide inventory and non-landslide
dataset should be divided into two subsets, i.e., the train-
ing and validation sets (Chung and Fabbri 2003).
Therefore, the landslide inventory and non-landslide
dataset were split randomly into two parts with a ratio
of 70:30 to construct and validate the models, respective-
ly. There were 155 landslide locations and 155 non-
landslide locations in the training dataset, while the vali-
dation dataset had 67 landslide locations and 67 non-
landslide locations.

Correlation analysis of conditioning factors

As the ensemble models are a combination of KLR developed
from logistic regression, the assessment of correlation among
the landslide conditioning factors is an important issue. There
are two parameters for assessing themulticollinearity analysis:
tolerance (TOL) and the variance inflation factor (VIF) (Chen
et al. 2017f).

TOL ¼ 1−R2; ð17Þ
VIF ¼ 1=TOL: ð18Þ

According to the literature, a TOL of less than 0.20 or 0.10
and/or a VIF of more than 5 or 10 implies a multicollinearity
problem (O’Brien 2007).

Model performance and validation of landslide
susceptibility maps

The performances of three landslide ensemble models were eval-
uated using the receiver operating characteristic (ROC) curve.
The area under the ROC curve (AUC) is a significant measure-
ment for the assessment of the prediction capability of models in
landslide modeling (Tien Bui et al. 2016). When the AUC is
equal to 1, an ideal model is acquired (Chen et al. 2017e). The
AUC can be computed using the following equation:
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Table 2 Spatial relationship between each landslide conditioning factor and landslide by EBF, SI, and WoE models

Factors Classes Percentage of
domain (%)

Percentage of
landslide (%)

FR Bel Dis Unc Pls SI C S(C) C/S(C)

Slope angle (°) <10 60.933 41.935 0.688 0.117 0.284 0.599 0.716 −0.374 −0.770 0.163 −4.730
10–20 22.894 42.581 1.860 0.316 0.142 0.542 0.858 0.621 0.915 0.162 5.635
20–30 12.603 12.258 0.973 0.165 0.192 0.643 0.808 −0.028 −0.032 0.245 −0.129
30–40 3.154 2.581 0.818 0.139 0.192 0.669 0.808 −0.201 −0.207 0.507 −0.408
>40 0.416 0.645 1.550 0.263 0.190 0.546 0.810 0.439 0.442 1.003 0.440

Slope aspect Flat 0.700 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000
North 11.344 6.452 0.569 0.070 0.117 0.812 0.883 −0.564 −0.618 0.327 −1.891
Northeast 13.044 14.839 1.138 0.141 0.109 0.750 0.891 0.129 0.150 0.226 0.663
East 14.587 12.258 0.840 0.104 0.114 0.782 0.886 −0.174 −0.201 0.245 −0.820
Southeast 12.836 16.774 1.307 0.162 0.106 0.732 0.894 0.268 0.314 0.215 1.460
South 11.021 14.839 1.346 0.167 0.106 0.727 0.894 0.297 0.341 0.226 1.511
Southwest 11.756 8.387 0.713 0.088 0.115 0.796 0.885 −0.338 −0.375 0.290 −1.295
West 12.824 11.613 0.906 0.112 0.113 0.775 0.887 −0.099 −0.113 0.251 −0.451
Northwest 11.887 14.839 1.248 0.155 0.107 0.738 0.893 0.222 0.256 0.226 1.132

Altitude < 100 52.093 34.194 0.656 0.150 0.226 0.625 0.774 −0.421 −0.739 0.169 −4.361
100–200 29.564 55.484 1.877 0.428 0.104 0.469 0.896 0.630 1.088 0.162 6.734
200–300 9.429 6.452 0.684 0.156 0.170 0.675 0.830 −0.379 −0.412 0.327 −1.259
300–400 3.996 1.935 0.484 0.110 0.168 0.722 0.832 −0.725 −0.746 0.583 −1.280
400–500 2.105 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000
> 500 2.813 1.935 0.688 0.157 0.166 0.678 0.834 −0.374 −0.383 0.583 −0.657

Plan curvature < −1.17 2.029 1.935 0.954 0.224 0.242 0.534 0.758 −0.047 −0.048 0.583 −0.083
−1.17–−0.32 10.521 7.097 0.675 0.159 0.251 0.590 0.749 −0.394 −0.431 0.313 −1.379
−0.32–0.45 75.953 71.613 0.943 0.222 0.286 0.493 0.714 −0.059 −0.225 0.178 −1.262
> 0.45 11.497 19.355 1.683 0.396 0.221 0.384 0.779 0.521 0.614 0.203 3.020

Profile curvature < −0.65 6.485 9.677 1.492 0.255 0.223 0.522 0.777 0.400 0.435 0.272 1.601
−0.65–0.21 71.183 56.774 0.798 0.136 0.346 0.518 0.654 −0.226 −0.632 0.162 −3.896
0.21–1.15 19.352 27.097 1.400 0.239 0.209 0.552 0.791 0.337 0.438 0.181 2.421
> 1.15 2.980 6.452 2.165 0.370 0.222 0.408 0.778 0.772 0.809 0.327 2.474

SPI <1 11.943 1.935 0.162 0.049 0.285 0.666 0.715 −1.820 −1.927 0.583 −3.306
1–4 22.502 18.710 0.831 0.253 0.268 0.479 0.732 −0.185 −0.232 0.206 −1.128
4–9 20.216 20.000 0.989 0.301 0.257 0.443 0.743 −0.011 −0.013 0.201 −0.067
>9 45.339 59.355 1.309 0.398 0.190 0.412 0.810 0.269 0.566 0.164 3.459

STI <1 31.071 9.677 0.311 0.071 0.324 0.604 0.676 −1.166 −1.437 0.272 −5.289
1–4 27.492 29.677 1.079 0.247 0.240 0.513 0.760 0.076 0.107 0.176 0.609
4–10 19.692 38.065 1.933 0.443 0.191 0.366 0.809 0.659 0.919 0.165 5.554
>10 21.745 22.581 1.038 0.238 0.245 0.517 0.755 0.038 0.048 0.192 0.252

TWI <5 16.680 25.806 1.547 0.429 0.226 0.345 0.774 0.436 0.552 0.184 3.009
5–7 45.828 57.419 1.253 0.347 0.200 0.453 0.800 0.225 0.466 0.162 2.870
7–9 23.431 13.548 0.578 0.160 0.287 0.553 0.713 −0.548 −0.669 0.235 −2.851
>9 14.061 3.226 0.229 0.064 0.286 0.650 0.714 −1.472 −1.591 0.455 −3.500

Distance to rivers (m) <200 27.491 52.903 1.924 0.433 0.109 0.457 0.891 0.655 1.086 0.161 6.750
200–400 23.259 31.613 1.359 0.306 0.150 0.544 0.850 0.307 0.422 0.173 2.444
400–600 19.284 7.742 0.401 0.090 0.193 0.717 0.807 −0.913 −1.046 0.301 −3.481
600–800 14.429 4.516 0.313 0.070 0.188 0.741 0.812 −1.162 −1.271 0.387 −3.287
800–1000 9.075 1.290 0.142 0.032 0.183 0.785 0.817 −1.951 −2.033 0.712 −2.856
>1000 6.461 1.935 0.299 0.067 0.177 0.756 0.823 −1.205 −1.253 0.583 −2.149

Distance to roads (m) <200 13.245 38.065 2.874 0.420 0.117 0.463 0.883 1.056 1.393 0.165 8.419
200–400 12.114 7.097 0.586 0.086 0.173 0.741 0.827 −0.535 −0.590 0.313 −1.887
400–600 11.063 7.097 0.642 0.094 0.171 0.735 0.829 −0.444 −0.488 0.313 −1.559
600–800 10.253 11.613 1.133 0.166 0.161 0.673 0.839 0.125 0.140 0.251 0.558
800–1000 9.653 9.677 1.002 0.147 0.164 0.690 0.836 0.003 0.003 0.272 0.010
>1000 43.673 26.452 0.606 0.089 0.214 0.698 0.786 −0.501 −0.768 0.182 −4.218

Distance to faults (m) < 1000 13.359 16.774 1.256 0.178 0.157 0.665 0.843 0.228 0.268 0.215 1.246
1000–2000 11.237 15.484 1.378 0.196 0.156 0.649 0.844 0.321 0.370 0.222 1.665
2000–3000 10.227 14.839 1.451 0.206 0.155 0.639 0.845 0.372 0.425 0.226 1.881
3000–4000 9.765 9.032 0.925 0.131 0.165 0.704 0.835 −0.078 −0.086 0.280 −0.307
4000–5000 9.060 12.258 1.353 0.192 0.158 0.650 0.842 0.302 0.338 0.245 1.381
>5000 46.353 31.613 0.682 0.097 0.209 0.695 0.791 −0.383 −0.626 0.173 −3.621

NDVI <0.10 35.566 3.871 0.109 0.010 0.289 0.702 0.711 −2.218 −2.618 0.416 −6.287
0.10–0.20 22.175 16.129 0.727 0.065 0.209 0.727 0.791 −0.318 −0.393 0.218 −1.800
0.20–0.30 20.516 17.419 0.849 0.076 0.201 0.723 0.799 −0.164 −0.202 0.212 −0.953
0.30–0.40 17.042 24.516 1.439 0.128 0.176 0.696 0.824 0.364 0.458 0.187 2.453
>0.40 4.701 38.065 8.097 0.722 0.126 0.153 0.874 2.092 2.523 0.165 15.248

Land use Bare 0.655 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000
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AUC ¼ ∑TP þ ∑TN
P þ N

ð19Þ

where TP is the number of landslides classified correctly, TN is
the number of landslides classified incorrectly,P is the total num-
ber of landslides, and N is the total number of non-landslides.

The success rate and prediction rate curves of the
landslide susceptibility maps were also used in this
study. The curves were obtained by plotting the cumu-
lative percentage of landslide susceptibility maps on the
x-axis and the cumulative percentage of landslide pixels
on the y-axis. The areas under the curves of the success
rate (AUC_T) and the prediction rate (AUC_P) were
used to reflect the prediction capability of the landslide
susceptibility maps.

Results

Analyses of landslide conditioning factors

Multicollinearity analysis was calculated with the training
dataset using IBM SPSS Statistics software. The results,
shown in Tables 2 and 3, indicate that there were no
multicollinearities among the 15 landslide conditioning
factors.

In addition to the multicollinearity analysis, the pre-
dictive capabilities of the landslide conditioning factors
were assessed by applying the KLR model with the

RBF kernel function. The results of the most effective
conditioning factors of the different ensemble models
are shown in Table 4. The results indicate that all fac-
tors contributed to the models. Altitude, with the highest
average merit (AM) in three ensemble models, was
found to be the most important factor, followed in de-
scending order by distance to rivers, distance to roads,
STI, TWI, lithology, NDVI, distance to faults, SPI,
slope angle, rainfall, aspect, land use, and plan and pro-
file curvatures, respectively. Some factors including
rainfall, aspect, land use, and plan and profile curva-
tures made only small contributions to the landslide
modeling. However, as all the AMs had positive values,
all 15 conditioning factors were considered in construct-
ing the landslide susceptibility maps.

Ensemble of EBF and KLR models

In this study, the parameters of the EBF method (i.e., Bel, Dis,
Unc, and Pls) were obtained using the equations introduced
earlier (section BEvidential belief function (EBF)^) for each
class of conditioning factors. These parameters were comput-
ed based on the ratio between the number of landslides per
class and the area of each class. The results of the EBFmethod
can be seen in Table 2.

All Pls weights of the conditioning factors were used as
input datasets for the EBF and EBF-KLR methods. For each
pixel of the study area, the probability of landslide occurrence
(PLO) using a linear logistic regression function (Eq. 12) was
computed. The PLOs were reclassified based on the area

Table 2 (continued)

Factors Classes Percentage of
domain (%)

Percentage of
landslide (%)

FR Bel Dis Unc Pls SI C S(C) C/S(C)

Farmland 0.663 1.935 2.919 0.470 0.162 0.369 0.838 1.072 1.085 0.583 1.861
Forest 28.806 47.742 1.657 0.267 0.120 0.613 0.880 0.505 0.815 0.161 5.065
Grass 18.521 18.710 1.010 0.162 0.163 0.674 0.837 0.010 0.012 0.206 0.061
Residential 50.156 31.613 0.630 0.101 0.225 0.674 0.775 −0.462 −0.778 0.173 −4.503
Water 1.200 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000

Lithology A 8.916 18.065 2.026 0.176 0.089 0.735 0.911 0.706 0.812 0.209 3.889
B 1.154 1.935 1.677 0.146 0.098 0.756 0.902 0.517 0.525 0.583 0.901
C 5.998 3.226 0.538 0.047 0.102 0.852 0.898 −0.620 −0.649 0.455 −1.428
D 49.159 34.194 0.696 0.061 0.128 0.812 0.872 −0.363 −0.621 0.169 −3.668
E 0.348 0.000 0.000 0.000 0.000 1.000 1.000 0.000 0.000 0.000 0.000
F 10.174 12.258 1.205 0.105 0.096 0.799 0.904 0.186 0.210 0.245 0.857
G 8.672 13.548 1.562 0.136 0.093 0.771 0.907 0.446 0.501 0.235 2.135
H 7.245 0.645 0.089 0.008 0.106 0.887 0.894 −2.419 −2.487 1.003 −2.479
I 5.986 12.258 2.048 0.178 0.092 0.730 0.908 0.717 0.786 0.245 3.209
J 2.348 3.871 1.649 0.143 0.097 0.759 0.903 0.500 0.516 0.416 1.239

Rainfall (mm/yr) 765.3–957.4 5.295 9.032 1.706 0.304 0.191 0.505 0.809 0.534 0.574 0.280 2.050
957.4–1041.7 23.350 37.419 1.603 0.286 0.163 0.552 0.837 0.472 0.674 0.166 4.063
1041.7–1109.6 30.788 22.581 0.733 0.131 0.223 0.646 0.777 −0.310 −0.422 0.192 −2.197
1109.6–1189.3 22.409 12.903 0.576 0.103 0.224 0.674 0.776 −0.552 −0.668 0.240 −2.786
1189.3–1362.6 18.158 18.065 0.995 0.177 0.199 0.623 0.801 −0.005 −0.006 0.209 −0.030
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percentage method to construct the landslide susceptibility
map. The landslide susceptibility maps based on the EBF
and the ensemble of EBF and KLR are shown in Fig. 5a and
b, respectively.

Ensemble of SI and KLR models

Similar to the process of combination of the EBF and
KLR methods, the SI was computed for each class of

conditioning factors. Then, the SIs were assigned as
weights to each class. Eventually, each conditioning fac-
tor was reclassified based on its SI and was determined
as an input for overlaying with the landslides to extract
the dataset for the KLR algorithm. The results of the SI
are displayed in Table 2.

All conditioning factors were reclassified based on
their SI and then applied as input datasets for the SI
and SI-KLR methods. The PLOs were also reclassified
based on the area percentage method to construct the
landslide susceptibility map. The landslide susceptibility
maps based on the SI and SI-KLR models are shown in
Fig. 5c and d, respectively.

Ensemble of WoE and KLR models

In the WoE-KLR ensemble model, the parameters C, S
(C), and C/S (C) were calculated first based on their
function, as described in section BWeights of evidence
(WoE)^. The C/S (C) weights were transferred to each
class of conditioning factors. Then, each factor was
reclassified and overlaid with the landslide locations to
construct a database for computing the PLOs using the
KLR algorithm.

Similar to the EBF and SI models, the WoE model
was used to establish the spatial relationship between
each conditioning factor and the landslide locations.
The results of SI are presented in Table 2. Based on
the C/S(C) of the WoE model, all conditioning factors
were reclassified and applied as input datasets for the
WoE and WoE-KLR methods. The PLOs were also

Table 3 Multicollinearity analysis

Number Factors EBF SI WOE

TOL VIF TOL VIF TOL VIF

1 Slope angle 0.639 1.564 0.664 1.506 0.546 1.830

2 Slope aspect 0.951 1.051 0.953 1.049 0.943 1.061

3 Altitude 0.719 1.391 0.748 1.337 0.712 1.405

4 Plan curvature 0.789 1.268 0.821 1.218 0.828 1.208

5 Profile curvature 0.841 1.189 0.848 1.179 0.825 1.212

6 SPI 0.484 2.068 0.536 1.864 0.413 2.419

7 STI 0.411 2.432 0.395 2.529 0.398 2.511

8 TWI 0.642 1.558 0.657 1.523 0.695 1.439

9 Distance to rivers 0.880 1.136 0.881 1.135 0.875 1.143

10 Distance to roads 0.916 1.092 0.921 1.085 0.925 1.081

11 Distance to faults 0.839 1.191 0.818 1.223 0.810 1.235

12 NDVI 0.811 1.233 0.554 1.805 0.586 1.707

13 Land use 0.919 1.088 0.655 1.526 0.655 1.526

14 Lithology 0.686 1.457 0.647 1.547 0.927 1.078

15 Rainfall 0.914 1.094 0.926 1.080 0.922 1.085

Table 4 Predictive capabilities of
conditioning factors using KLR
model

Number Factors EBF-KLR SI-KLR WOE-KLR

AM S.D AM S.D AM S.D

1 Altitude 0.155 ±0.009 0.152 ±0.011 0.155 ±0.010

2 Distance to rivers 0.142 ±0.008 0.142 ±0.008 0.135 ±0.011

3 Distance to roads 0.135 ±0.010 0.135 ±0.011 0.130 ±0.015

4 STI 0.135 ±0.011 0.128 ±0.012 0.128 ±0.012

5 TWI 0.116 ±0.017 0.126 ±0.009 0.118 ±0.020

6 Lithology 0.116 ±0.006 0.116 ±0.007 0.116 ±0.010

7 NDVI 0.116 ±0.009 0.116 ±0.009 0.116 ±0.010

8 Distance to faults 0.105 ±0.012 0.102 ±0.014 0.106 ±0.010

9 SPI 0.106 ±0.010 0.100 ±0.008 0.094 ±0.010

10 Slope 0.103 ±0.007 0.087 ±0.006 0.080 ±0.016

11 Rainfall 0.069 ±0.012 0.081 ±0.007 0.062 ±0.007

12 Aspect 0.067 ±0.007 0.078 ±0.008 0.061 ±0.013

13 Land use 0.045 ±0.013 0.041 ±0.014 0.044 ±0.014

14 Plan curvature 0.033 ±0.012 0.033 ±0.012 0.031 ±0.009

15 Profile curvature 0.023 ±0.022 0.025 ±0.021 0.019 ±0.028
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Fig. 5 Landslide susceptibility maps by (a) EBF, (b) EBF-KLR, (c) SI, (d) SI-KLR, (e) WoE, (f) WoE-KLR models
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reclassified according to the area percentage method to
construct the landslide susceptibility map. The landslide
susceptibility maps based on the WoE and WoE-KLR
models are shown in Fig. 5e and f, respectively.

In order to present a better comparison of landslide
susceptibility maps, the five landslide susceptibility clas-
ses were determined as very high (5%), high (10%),
moderate (15%), low (20%), and very low (50%) for
the six landslide susceptibility maps.

Ensemble models’ performance and comparison

The AUC curve with the training dataset was used to
assess the performances of the three ensemble models,

as shown in Table 5 and Fig. 6a. The results indicate
that all ensemble models have high prediction accuracy
according to the AUC values. Additionally, the EBF-
KLR ensemble model has the highest AUC value
(AUC = 0.814) followed by the SI-KLR ensemble model
(AUC = 0.811) and the WoE-KLR ensemble model
(AUC = 0.806). The performances of the three ensemble
models based on the AUROC with the validation
dataset are shown in Table 6 and Fig. 6b. The results
indicate the EBF-KLR ensemble model (AUC = 0.753)
outperformed the SI-KLR ensemble model (AUC =
0.752) and the WoE-KLR ensemble model (AUC =
0.744). These findings suggest that although all land-
slide susceptibility ensemble models showed high pre-
diction accuracy, the EBF-KLR ensemble model had the
highest prediction capability for landslide susceptibility
mapping in the study area.

Validation of landslide susceptibility maps

The validation of the six landslide susceptibility maps
produced by the three bivariate models and the three

Table 5 Ensemble models’ performance using training dataset

Model AUC SE 95% CI

EBF-KLR 0.814 0.0238 0.766 to 0.856

SI-KLR 0.811 0.0242 0.763 to 0.853

WoE-KLR 0.806 0.0244 0.758 to 0.849

Fig. 5 (continued)
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ensemble models were assessed based on the spatial
cross-validation procedure mentioned in section BModel
performance and validation of landslide susceptibility
maps^. The corresponding AUC_T and AUC_P curves
are shown in Figs. 7 and 8 and validation of the land-
slide susceptibility maps is presented in Table 7. For the
training dataset, the EBF-KLR model had the highest
prediction capability (0.8511), followed in descending
order by the SI-KLR model (0.8505), WoE-KLR model
(0.8397), EBF model (0.7978), SI model (0.7951), and
WoE model (0.7825). For the validation dataset, the
EBF-KLR model had the highest prediction capability
(0.7615), followed in descending order by the SI-KLR
model (0.7595), SI model (0.7503), EBF model
(0.7437), WoE-KLR model (0.7286), and WoE model
(0.7198). Thus, the results show the ensemble EBF-
KLR was the most capable of mapping landslide sus-
ceptibility within the study area.

Landslide density (LD) was also calculated to vali-
date the landslide susceptibility maps. The LD is de-
fined as the ratio between the percentages of landslides

and the percentages of each susceptible class (Pham
et al. 2016); higher susceptible classes should have
higher LDs for reliable landslide susceptibility maps.
As mentioned above, the area percentages of each sus-
ceptible class were defined as very high (5%), high
(10%), moderate (15%), low (20%), and very low
(50%). Therefore, it is only necessary to calculate the
percentages of landslide locations for each class. The
results of the LD analysis are shown in Table 8. It
can be observed that the very high class has the highest
LD values, followed in descending order by the high,
moderate, low, and very low classes. The results also
show that the ensemble models yielded better perfor-
mance than the individual bivariate models, and that
the EBF-KLR model improved the performance of the
bivariate EBF model more significantly than the other
two ensemble models.

Discussion

Landslide susceptibility describes the probability of
landslide occurrence within a particular area, and the
correlation between previous landslide locations and
possible conditioning factors (Romer and Ferentinou
2016). In previous decades, many methods including
traditional statistical models (Ding et al. 2017; Zhang
et al. 2016a) and sophisticated machine learning models
(Chen et al. 2017g; Pourghasemi and Kerle 2016;
Youssef et al. 2016) have been used in conjunction with
the development of GIS technology to predict the

Fig. 6 Comparison of the three ensemble landslide models using the AUROC curve with a the training dataset and b the validation dataset

Table 6 Ensemble models’ performance using validating dataset

Model AUC SE 95% CI

EBF-KLR 0.753 0.0422 0.671 to 0.824

SI-KLR 0.752 0.0424 0.670 to 0.822

WoE-KLR 0.744 0.0431 0.661 to 0.815
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spatial distributions of landslides. However, both
bivariate and machine learning approaches have their
limitations, which could potentially be eliminated by
the use of ensemble models. Therefore, it is necessary
to explore and to compare new ensemble methods and
techniques in application to landslide modeling.
Recently, some ensemble machine learning methods
have been applied in landslide susceptibility, for
example, Shirzadi et al. (2017) used a Naive Bayes
trees (NBT) and random subspace (RS) ensemble

method for landslide susceptibility mapping at the
Bijar region, Kurdistan province (Iran), and their result
showed that NBT-RS significantly improved the perfor-
mance of the NBT base classifier. Hong et al. (2018)
found that J48 Decision Tree with the Rotation Forest
model presents the highest prediction capability (AUC
=0.855); it improved the performance of the J48
Decision Tree base classifier significantly. Pham et al.
(2018) integrated the MultiBoost (MB) ensemble and
support vector machine (SVM) for modeling of

Fig. 8 Model validation with the
prediction rate (AUC_P) curve
for the six landslide susceptibility
maps

Fig. 7 Model validation with the
success rate (AUC_T) curve for
the six landslide susceptibility
maps
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susceptibility of landslides in the Uttarakhand State,
Northern India, and their result showed that the
MBSVM outperforms the LR and single SVM models.
Though many ensemble methods have been applied in
landslide susceptibility, until now, there is still no agree-
ment on which is the best ensemble method in landslide
susceptibility mapping. In addition, more experiments
are needed to compare different areas to find the differ-
ence among each method.

The most important step was to select the landslide condi-
tioning factors because they affect the quality of landslide
susceptibility analysis (Irigaray et al. 2007; Romer and
Ferentinou 2016). However, there are no standard guidelines
regarding the selection of landslide conditioning factors (Tien
Bui et al. 2016). This study built a landslide susceptibility
model using 15 landslide conditioning factors that included
topographical, geological, and environmental factors. Then,
TOL and VIF were used to establish the absence of
multicollinearity among the 15 landslide conditioning factors
(Table 3). Subsequently, the classifier attribute evaluation
method (Witten et al. 2011) using the KLR model with the
RBF kernel function was used to assess the importance of the
variables. The results showed that all 15 conditioning factors
had positive predictive capability in the model (Table 4);
therefore, they were all used to build landslide susceptibility
models.

The goodness-of-fits of three ensemble models were
evaluated using ROC and AUC values. The results in-
dicated that all ensemble models had high prediction
accuracy based on the AUC values. The EBF-KLR en-
semble model had the highest AUC values for both the

training (AUC = 0.814) and the validation (AUC =
0.753) datasets, followed in descending order by the
SI-KLR ensemble model and the WoE-KLR ensemble
model (Tables 5 and 6). However, the results also
showed that different conditioning factors had different
contributions to the models (Table 4). In general, alti-
tude, distance to rivers, and distance to roads were
found to be the most important factors for the three
ensemble models. Conversely, the factors of land use,
profile curvature, and plan curvature yielded the lowest
predictive capabilities for the three ensemble models.
The normalized predictive capabilities of the condition-
ing factors for the three ensemble models were used to
visualize the relative importance of the 15 conditioning
factors (Fig. 9). It was observed that altitude contribut-
ed the highest percentages of 10.573, 10.397, and
11.111% for the EBF-KLR, SI-KLR, and WoE-KLR
models, respectively; distance to rivers yielded the sec-
ond highest contributions of 9.688, 9.713, and 9.677%,
respectively, and distance to roads yielded the third
highest contributions of 9.209, 9.234, and 9.319%, re-
spectively. In contrast, profile curvature yielded the
lowest contributions of 1.569, 1.710, and 1.362%, re-
spectively. Therefore, because of the types of input
variables and the models used, it was concluded that
landslide conditioning factors tend to have different
contributions (Tien Bui et al. 2016). Further studies
should be undertaken to explore the optimum method
for selecting the optimal factors for both this and sim-
ilar study areas.

To evaluate and compare the three ensemble models
with the three individual bivariate models, this study
adopted the methods of the AUC_T and AUC_P curves,
and LD analysis. The results suggested the three ensem-
ble models showed higher prediction capabilities for
both the training and the validation datasets than each
of the three individual bivariate models. The EBF-KLR
ensemble exhibited the optimal performance, which
could improve the performance of the EBF model

Table 8 Landslide density analysis on landslide susceptibility maps

Class EBF-KLR EBF SI-KLR SI WoE-KLR WoE

PLL LD PLL LD PLL LD PLL LD PLL LD PLL LD

Very low 5.16 0.10 11.61 0.23 5.16 0.10 12.90 0.26 5.81 0.12 10.97 0.22

Low 10.32 0.52 18.71 0.94 7.74 0.39 16.77 0.84 9.68 0.48 20.00 1.00

Moderate 21.94 1.46 22.58 1.51 22.58 1.51 19.35 1.29 25.16 1.68 22.58 1.51

High 27.74 2.77 26.45 2.65 29.03 2.90 25.81 2.58 24.52 2.45 24.52 2.45

Very high 34.84 6.97 20.65 4.13 35.48 7.10 25.16 5.03 34.84 6.97 21.94 4.39

Table 7 Validation of landslide susceptibility maps

AUC_T/P EBF SI WoE EBF-KLR SI-KLR WoE-KLR

AUC_T 0.7978 0.7951 0.7825 0.8511 0.8505 0.8397

AUC_P 0.7437 0.7503 0.7198 0.7615 0.7597 0.7286
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significantly. However, it should be noted that the other
two ensembles also yielded reasonable performance.

Conclusions

This study evaluated landslide susceptibility in
Chongren County (China) using novel ensembles of bi-
variate statistical-methods-based (EBF, SI, and WoE)
kernel logistic regression machine learning classifiers.
A series of conditioning factors (slope angle, slope as-
pect, altitude, plan curvature, profile curvature, SPI,
STI, TWI, distance to rivers, distance to roads, distance
to faults, NDVI, land use, lithology, and rainfall) were
used as the inputs to the three hybrid models. A land-
slide inventory comprising 222 landslides was divided
randomly into a training set (70%) for evaluation of the
landslide susceptibility models and a validation set
(30%) for validation of the model procedure.

The results showed that the three hybrid models were suc-
cessful at identifying landslide-prone areas. The results also
showed that the hybrid models could improve the predictive
capability of the bivariate models, and that the EBF-KLR
hybrid model yielded the highest predictive capability in land-
slide susceptibility assessment.

In conclusion, the landslide susceptibility maps produced
in the present study may be useful for land use planning and
decision making in areas prone to landslides. Moreover, this
study also demonstrated the superiority of hybrid models in
landslide susceptibility modeling.
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