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Abstract
The eastern Himalayan syntaxis in Tibet is one of the regions tectonically most active with the fastest uplift rate on the
earth, where landslides are extremely frequent, causing severe damage to lives and transportation and inducing poverty.
Thus, mapping landslide susceptibility of this area is of great importance. The purpose of this study is to compare landslide
susceptibility maps for this region produced by the analytic hierarchy process information value (AHPIV) and logistic
regression-information value (LRIV) methods using geographic information system (GIS) software. To do this, an inven-
tory map with 799 landslides was prepared based on historical documents, interpretation of aerial photographs, and
extensive field surveys. A total of eight conditioning factors were analyzed as input variables: lithology, slope gradient,
slope aspect, elevation, curvature, distance to faults, distance to drainages and distance to roads. Then, the AHPIV and
LRIV methods were applied to mapping landslide susceptibility. The performances of the methods were validated and
compared using receiver operating characteristics (ROC) curves. The area under the curve (AUC) values obtained using
the AHPIVand LRIV methods were 0.884, and 0.906, respectively. Results showed that the LRIV method performs better
than the AHPIV method. Finally, sensitivity analyses were performed to examine the effects of removing any of the
conditioning factors on the landslide susceptibility mapping. Results indicate that all of the conditioning factors have a
positive effect on the landslide susceptibility mapping. Therefore, the LRIV method with eight conditioning factors was
employed to determine potential landslide zones in the study area for landslide management and decision making.
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Introduction

Landslides are defined as the mass movement of rock, debris
or earth down a slope (Cruden 1991) that often cause great
damages to human life, property and the natural environment
in hilly and mountainous terrains. In active tectonic and ero-
sional settings, landslides are generally considered the domi-
nant hillslope process that permits rapid hillslope adjustment
to high rates of rock uplift and erosion (Gallo and Lavé 2014).
The eastern Himalayan syntaxis, located in the southeastern
Tibetan Plateau, is one of the most tectonically active and
fastest uplifting regions on Earth. Landslides are extremely
developed in this region due to its special geological, tectonic
and geomorphological conditions. Landslides along roads, es-
pecially National Highway 318, constantly result in loss of life
and property damage (Shang et al. 2005), posing a serious
challenge to project planning and construction. However, so
far, no landslide susceptibility assessment has been made for
this region.

As essential part of hazard assessment, landslide suscepti-
bility mapping is one of most important ways to provide fun-
damental knowledge on landslide distribution and can help in
hazard management. In the last three decades, a lot of tech-
niques and methods have been applied to this effort, which
can be roughly categorized into qualitative and quantitative
ones (Ayalew and Yamagishi 2005).

The qualitative methods are based on field observations
and prior knowledge of experts, in which experts identify
judgment rules or assign weighted values for conditioning
factor maps and then overlay them to prepare a landslide sus-
ceptibility map (Du et al. 2017a). They include the analytical
hierarchy process (AHP; Ercanoglu et al. 2008; Ghosh et al.
2011; Kayastha et al. 2013) and weighted linear combination
(WLC; Ayalew et al. 2004). Because the weights are assigned
based on the field knowledge of experts, a landslide inventory
map is not needed. The main problem of such qualitative
methods is that they highly depend on the level of expert’s
experience, and any different criteria with the consent of the
expert can easily be conceded to the assignment of weighted
values (Feizizadeh et al. 2014).

The quantitative methods are based on numerical estimates
and involve deterministic and statistical approaches (Bui et al.
2011). Deterministic methods are focused on analyzing the
stability of a slope and calculating its safety factors (Aleotti
and Chowdhury 1999; Godt et al. 2008; Park et al. 2013). Due
to the need for exhaustive data from individual slopes, these
methods are only applied to areas where landslide types are
simple and the geomorphic and geologic properties are fairly
homogeneous (Bui et al. 2011). Statistical methods are based
on the analysis of the relationships between conditioning fac-
tors and existing landslides. These methods require the collec-
tion of a large amount of data to produce reliable results.
Various statistical methods have been used for landslide

susceptibility mapping including bivariate statistical analysis
such as frequency ratio (FR; Lee and Pradhan 2006; Yilmaz
and Keskin 2009; Mezughi et al. 2011; Regmi et al. 2014),
information value (IV) method (Yin and Yan 1988; Lin and
Tung 2004; Sarkar et al. 2008; Conforti et al. 2011), weight of
evidence (WOE; Sharma and Kumar 2008; Suh et al. 2011;
Guo et al. 2015), certainty factor (CF; Binaghi et al. 1998; Lan
et al. 2004; Devkota et al. 2013), multivariate statistical anal-
ysis such as logistic regression (LR; Park 2010; Pourghasemi
et al. 2013; Tsangaratos and Ilia 2016) and stepwise discrim-
inant analyses (Carrara et al. 1991, 2003), and data mining
methods such as artificial neural networks (ANNs; Arora
et al. 2004; Yilmaz 2009; Pradhan and Lee 2010; Bui et al.
2016) and support vector machines (SVMs; Yao et al. 2008;
Bui et al. 2016).

In addition, according to advantages of different
methods, some integrated methods, such as LRFR (Umar
et al. 2014; Youssef et al. 2015), AHPIV (Fan et al. 2012;
Du et al. 2016), LRIV (Du et al. 2017a), AHPFR (Mondal
and Maiti 2013), LRWOE (Zhou et al. 2016), have been
developed to enhance precision and accuracy of landslide
susceptibility mapping.

Although many methods and techniques have been pro-
posed and implemented for landslide susceptibility mapping,
there has been no consensus as to which method and tech-
nique are the best. In general, the performance of a method
depends on characteristics of different regions (Yang et al.
2015). Thus, comparison of the different methods is impor-
tant. Yilmaz (2010) compared the landslide susceptibility
mapping results produced by LR, SVM and ANN methods
and showed the ANN method produced more accurate
susceptibility maps than LR and SVM for the case study of
Koyulhisar, Turkey. Pourghasemi et al. (2013) compared
landslide susceptibility mapping results using LR, AHP and
statistical index (SI) for the north of metropolitan Tehran, Iran,
and showed that the map obtained from the LR method is
more accurate than the other methods. Chen et al. (2016)
showed that the IVmethod enables generating a more accurate
susceptibility map than LR for the Zigui-Badong area, China.
In addition, the performance of the integrated method and the
individual methods have been compared by some researchers.
For example, Youssef et al. (2015) showed the LRFR method
is better than the LR and FR methods in landslide
susceptibility mapping. Zhou et al. (2016) considered that
the LRWOE method can provide a more accurate result than
the WOE and LR for earthquake-induced landslide suscepti-
bility mapping based on a case study of the April 20, 2013
Lushan earthquake, China. Du et al. (2017a) showed the
LRIV method can produce a more accurate susceptibility
map than the LR and IV methods for the Bailongjiang water-
shed, Gansu Province, China. These integrated methods can
yield a higher accuracy than individual methods for landslide
susceptibility mapping.
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Due to the complex topography of and difficult access to
the region of the eastern Himalayan syntaxis, landsliding of
this region is poorly studied, particularly in the Yarlung
Zangbo Grand Canyon zone. To fill this gap, through aerial
photograph interpretation and field investigations, we have
prepared a landslide inventory map for this region, and then
used the AHPIV and LRIV methods to generate a GIS-based
landslide susceptibility map. Finally, the performances of the
two methods are compared using the area under the receiver
operating characteristic (ROC) curves.

Geologic settings

Associated with the collision between the Indian and Eurasian
plates, the eastern Himalayan syntaxis is characterized by in-
tensive tectonic deformation, with rapid uplift. This region is
laced with many large-scale active faults, such as the Yarlung
Zangbo fault, Jiali fault, Dongjiu-Milin fault, Polong-Pangxin
fault, Apalong fault and Motuo fault, which control the topog-
raphy and divide the region into different zones. The outcrop
strata of the region range from the Proterozoic to Quaternary.
In addition to the Jurassic and Quaternary strata, the others
have all undergone different degrees of deterioration. The
complex lithology in the regionmainly consists of stone, lime-
stone, marble, phyllite, slate, shale and basic, intermediate,
intermediate-acidic and acidic magmatic rocks, as well as
Quaternary alluvial, and diluvial or morainic materials.

In this region, the rapid uplift of the rock mass, surface
erosion and river incision have created the current character-
istics of the alpine gorge landscape. The research area is pri-
marily of high mountains and valleys, with an average eleva-
tion of more than 3000 m and relative incision depth over
1000 m. Several mountain peaks above 6000 m stand here,
such as the Namcha Barwa Peak as the highest one, with an
elevation of 7782 m. Around the mountain peaks, the modern
glaciers are well developed. The Yarlung Zangbo River basin
is the largest watershed in the region, with several major trib-
utaries including the Nyang River and Parlung Zangbo River.
The Yarlung Zangbo River cuts through Namcha Barwa area
and drops 2 km within the Yarlung Zangbo canyon (Du et al.
2017b). Along this great canyon, warm, moist air flows from
the Indian Ocean to south Tibet, which brings abundant rain-
fall to the region. The annual rainfall is 700–1000 mm (Shang
et al. 2005).

The tectonic rock uplifting, complex folding and faulting,
coupled with river incision have produced special topograph-
ic, geomorphic and tectonic conditions for landslides in this
region. Combined with the effect of gravity, earthquakes, rain-
falls or glaciation can trigger frequent landslides of varied
scales and types. These landslides are a serious challenge to
the planning and construction of highways, railways and hy-
dropower projects in this area.

Methodology

Analytic hierarchy process information value (AHPIV)
method

Analytic hierarchy process (AHP)

As a multi-objective and multi-criteria decision-making ap-
proach, the AHP divides a complex decision-making problem
into multiple objectives or criteria, expresses the subjective
judgement in a quantitative manner and arrives at a scale of
preference drawn from a set of alternatives, which makes the
decision more reasonable. This method has been widely used
in landslide susceptibility assessment (Mondal and Maiti,
2012). The AHP includes the following steps: (i) building a
hierarchy model, (ii) establishing a judgment matrix through
pairwise comparison (using a scale from 1 to 9), (iii) calculat-
ing weights by computation of the normalized principal eigen-
vector and (iv) testing consistency using the consistency ratio
(CR) which must be less than 0.1. The CR is calculated by:

CR ¼ CI
RI

ð1Þ

CI ¼ λmax−n
n−1

ð2Þ

where CI is the consistency index, RI is the random consis-
tency index, n is the number of parameters and λmax is named
the largest eigenvalue.

Information value (IV)

In the 1980s, Yin and Yan (1988) developed the IV method
from information theory and used it in landslide spatial pre-
diction for the first time. This method has been widely used
since then, especially in landslide susceptibility assessment. It
is an indirect statistical approach and can be used to evaluate
the spatial relationship between the probability of landslide
occurrence and conditioning factor classes (Du et al. 2017a).
The information value of conditioning factor classes is calcu-
lated as follows (Yin and Yan 1988, 1996; Du et al. 2017a):

I i ¼ log2
Si=Ai

S=A
ð3Þ

where Si is the area of landslides containing factor class i, Ai is
the area of factor class i, S is total area of landslides and A is
the total area of the entire study area (Yang et al. 2015; Du
et al. 2017a).

AHPIV method

In the AHPIV method, the AHP is used to obtain the factor
weights (wi) and the information value method is used to obtain
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the information value of the conditioning factor class (Ii). The
integrated method can be expressed by the following formula:

I ¼ ∑
n

i¼1
wiI i ¼ ∑

n

i¼1
wilog2

Si=Ai

S=A
ð4Þ

where I is the comprehensive index of the landslides occurrence,
n is the number of the containing factor and wi is the weight of
the containing factor (Du et al. 2016; Wang et al. 2017).

Logistic regression information value (LRIV) method

Logistic regression (LR)

As one of the popular multivariate statistical analysis methods,
LR can make a multivariate regression relationship between a
binary dependent variable and numerous independent variables
(Pradhan and Lee 2010). The advantage of LR is that the var-
iables can be either continuous or discrete, or any combination
of both types which need not be of a normal distribution (Lee
and Pradhan 2006). The LR method has also been widely used
in landslide susceptibility mapping. It can be expressed as:

P ¼ 1

1þ e−z
ð5Þ

where P is the probability of landslide occurrence, which varies
from 0 to 1 on an S-shaped curve, and z is the linear combina-
tion of predictors and its value varies from −∞ to +∞ (Eq. 5).

z ¼ β̂0 þ β̂1x1 þ β̂2x2 þ β̂3x3 þ……þ β̂nxn ð6Þ

where β̂0 is the intercept of the model, n is the number of inde-

pendent variables, β̂i (i= 1, 2, 3,…, n) represents coefficients of
the model and xi (i= 1, 2,3,…, n) is the independent variable.

LRIV method

The information value method was performed for all the clas-
sified conditioning factors. To speed up the convergence and
facilitate the final analysis and interpretation in subsequent anal-
ysis, the information values should be normalized to a range of
0 to 1 (Du et al. 2017a). The normalized information values are
then arranged to corresponding conditioning factor classes and
used as independent variables in the LR model. These values
can be calculated by a common method as follows:

xi ¼
I i−I ið Þmin

I ið Þmax−I ið Þmin
ð7Þ

z ¼ β̂0 þ ∑
n

i¼1
β̂i⋅

I i−I ið Þmin

I ið Þmax−I ið Þmin
ð8Þ

where xi (independent variables in LR) is the normalized
values of Ii, and I(i)min and I(i)max are the minimum and

maximum information values of the ith conditioning factor,
respectively (Du et al., 2017).

Landslide inventory

Landslide inventory mapping is the most basic step in land-
slide susceptibility assessment (Hong et al. 2018). A detailed
and reliable landslide inventory with 799 landslides as poly-
gons for the study area has been prepared based on interpre-
tation of aerial photographs, extensive field surveys and his-
torical landslide archives (scale: 1:100,000) compiled by the
Ministry of Land and Resources of the People’s Republic of
China (Fig. 1). According to the material composition catego-
ry (Liu et al. 2002), these landslides can be divided into two
types: soil landslides and bedrock landslides. The soil land-
slides occurred primarily in the Quaternary loose material
layers formed by alluvial deposits, residual slope deposits,
collapse deposits, outwash deposits and artificial deposits.
Most of them are distributed on the gentle slopes of the val-
leys. The bedrock landslides are associated with rock compo-
sition and structural weaknesses of slopes, which are widely
distributed in the study area.

The size of the landslides ranges from several thousands to
hundreds of millions cubic meters. Most of the large land-
slides (>106 m3) are bedrock landslides in the study area.
The giant landslide at Yigong in 2000 has an approximate
length of 10 km and volume of 3.0 × 108 m3 (Fig. 2a).
Frequent landslides in this region, such as the 102 landslide
(Fig. 2b), Layue landslide and Yigong landslide, have blocked
rivers and caused serious damage to roads. Giant ancient land-
slides in the study area also prevail, such as the Jiaobunong
landslide (Fig. 2c) and Wenlang landslide, which are mostly
deep-seated. From the landslide inventory map, landslide dis-
tribution is of a certain regular pattern, mostly along the
Yarlung Zangbo River, Parlung Zangbo River and Layue
River (Fig. 1).

Landslide conditioning factors

In various references, there is still no clear agreement on the
selection of conditioning factors in landslide susceptibility
assessment (Hasekiogullari and Ercanoglu 2012; Guo et al.
2015). According to landslide characteristics of the study area,
eight main landslide conditioning factors were chosen in this
work, including lithology, slope gradient, slope aspect, eleva-
tion, curvature, distance to drainages, distance to faults and
distance to roads. During map preparation, all of these factors
were converted into raster format with a 30 × 30-m pixel size
within the ArcGIS platform. They are detailed as follows,
emphasized on their relations to landslide occurrence.
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Fig. 2 Typical landslides in the study area. a Yigong landslide; b 102 landslide; c Jiaobunong ancient landslide

Fig. 1 Landslide inventory map of the study area
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Lithology

Lithology is the material basis of landslide occurrence, which
reflects the erodibility of the slope rock. Based on 1:200,000
geological maps produced by the Ministry of Land and
Resources of China and physical-mechanical properties of
rock, the lithology in the study area is divided into seven rock
groups: (i) hard solid granite and diorite, (ii) hard layer of
sandstone and limestone, (iii) mid-hard solid migmatites,
(iv) mid-hard layer of basic-ultrabasic rocks, (v) soft-hard lay-
er of schist and gneiss, (vi) loose sediments and (vii) snow-
covered region (Fig. 3a). In the study area, the groups of mid-
hard layer of basic-ultrabasic rocks and soft-hard layer of
schist and gneiss are relatively more prone to landsliding.
The highest density of landslides is present in the group of
mid-hard layer of basic-ultrabasic rocks which are mainly dis-
tributed along the Yarlung Zangbo suture zone (Fig. 4a). Due
to the compression of the Namche Barwa wedge and
Gangdise-Nyainqentanglha block, rock mass in this zone is
highly broken, serving as a favorable condition for landslide
occurrence.

Slope gradient

Slope gradient, which affects the gravity-generated stress dis-
tribution, surface runoff and the loose material accumulation
of the slope, plays an important role in landsliding. In this
work, this parameter was obtained from the 30 × 30-m digital
elevation model (DEM) and divided into six classes: <10°,
10–20°, 20–30°, 30–40°, 40–50° and >50° (Fig. 3b). The oc-
currence of landslides within each class in the study area is
described in Fig. 4b and Table 1. It is noted that most of these
landslides occurred on slopes of 20–50°. The lowest frequen-
cies of landslides were on the very gentle slopes (0–10°).

Slope aspect

Slope aspect plays an important role in landslide susceptibility
mapping, which is related to weathering, land cover and mi-
croclimate. Many scholars use slope aspect as a conditioning
factor in landslide susceptibility mapping (Meinhardt et al.
2015; Youssef et al. 2015; Chen et al. 2017). The values of
this parameter were also derived from the 30 × 30-m DEM
and categorized into nine classes: flat, N, NE, E, SE, S, SW,W
and NW (Fig. 3c). Figure 4c shows that landslides are likely to
occur on the slopes facing west, southwest and south.

Elevation

Related to soil types, vegetation coverage, rainfall and so on,
elevation can influence the landslide distribution. This factor
in the study area is divided into eight classes: <2000 m, 2000–
2500 m, 2500–3000 m, 3000–3500 m, 3500–4000 m, 4000–

4500 m, 4500–5000 m and > 5000 m (Fig. 3d). The spatial
relationship between landslides and elevation classes (Fig. 4d)
suggests that the slope failures in the study area mainly oc-
curred at places with elevation of <2500 m, which are mostly
catchment areas with strong surface runoff, seeming more
prone to landsliding.

Curvature

Curvature is another DEM-based derivative, which can affect
slope stress field and groundwater distribution. Many re-
searchers use slope curvature as a conditioning factor in pre-
paring landslide susceptibility maps (Umar et al. 2014; Guo
et al. 2015; Chen et al. 2017). The slope curvature map was
prepared with three classes: concave, flat and convex
(Fig. 3e). Figure 4e and Table 1 show that the highest landslide
density and area occurred at the localities of convex curvature,
followed by area of flat and concave curvatures.

Distance to faults

The faults data are based on 1:200,000 geological maps.
Apparently, with well-developed cracks, fragmented rock
and strong weathering, the slope on both sides of the faults
is highly susceptible to landslides. In this work, the distance to
faults was calculated in a 500-m interval and is divided into
nine classes: <500 m, 500–1500 m, 1000–1500 m, 1500–
2000 m, 2000–2500 m, 2500–3000 m, 3000–3500 m, 3500–
4000 m and >4000 m (Fig. 3f). The landslide distribution is
obviously controlled by the faults, as evidenced by the land-
slide density decreasing with increasing distance to the faults
within 3000 m (Fig. 4f).

Distance to drainages

River undercutting, infiltration and erosion are unfavorable
for slope stability along the river banks. The growth level
of the surface drainages indicates the cutting level of the
surface. The more developed the water system, the more
severe the surface cutting. Meng et al. (2004) argued that
the rapid uplift of the Tibetan Plateau during the Late
Quaternary period led to strong river incision, and thus
controlled geological hazards and their distribution. For
the study area, the distance to drainages is divided into
nine classes: <100 m, 100–200 m, 200–300 m, 300–
400 m, 400–500 m, 500–600 m, 600–700 m, 700–800 m

�Fig. 3 Maps of landslide conditioning factors. a Lithology: (i) hard solid
granite and diorite, (ii) hard layer of sandstone and limestone, (iii) mid-
hard solid migmatites, (iv) mid-hard layer of basic-ultrabasic rocks, (v)
soft-hard layer of schist and gneiss, (vi) loose sediments and (vii) snow-
covered region; b slope gradient (°); c slope aspect; d elevation (m); e
curvature; f distance to faults (m); g distance to drainages (m); h distance
to roads (m). Maps of landslide conditioning factors (continued)
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and > 800 m (Fig. 4f). Figure 4g shows that the landslide
density is the largest in the distance class of 100–200 m,

and declines with the growing distance to drainages when
exceeding 200 m.

Fig. 4 Relationships between landslide occurrence and conditioning
factor classes. a Lithology: (i) hard solid granite and diorite, (ii) hard
layer of sandstone and limestone, (iii) mid-hard solid migmatites, (iv)
mid-hard layer of basic-ultrabasic rocks, (v) soft-hard layer of schist
and gneiss, (vi) loose sediments and (vii) snow-covered region; b
slope gradient (°); c slope aspect; d elevation: (1) <2000 m, (2)
2000~2500 m, (3) 2500~3000 m, (4) 3000~3500 m, (5)
3500~4000 m, (6) 4000~4500 m, (7) 4500~5000 m and (8)

>5000 m; e curvature; f distance to faults: (1) <500 m, (2)
500~1500 m, (3 ) 1000~1500 m, (4 ) 1500~2000 m, (5 )
2000~2500 m, (6) 2500~3000 m, (7) 3000~3500 m, (8)
3500~4000 m and (9) >4000 m; g distance to drainages: (1)
<100 m, (2) 100~200 m, (3) 200~300 m, (4) 300~400 m, (5)
400~500 m, (6) 500~600 m, (7) 600~700 m, (8) 700~800 m and
(9) >800 m; h distance to roads: (1) <100 m, (2) 100~200 m, (3)
200~300 m, (4) 300~400 m, (5) 400~500 m and (6) >500 m
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Table 1 Spatial relationships between each landslide conditioning factor and landslides

Conditioning
factor

Class Area of pixels
in domain(m2)

Percentage of
domain (%)

Area of
landslide(m2)

Percentage of
and landslide (%)

Information
value

Lithology i 5,162,060,700 26.44 11,508,300 17.34 −0.6085
ii 1,684,039,500 8.62 3,282,300 4.95 −0.5562
iii 1,947,306,600 9.97 4,923,900 7.42 −0.2958
iv 1,419,343,200 7.27 18,778,500 28.29 1.3590
v 6,865,775,100 35.16 23,358,600 35.19 0.0009
vi 1,258,597,800 6.45 1,461,600 2.20 −1.0740
vii 1,189,447,200 6.09 3,059,100 4.61 −0.2789

Slope gradient <10° 1,969,734,600 10.09 3,275,100 4.93 −0.7151
10–20° 2,705,940,000 13.86 8,883,000 13.38 −0.0348
20–30° 5,229,216,000 26.78 16,020,900 24.14 −0.1039
30–40° 6,884,020,800 35.25 23,937,400 36.07 0.0227
40–50° 2,425,848,300 12.42 12,826,800 19.33 0.4419
>50° 311,810,400 1.60 1,429,100 2.15 0.2989

Slope aspect Flat 53,390,700 0.27 0 0.00 –
N 2,405,283,300 12.32 5,355,000 8.07 −0.4231
NE 2,434,949,100 12.47 5,304,600 7.99 −0.4449
E 2,456,188,200 12.58 6,715,800 10.12 −0.2177
SE 2,419,929,900 12.39 7,043,400 10.61 −0.1552
S 2,476,841,400 12.68 8,999,100 13.56 0.0666
SW 2,482,023,600 12.71 13,284,000 20.01 0.4540
W 2,414,651,400 12.37 13,058,100 19.67 0.4644
NW 2,383,312,500 12.21 6,612,300 9.96 −0.2031

Elevation <2000 m 1,123,910,100 5.76 14,206,600 21.40 1.3134
2000–2500 m 1,006,851,600 5.16 11,379,500 17.14 1.2015
2500–3000 m 2,058,228,900 10.54 9,702,000 14.62 0.3270
3000–3500 m 3,135,868,200 16.06 5,674,500 8.55 −0.6304
3500–4000 m 4,021,956,900 20.60 7,283,700 10.97 −0.6296
4000–4500 m 4,387,375,800 22.47 10,746,900 16.19 −0.3276
4500–5000 m 3,065,797,800 15.70 4,121,100 6.21 −0.9277
>5000 m 726,580,800 3.72 3,258,000 4.91 0.2770

Curvature Concave 6,540,729,300 33.50 19,359,900 29.17 −0.1383
Flat 5,550,660,000 28.43 16,641,900 25.07 −0.1255
Convex 7,435,180,800 38.08 30,370,500 45.76 0.1837

Distance to faults <500 m 3,133,632,600 16.05 19,578,600 29.50 0.6087
500–1000 m 2,862,952,200 14.66 11,869,200 17.88 0.1986
1000–1500 m 2,489,009,400 12.75 8,132,400 12.25 −0.0395
1500–2000 m 2,094,750,000 10.73 5,634,900 8.49 −0.2340
2000–2500 m 1,719,324,900 8.81 4,295,700 6.47 −0.3078
2500–3000 m 7,226,901,000 6.95 2,938,500 4.43 −0.4505
3000–3500 m 1,356,423,300 5.48 2,619,000 3.95 −0.3287
3500–4000 m 1,070,318,700 4.52 1,937,700 2.92 −0.4367
>4000 m 882,201,600 20.06 9,366,300 14.11 −0.3520

Distance to drainages <100 m 249,705,000 1.28 2,296,800 3.46 0.9955
100–200 m 247,788,000 1.27 4,928,400 7.43 1.7667
200–300 m 245,519,100 1.26 4,122,000 6.21 1.5972
300–400 m 243,260,100 1.25 3,037,500 4.58 1.3012
400–500 m 241,539,300 1.24 2,456,100 3.70 1.0958
500–600 m 238,821,300 1.22 1,912,500 2.88 0.8569
600–700 m 236,813,400 1.21 1,525,500 2.30 0.6393
700–800 m 234,561,600 1.20 1,405,800 2.12 0.5671
>800 m 17,588,562,300 90.08 44,687,700 67.33 −0.2911

Distance to roads <100 m 189,393,300 0.97 1,612,800 2.43 0.9184
100–200 m 182,605,500 0.94 1,148,400 1.73 0.6153
200–300 m 178,782,300 0.92 979,200 1.48 0.4771
300–400 m 175,050,900 0.90 726,300 1.09 0.1994
400–500 m 170,227,800 0.87 613,900 0.92 0.0592
>500 m 18,630,510,300 95.41 61,291,700 92.35 −0.0327

Total area 19,526,570,100 66,372,300

Note: Percentage of domain = area of pixels in domain/total area of pixels; percentage of and landslide = area of landslide/total area of landslide
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Distance to roads

Due to the micromorphological changes and unloading by
road excavation, the slope instabilities often occur along
roads in mountainous areas. In addition, the human engi-
neering activities are also generally along roads. These
constitute an influence factor for slope failures which de-
pend on the distance to the road. In this work, this param-
eter was calculated in 500-m intervals and is divided into
six classes: <100 m, 100–200 m, 200–300 m, 300–400 m,
400–500 m and > 500 m (Fig. 3h). Analysis shows that in
the study area, the landslide density is highest at distances
of 0 to 100 m to roads, while lowest for the distances
>500 m. The landslide density decreases with the increas-
ing distance to the roads (Fig. 4h).

Results

Landslide susceptibility map using AHPIV

In this method, the judgment matrix (Table 2) was
established by the pairwise comparison. The weight values
of eight conditioning factors were determined and the con-
sistency test was carried out (Table 2). The CR is 0.025,
which is less than 0.1. The results indicated that the judge-
ment matrix satisfies the requirement of the consistency
test and the weight values are reasonable.

The information values of eight conditioning factors (Ili
= lithology, Isl = slope gradient; Ias = slope aspect; Iss =
curvature; Iel = elevation; Ifa = distance to faults; Iri =
distance to drainages; Iro = distance to roads) were calcu-
lated using Eq. 3. The information values are listed in
Table 1. To obtain the landslide susceptibility index, the
weight values for each conditioning factor (Table 2) were
placed in Eq. 9. Finally, the landslide susceptibility results

were divided into five categories using the natural
breakpoint method, which are very low, low, moderate,
high and very high landslide susceptibility (Fig. 5a).

I ¼ 0:169I li þ 0:259I sl þ 0:065I as þ 0:051I ss

þ 0:076I el þ 0:132I fa þ 0:154I ri þ 0:094I road ð9Þ

Landslide susceptibility map using LRIV

In order to avoid the bias caused by unequal proportions of
landslide and non-landslide pixels when implementing this
method, an equal grid cell of non-landslides was randomly
selected from the landslide-free area (Bui et al. 2011). The
normalized information value layers of conditioning fac-
tors were calculated using Eqs. 3 and 7. By analyzing the
relationship between the dependent variables (0 is the val-
ue of non-landslide and 1 is the landslide) and independent
variables (the normalized information values) in SPSS sta-
tistics software, the LR coefficients of conditioning factors
were obtained. Then, substituting LR coefficients into Eq.
8, the z values were obtained as follows:

z ¼ −5:788þ 2:015I li þ 4:747I sl þ 1:787I as þ 2:501I ss
þ0:125I el þ 0:981I fa þ 1:492I ri þ 0:241I road

ð10Þ

The P values, which ranged from 0.0194 to 0.9869, were
obtained by substituting the z values into Eq. 5. To prepare the
landslide susceptibility map, the P value map was divided into
five classes using the natural breakpoint method, which are
very low, low, moderate, high and very high landslide suscep-
tibility (Fig. 5b).

In order to avoid the multicollinearity among the indepen-
dent variables, a collinearity analysis is necessary. Tolerance

Table 2 Results of the AHP evaluation

Conditioning factor Lithology Slope gradient Slope aspect Curvature Elevation Distance to faults Distance to drainages Distance to roads

Lithology 1 1/2 3 3 2 2 1 2

Slope gradient 2 1 4 4 3 2 2 3

Slope aspect 1/3 1/4 1 1 2 1/3 1/3 1/2

Curvature 1/3 1/4 1 1 1/2 1/3 1/3 1/2

Elevation 1/2 1/3 1/2 2 1 1/2 1/2 1

Distance to faults 1/2 1/2 3 3 2 1 1 1

Distance to drainages 1 1/2 3 3 2 1 1 2

Distance to roads 1/2 1/3 2 2 1 1 1/2 1

Weight values 0.169 0.259 0.065 0.051 0.076 0.132 0.154 0.094

Consistency test CI = 0.035, CR = 0.025 < 0.1
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(TOL) and variance inflation factor (VIF) are two primary in-
dexes to assess the multicollinearity (Bui et al. 2011). When the
TOL is less than 0.1 or the VIF greater than 10, it is regarded as
a multicollinearity problem existing. The TOL and VIF values
(Table 3) show that there is no multicollinearity among the
chosen independent variables. Table 3 lists the P value of each
logistic coefficient in the model. It shows that all the condition-
ing factors have a P value less than 0.05, which demonstrates
that the statistical relationship between variables at a 95% con-
fidence level (Bui et al. 2011). All these indicate that the pre-
sented model performs quite well.

Validation

Validation is a fundamental step to assess the effectiveness
of the landslide susceptibility map. In this study, the ROC
curve was used to verify the performance of the landslide
susceptibility map. This curve is a two-dimensional graph
that consists of the true positive rate (sensitivity) on the

vertical axis and false positive rate (1 = specific) on the
horizontal axis. The area under the ROC curve (AUC),
which varies from 0.5 to 1.0, is used to evaluate the model.
An AUC value close to the 1.0 implies perfect performance
of the model (Bui et al. 2011; Umar et al. 2014).

The ROC curve results showed that the AUC is 0.906
using the LRIV method and 0.884 using the AHPIV
method (Fig. 6). It is evident that the LRIV method can
produce a better landslide susceptibility map than the
AHPIV method in the study area. Figure 7 show the land-
slide density and area for the five landslide susceptibility
classes of the two landslide susceptibility maps, on which
the landslide density decreases with lowering the land-
slide susceptibility.

Fig. 5 Landslide susceptibility maps produced by (a) AHPIVand (b) LRIV methods

Table 3 Relevant parameters of conditioning factors used in LRIV
method

Conditioning factor TOL VIF Logistic coefficient P value

Lithology 0.7973 1.2543 2.0150 0.0000

Slope gradient 0.8387 1.1923 4.7473 0.0000

Slope aspect 0.9788 1.0216 1.7868 0.0000

Elevation 0.6746 1.4823 2.5045 0.0000

Curvature 0.9712 1.0297 0.1251 0.0000

Distance to faults 0.8670 1.1534 0.9813 0.0000

Distance to drainages 0.6084 1.6437 1.4917 0.0000

Distance to roads 0.8096 1.2352 0.2407 0.0001

Constant −5.7876 0.0000
Fig. 6 Receiver operating characteristic (ROC) curve
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Sensitivity analysis

Sensitivity analysis permits seeing how the input variables
change the output results (Lee and Talib 2005; Fenta et al.
2015; Tahmassebipoor et al. 2016; Du et al. 2017a). In this
study, a map-removal sensitivity analysis (Tahmassebipoor
et al. 2016) was conducted to examine the effects of remov-
ing any of the conditioning factors on the landslide suscep-
tibility results. The relative decrease of AUC values (RD),
which is used to examine the solution changes, is calculated
as follows:

RDi ¼ AUCall−AUCi

AUCall
� 100% ð11Þ

where RDi is the relative decrease of AUC values, AUCall is
the AUC value obtained from the landslide susceptibility
mapping using all conditioning factors and AUCi is the

AUC value when the ith conditioning factor is excluded.
A high RD value means a high sensitivity to a landslide
susceptibility resulted.

Removing each of conditioning factors in turn, the
landslide susceptibility assessment was performed using
the LRIV method (Table 4) and the corresponding RD
value was calculated. The sensitivity analysis (Table 5)
shows that the lithology (RD = 3.02%), slope gradient
(RD = 12.05%), aspect (RD = 2.99%), elevation (RD =
2.56%), curvature (RD = 2.26%), distance to drainages
(RD = 4.15%), distance to faults (RD = 2.65%) and dis-
tance to roads (RD = 2.24%) all have a decline in AUC
values. The landslide susceptibility map is more sensitive
to the slope gradient and less sensitive to the distance to
roads in the study area.

From the results of ROC and sensitivity analysis, it can
be concluded that the landslide susceptibility assessment
performance is affected not only by the method used, but
also by the type and the number of conditioning factors
selected.

Hence, we produced the landslide susceptibility map of
the eastern Himalayan syntaxis region using the LRIV
method with all eight conditioning factors. From the sta-
tistical results of the landslide susceptibility map
(Table 6), the very high and high landslide susceptibility
areas, accounting for 5.98 and 19.10% of the entire area,
respectively, are mainly distributed along the narrow val-
leys of the Yarlung Zangbo, Yigong Zangbo, Parlung
Zangbo and Layue Rivers. The moderate landslide sus-
ceptibility areas, accounting for 34.33% of the whole
study area, are mainly distributed along tributary gullies
of the major rivers. Table 6 shows that 23.96% of the
landslides occur in these areas, whereas only 10.88% of
the landslides are present in the areas with low and very
low landslide susceptibility, which accounts for 40.59% of
the study area. The low and very low landslide suscepti-
bility zones are mainly in the areas with gentle slopes and
less faults.

Fig. 7 Statistics of the landslide susceptibility map produced by the
AHPIV and LRIV methods

Table 4 Regression coefficients
of the logistic regression-
information value method when
the relevant conditioning factor is
excluded

Excepted factor β1 β2 β3 β4 β5 β6 β7 β8 β0

Lithology – 5.048 1.743 2.510 0.090 1.252 1.418 −0.095 −5.169
Slope gradient 2.965 – 2.093 2.276 0.309 0.516 1.475 −0.243 −3.878
Slope aspect 1.971 4.836 – 2.482 0.117 0.972 1.452 0.166 −4.507
Elevation 2.059 4.724 1.778 – 0.141 1.196 2.477 0.318 −5.121
Curvature 2.007 4.761 1.784 2.506 – 0.983 1.508 0.237 −5.740
Distance to faults 2.257 4.623 1.776 2.608 0.134 – 1.592 .279 −5.508
Distance to drainages 1.962 4.728 1.759 2.855 .167 1.041 – 1.267 −5.778
Distance to roads 2.006 4.742 1.784 2.507 0.125 0.983 1.554 – −5.779
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Discussion and conclusions

The IV method is a simple and effective tool in landslide
susceptibility mapping. Among all bivariate statistical
methods, this approach can determine the impact of each
conditioning factor class on landslide occurrence, but it
does not consider the relationship between these factors
and landslide occurrence (Du et al. 2017a). The LR meth-
od is capable of performing multivariate statistical analy-
sis between a dependent variable and several independent
ones and provides an easy way to analyze the impact of
conditioning factors on landslide occurrence, but it does
not analyze the influence of classes of each conditioning
factor on landslides (Umar et al. 2014). As a main tool in
the subjective assessment of qualitative methods, the AHP
method can assign the weights of conditioning factors
based on the field knowledge of experts. But this method
may be strongly influenced by the subjectivity of the in-
volved experts (Bui et al.2011). The AHP and LR
methods can be combined with bivariate statistical analy-
sis (BSA) methods such as the IV method (Umar et al.
2014; Yang et al. 2015; Du et al. 2017a). This study pro-
duced landslide susceptibility maps in the region of the
eastern Himalayan syntaxis using two integrated methods:
the AHPIV method and the LRIV method. The methods
can generate a complete model to assess the impact of

conditioning factors as well as the effect of each condi-
tioning factor on landslide occurrence. However, the
AHPIV method assesses the impact of conditioning fac-
tors on landslide occurrence based on field observations
and prior knowledge of experts, and the LRIV method
does the same by virtue of numerical estimates. The per-
formance of susceptibility maps produced by these two
methods for the study area was verified by the ROC
curves. The AUC value for the LRIV method is 0.906,
which is better than the 0.884 of the AHPIV method. The
results indicate that the LRIV method is the best opti-
mized model in this study and it can be considered as a
promising method for landslide susceptibility mapping in
similar cases for better accuracy.

It is worth noting that the conditioning factors play a
key role in landslide susceptibility mapping, but there is
no universal standard on how to select conditioning
factors and how many factors should be selected. Guo
et al. (2015) found that the FR model with the 6 variables
performed the same as that with the all 11 variables, and
better than 8 variables. Meinhardt et al. (2015) compared
landslide susceptibility map results using 9 and 13 vari-
ables and found that 9 variables led to a higher AUC
value than those from all 13 variables. In this study, we
considered eight factors for analysis. The sensitivity anal-
yses were performed to find a better input parameter set,
and the results showed that all of the conditioning factors
had a positive effect on the landslide susceptibility map-
ping. However, due to the difficulty of obtaining data,
other factors such as rainfall, ground water level and
weathering that affect the landslide occurrence are not
considered. Whether choosing more factors is conducive
to landslide susceptibility results of the study area needs
further research.

From this study, we suggest using the LRIV method
with all eight conditioning factors to map the landslide
susceptibility. This paper gives in-depth thought about
landslide susceptibility mapping and the results can help
managers, planners and decision makers in land use, land-
slide management and landslide hazard prevention and
mitigation in engineering construction.

Table 5 Statistics of the sensitivity analysis

Excepted factor Success
rate value

Decrease of success
rate value (%)

Lithology 0.8786 3.02

Slope gradient 0.7969 12.05

Slope aspect 0.8789 2.99

Elevation 0.8828 2.56

Curvature 0.8855 2.26

Distance to faults 0.8820 2.65

Distance to drainages 0.8684 4.15

Distance to roads 0.8857 2.24

Table 6 Statistics of the landslide
susceptibility map Landslide susceptibility

zone
Pixel number Percentage of

area (%)
Area of
landslide (m2)

Percentage of
landslide (%)

Very high 1,297,349 5.98 20,657,700 31.12

High 4,143,673 19.10 22,590,000 34.04

Moderate 7,448,786 34.33 15,901,200 23.96

Low 7,257,956 33.45 6,190,200 9.33

Very low 1,548,425 7.14 1,033,200 1.55
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