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Abstract
The rock mass deformation modulus is an important parameter for analysis of the mechanical behaviour rock structures. Due to
high cost, time consuming activity and difficulties in interpretation of in-situ measurements, a number of empirical methods have
been developed to estimate the deformation modulus on the basis of classification systems. However, due to a large number of
empirical equations, the practical rock engineers have encountered the question which empirical relationship provides the most
reliable estimation of the deformation modulus. This paper combines a review of empirical equations and statistical analyses
based on the case studies from Iranian geography. Results of ninety-nine plate jacking tests from three dams and hydropower
projects were used to evaluate the predictive performance of these empirical methods. Statistical analyses show that the Hoek and
Diederichs (Int J Rock MechMin Sci 43:203–215, 2006) and Ajalloeian and Mohammadi (Bull Eng Geol Environ 73:541–550,
2014) relationships provide the most precise and accurate estimation of the deformation modulus based on the in-situ
measurements.
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Introduction

Deformability is known as one of the most important charac-
teristics that controls the mechanical behaviour of rock
masses. It is characterised by a modulus which describes the
relation between the applied load and the resulting deforma-
tion. As the behaviour of rock mass is not elastic, the term
deformation modulus is commonly used, which is defined as
the ratio of stress to corresponding strain including elastic and
inelastic behaviour (Ulusay and Hudson 2007).

Due to the discontinuous nature of the rock mass, the
deformability measured in laboratory experiments on small
rock samples cannot be representative of the whole rock mass
from which samples are taken. Therefore, the measured mod-
ulus in these laboratory experiments is expected to be signif-
icantly higher (Bieniawski 1978a; Isik et al. 2008a).

Several in-situ methods have been developed for measure-
ment of the deformation modulus, such as plate bearing, plate
jacking, Goodman jack, flat jack, pressuremeter and dilatom-
eter tests. There are several sources of inaccuracy in these
approaches and different methods usually do not provide the
same deformation modulus (Palmström and Singh 2001;
Panthee et al. 2016).

The plate bearing test is one of the most common in-situ
tests for measurement of the deformation modulus. The plate
bearing test involves applying a load to the rock surface and
measuring the resulting deformations at the surface. The cal-
culated deformation modulus based on the surface measure-
ments generally gives much lower values due to the damage
of rock near the surface, deflection of the loading plate and
closure of the gap between plate and the rock mass (Hoek and
Diederichs 2006; Palmström and Singh 2001; Sharma et al.
1989).

In the dilatometer test, as the volume of the tested area is
too small and tensile stresses are involved in the borehole, the
calculated deformation modulus is usually 2-3 times lower
(Bieniawski 1978b; Rocha 1974). Goodman jack is another
borehole test where the measured deformation modulus value
needs to be corrected due to contact angle between the loading
platen and the borehole surface as well as the deformation of
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Table 1 Review of empirical methods for estimation of the deformation modulus

Researcher Equation Description of the study

Conn and Merritt
(1970)

Erm =Ei(0.0231RQD − 1.32) Data from 52 plate jacking tests at four different dam sites were used
to derive this equation. This equation gives very low or negative
estimation of the deformation modulus at low RQD values.

Bieniawski
(1978a)

Erm = 2RMR76 − 100 The data were prepared from different types of deformation modulus
measurement techniques at three major engineering projects in
South Africa. The proposed equation is valid for RMR76 > 50 and
givea s negative value for RMR76 less than 50.

Serafim and
Pereira
(1983)

Erm ¼ 10
RMR76−10

40ð Þ As the equation proposed by Bieniawski (1978a) was not applicable
for RMR76 < 50, they provided more in-situ data from dam and
tunnel projects where 20 < RMR76 < 85. By plotting RMR and Erm
in a semi-logarithmic graph, they found a linear relationship which
showed good correlation with the Bieniawski (1978a) data.

Gardner
(1987)

Erm =Ei(0.0231RQD − 1.32) RQD > 64%
Erm = 0.15Ei RQD < 64%

To resolve the shortcomings of the Coon andMerit (1970) equation at
low RQD values, the deformation modulus was suggested to be
estimated from the intact rock modulus by using a reduction factor
of 0.15. However, this equation was developed using very limited
data for RQD < 60%. It was also assumed that for RQD = 100%,
the deformation modulus of rock mass is equal to that of the intact
rock while RDQ = 100% does not mean that no discontinuity is
present in the rock mass.

Nicholson and
Bieniawski
(1990)

Erm ¼ 0:01Ei 0:0028RMR2 þ 0:9exp RMR
22:82

� �� �
By reviewing the equations proposed by Beiniawski (1978a) and

Serafim and Pereira (1983) and using their data, they developed an
equation which can consider the effect of scale and in-situ principal
stresses.

Mehrotra
(1992)

Erm ¼ 10
RMR−20

38ð Þ On the basis of 120 uniaxial jacking tests undertaken on ten types of
Himalayan rocks at several dam sites in India, an equation was
developed between deformation modulus and RMRwhere the rock
masses were classified as poor to fair based on RMR classification.

Grimstad and
Barton
(1993)

Erm = 25logQ They developed a relationship using the average deformationmodulus
reported by Bieniawski’s (1978a) and also the measured data from
several projects reported in the literature. They found that the de-
formation modulus falls in the range of 10logQ and 40logQ. Their
proposed equation is only applicable for Q > 1 (generally hard
rocks).

Mitri et al.
(1994)

Erm ¼ 0:5Ei 1−cos π�RMR
100

� �� �
They developed an equation between RMR and the ratio of deformation

modulus to intact rock modulus. However, no details about the
procedure of developing this equation have been provided.

Palmstrom
(1995)

Erm = 5.6RMi0.375

RMi ¼ 10
RMR−40

15ð Þ By developing an equation between RMi and RMR and inserting this
equation into the empirical equation of Serafim and Pereira (1983),
a new equation was developed between RMi and the deformation
modulus. This equation is valid for RMi > 0.1.

Barton
(1996)

Erm ¼ 10Q
1=3
c

Qc ¼ Q� σc
100

σc: Uniaxial compressive strength of intact rock.

As in the Q system, the rock matrix compression strength is not
considered, he suggested the use of Qc instead of Q and updated the
initial equation of Barton (1995) for estimation of the deformation
modulus. The equation was developed by using the data of
Bieniawski (1978a) and Serafim and Pereira (1983).

Hoek and Brown
(1997)

Erm ¼ ffiffiffiffiffiσc
100

p
10

GSI−10
40ð Þ They found that the Serafim and Pereira’s equation (1983) overesti-

mates the deformation modulus for poor quality rocks. They mod-
ified the Serafim and Pereira’s equation based on practical obser-
vations and back analysis of excavation behaviour in poor quality
rock masses for σc < 100 MPa.

Aydan et al.
(1997)

Erm = 9.7 × 10−6RMR3.54 They used the in-situ data of Bieniawski (1978a), Serafim and Pereira
(1983), Aydan (1989) and in-situ tests in Japan to develop the
equation.

Read et al.
(1999)

Erm ¼ 0:1 RMR
10

� �3
They found that equations proposed by Serafim and Pereira (1983)

and Hoek and Brown (1997) overestimate the deformation modu-
lus at RMR = 100. They used the data set of Serafim and Pereira
(1983) to derive their equation.
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Table 1 (continued)

Researcher Equation Description of the study

Diederichs and
Kaiser
(1999)

Erm ¼ 7� 3ð Þ
ffiffiffiffiffi
Q

0p
Q

0 ¼ 10
RMR−44

21ð Þ The test data of field modulus measurements presented by Barton
(1983) and Bieniawski (1978a) were used to develop an equation
for modulus based on rock quality and confinement.

Ramamurthy
(2001)

Erm =Ei exp(−0.0115Jf)
Jf: Joint factor; Jf = Jn/rn,
Jn: Joint frequency, n: joint inclination

coefficient and r: Joint strength coefficient.

Using the data of uniaxial compression tests on jointed specimens
from Brown (1970), Einstein and Hirschfield (1973), Arora (1987),
Yaji (1984) and Roy (1993), an equation was proposed between the
deformation modulus and the joint factor Jf.

Palmstrom and
Singh
(2001)

Erm = 7RMi0.4

Erm = 8Q0.4
A data set of 42 plate jacking tests and Goodman jack tests data (with

correction factor of 2.5) at eight hydropower projects in India,
Nepal and Bhutan and also using the data provided by Clerici
(1993) and Thorpe et al. (1980) were used to develop these equa-
tions which are valid in the range of 1 < RMi < 30 and 1 < Q < 30.

Hoek et al.
(2002)

Erm ¼ 1− D
2

� � ffiffiffiffiffiσc
100

p
10 GSI−10

40

� �
The Hoek and Brown (1997) equation was modified by the inclusion

of the factor D to consider the effects of blast damage and stress
relaxation on the deformation modulus.

Kayabasi et al.
(2003)

Erm ¼ 0:135
Ei 1þRQD

100ð Þ
WD

� �1:1811
WD: weathering degree.

Therewere57plate loading tests data from twodamsites inTurkeyused to
develop equations based on the simple regression andmultiple
regression analyses. The equation, whichwas developed based on
simple regression analysis, providedmore reliable prediction.

Gokceoglu et al.
(2003)

Erm ¼ 0:001

Ei
σc

� �
1þ RQD

100

� �
WD

2
4

3
5
1:5528

Erm ¼ 0:0736exp 0:0755RMRð Þ
Erm ¼ 0:1451exp 0:0654GSIð Þ

There were 115 data (57 data from Kayabasi et al. (2003) and 58 new
data) obtained from in situ plate loading and dilatometer tests.
These data were used to develop their new equations where the
RMR was in the range of 20 to 85.

Zhang and
Einstein
(2004)

Erm =Ei10
(0.0186RQD − 1.91) Using the data collected by Coon and Merritt (1970), Bieniawski

(1978a) and Ebisu et al. (1992), a new equation was proposed.
Large scatter in the data for RQD ≥ 70% was observed which may
be related to insensitivity of RQD to discontinuity frequency or
spacing as well as test methods and directional effects.

Sonmez et al.
(2004)

Erm ¼ Ei Sαð Þ0:4

S ¼ exp
GSI−100
9−3D

	 

;α ¼ 1

2
þ exp −GSI

15

� �
−exp −20

3

� �
6

	 

They assumed that for GSI = 100, the modulus ratios of the rock mass

and intact rock should be theoretically identical and by undertaking
statistical analysis on the same database of Gokceoglu et al. (2003),
an empirical equation was developed.

Ramamurthy
(2004)

Erm ¼ Eiexp RMR−100
17:4

� �
By proposing an equation between the Jf and RMR, the primary

empirical equation of Ramamurthy (2001) was modified.

Sonmez et al.
(2006)

Erm ¼ Ei10

RMR−100ð Þ 100−RMRð Þ
4000exp −RMR

100ð Þ
	 
� �

Using the experimental data from Bieniawski (1978a), Serafim and
Pereira (1983), Nicholson and Bieniawski (1990) and three aver-
aged values from Sonmez et al. (2004), and found that the defor-
mation modulus estimated by Sonmez et al. (2004) equation is
overestimated for lower values of RMR (RMR< 50) while yield
lower values for higher RMR (60 < RMR < 80). Based on these
data a new empirical equation was developed.

Hoek and
Diederichs
(2006)

Erm ¼ Ei 0:02þ 1− D
2

1þ exp 60þ15D−GSI
11

� �
" #

Erm ¼ 100
1− D

2

1þ exp 75þ25D−GSI
11

� �
" # Based on data from 423 plate tests, 53 flat jack and 18 back analysis of

in situ measurements in China and Taiwan, sigmoid equations were
developed to constrain the increase of modulus as the rock becomes
more massive. For cases when reliable properties of the intact rock
are not available, the second equation was suggested.

Chun et al.
(2006)

Erm = 0.3228 exp (0.0485RMR) Pressuremeter tests undertaken in Korea were used to develop their
equation.

Galera et al.
(2007)

Erm ¼ Eiexp RMR−100
36

� �
Using 98 data of dilatometer tests from previously published works,

they developed the equation.

Isik et al.
(2008b)

Erm = (6.7RMR − 103.06) × 10−3

Erm = 5.47 × 10−3GSI
A total of 27 pressuremeter tests were undertaken on weak, heavily

jointed, sheared and/or blocky greywacke rock masses and used in
this study, and their developed equation is valid when RMR ≥ 27.

Chun et al.
(2009)

Erm ¼ 5:992Depth2þ1:883σ4cþ4:851RQD3þ0:031JS5þ2399:530JC
10000

JS: joint spacing and JC: joint condition.
There were 61 data sets collected from road and railway construction

sites in Korea where the deformation modulus values were
measured using pressuremeter tests in most cases.

Beiki et al.
(2010)

Erm ¼ ffiffiffiffiffi
σc3

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:56þ lnGSIð Þ2

q	 

Erm ¼ ffiffiffiffiffiffiffiffiffiffi

RQD3
p

log σcð Þ:tan ln GSIð Þð Þ
They had 150 data of plate loading tests used to develop two equations

based on the genetic programming approach.
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loading plates in the test (Bieniawski 1978a; Palmström and
Singh 2001). Therefore, depending on the chosen correction
factor, different results can be obtained. The pressuremeter test
is based on the expansion of infinitely long cylindrical cavity
theory. As the effected volume during borehole expansion
tests may not be representative of the whole rock mass and
also the presence of disturbed annulus around the borehole
can result in underestimation of the deformation modulus
(Isik et al. 2008b; Wittke 1990). Hoek and Diederichs
(2006) stated that the in-situ down-hole jacks and borehole
pressuremeter tests are the least reliable methods due to

difficulty in interpretation of results particularly in hard and
jointed rock masses where the stressed rock volume is too
small.

It is believed that the flat jack test provides less reliable
results due to the small volume of rock tested near the surface
as well as difficulties in interpretation of results due to a wide
scatter even in a very uniform rock mass (Bieniawski 1978a;
Bieniawski 1979).

In the plate jacking test, the rock deformation is measured
by extensometers placed in the drill holes. These extensome-
ters are less sensitive to variation of pressure distribution at the

Table 1 (continued)

Researcher Equation Description of the study

Mohammadi and
Rahmannejad
(2010)

Erm = 0.0003RMR3 − 0.0193RMR2 + 0.3157RMR + 3.4064 They used data sets of Plate-loading test in a dam site to develop a new
statistical equation.

Martins and
Miranda
(2012)

Erm = − 8.1372 + 0.10005Depth + 0.6435UCS + 1.11458JC Using the database of Chun et al. (2009), they proposed a new formula
based on the data mining algorithm of Support Vector Machines.

Shen et al.
(2012)

Erm ¼ 1:14Eiexp − RMR−116
41

� �2� �
In situ data from Bieniawski (1978a), Serafim and Pereira (1983) and

Stephens and Banks (1989) were used to derive a Gaussian equa-
tion.

Kang et al.
(2013)

Erm = 10(0.32logQ + 0.585)

Erm ¼ 10
10RMR−16

50ð Þ A large data set of in-situ deformation modulus measurement tests
undertaken in Korea were used to develop equations where the data
set involved 314 values of Q in the range from 0.01 to 200 and 875
data of RMR in the range of 0 to 98.

Khabbazi et al.
(2013)

Erm = 9 × 10−7RMR3.868 Eighty-two dilatometer test results gathered from two dam sites and a
tunnel site were used to derive the equation where 39 ≤RMR ≤ 87.

Ajalloeian and
Mohammadi
(2014)

Erm = − 0.016Q2 + 1.581Q + 0.961 Twenty-eight data from plate loading tests were used and the equation
which is valid in the range of 0 <Q < 50.

Sanei et al.
(2013)

Erm = 0.0222GSI2 − 2.1172GSI + 54.24 Using the database of 47 plate loads, 86 dilatometers and 9 flat jack
tests in a dam project, they developed three equations based on
statistical analyses.

Nejati et al.
(2014)

Erm = 7.192 + 0.06469UCS + 0.20481RQD
+ 0.30974JSR + 0.38384JCR + 0.01716GWR

JCR: joint condition rating, JSR: joint spacing
rating and GWR: ground water rating

Results of 8 plate bearing and 44 dilatometer tests were used and
based on the statistical and neural network modelling, a new
equation was developed.

Kavur et al.
(2015)

Erm ¼ 4
RMR−20

20ð Þ Results of 69 large flat jack and plate jacking tests at three large
hydroelectric projects with field data reported by Bieniawski
(1978a), Serafim and Pereira (1983) and Stephens and Banks
(1989) were used to derive their proposed equation.

Alemdag et al.
(2015)

Erm = 0.058 exp (0.0785RMR) A total of 50 pressuremeter tests were carried out in this study at four
case sites in limestone where the RMR values ranging between 41
and 62 with a mean value of 53.

Kallu et al.
(2015)

Erm = exp (−0.731 + 0.08465SF
+ 0.382 ln(BS) + 0.134RF + 0.157IF)

SF: transformed strength factor, BS:
average block size or joint spacing in cm,
RF: transformed roughness factor and IF:
transformed infilling hardness

Twenty-six data from plate loading tests in weak rock masses taken
from onemine and two dam sites were used to develop an empirical
equation where RMR76 was varying in the range of 15 to 55.
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surface of the loading area and also measurements of defor-
mation at different depths provide a check against gross errors
of the measurements. In this method, it is possible to assess the
behaviour of rock at different depths. Therefore, the plate
jacking test generally gives the best results (Benson et al.
1970; Palmström 2001; Ribacchi 1988).

In spite of high costs and operational difficulties in under-
taking in-situ tests, there are several sources of uncertainties in
these tests caused by blast damage, testing method and test
procedure, which may result in high variability of results even
in well understood methods (Aksoy et al. 2012; Bertuzzi
2017; Bieniawski 1978a; Palmström and Singh 2001). For
example, the deformation modulus in a drill-and-blast audit
can typically be a third of the one carefully excavated
(Palmström and Singh 2001). Due to high variability of re-
sults, a large number of in-situ tests are required to evaluate
the rock mass deformability by a mean value. Therefore, a
good characterisation of the rock mass may provide a compa-
rable or even better estimation of the deformation modulus
using rock mass classification systems. Empirical relation-
ships have been proposed to estimate the rock mass deforma-
tion modulus using classification systems such as the rock
mass rating (RMR), the rock quality designation (RQD), the
tunnelling quality index (Q) and geological strength index
(GSI). However, selection of an appropriate equation among
the large number of empirical relationships has beenmade as a
challenge for practical rock engineers.

This paper aims to investigate the reliability of empirical
equations in estimation of the deformationmodulus. The man-
uscript combines a review of empirical methods and statistical
analyses for evaluating the predictive performance of these
methods. A comprehensive review of empirical approaches
in estimation of the deformation modulus is provided in the
Section BReview of empirical approaches^. Results of 99
plate jacking tests undertaken at three dam and hydropower
project sites in Iran are then statistically analysed, and the
predictive performance of empirical methods are evaluated.

Review of empirical approaches

As noted in a previous section, a large number of empirical
equations are available for estimation of the deformation mod-
ulus. A review of empirical relationships is presented in Table
1. These empirical equations are classified based on their input
rock mass classification system in Table 2. Although these
equations are simple and cost-effective, some uncertainties
exist in the reliability of relationships which depends on the
number and quality of employed data. Input parameters of
these equations should be determined in a quantitative ap-
proach and a large database of reliable in-situ measurements
are required for comparison between the measured and pre-
dicted values.

Some effort has been undertaken in recent years to develop
new empirical models for predicting a deformation modulus
using neural networks, neuro-fuzzy modelling, Bayesian
models and support vector regression (Alemdag et al. 2016;
Fattahi 2016; Feng and Jimenez 2015; Gokceoglu et al. 2004;
Nejati et al. 2014; Radovanović et al. 2017; Rezaei et al.
2015). However, these models suffer from the lack of physical
logic in relating the modulus to input parameters in an analyt-
ical form and also do not use a parametric approach, unlike the
statistical methods (Nejati et al. 2014).

As shown in Table 2, more than forty empirical equations
have been developed by researchers for estimation of the de-
formation modulus in the last 50 years, and the number of
these equations has been increased considerably in recent
years. However, practical rock engineers have encountered
the question which equation(s) should be used for estimation
of the deformation modulus, and which one provides the most
reliable result. In the following section, the reliability of em-
pirical equations are evaluated based on the in-situ measure-
ments in Iran. The relationships noted in Table 2 with input
parameters that can be acquired easily and widely mentioned
in the literature are used for the analysis.

Methodology

As noted in the Section BIntroduction^, previous studies have
shown that the plate jacking test provides the most reliable
approach for in-situ measurement of the deformation modu-
lus. To investigate the ability of empirical methods in estima-
tion of deformation modulus, 99 plate jacking tests data from
three dam and hydroelectric project sites in Iran were
provided.

The Bakhtiary dam and hydropower project are located
downstream of the Bakhtiary river in Lorestan province, in
the southwest of Iran in the Zagros Mountains. It includes a
325 m tall double-curvature concrete arch dam and a hydro-
power plant as an underground powerhouse complex with a
total capacity of 1500 MW. The dam site is located in the
marly and siliceous limestone beds of the Middle Cretaceous
Sarvak formation in the north-western part of the folded
Zagros. Laboratory experiments undertaken on intact core
samples indicate that the saturated uniaxial compressive
strength is 109 ± 29 MPa and the tangential elastic modulus
is 69 ± 10 GPa.

The Karun III dam site is located on the Karun river in the
western Zagros mountain range, in the north-east of the
Khuzestan province, southwest of Iran. The Karun III dam is
a 205 m high, double-curvature concrete arch dam and the
underground power plant includes 8 × 285 Francis-type tur-
bines. The dominant geological features in this region are
Asmari and Pabdeh formations which consist of folded
Oligocene and Miocene-age sedimentary rocks. The
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Table 2 Classification of empirical methods based on their input parameters

Classification System Researchers Equation

RMR Only RMR Bieniawski (1978a) Erm = 2RMR76 − 100
Serafim and Pereira (1983) Erm ¼ 10

RMR76−10
40ð Þ

Mehrotra (1992) Erm ¼ 10
RMR−20

38ð Þ
Aydan et al. (1997) Erm = 9.7 × 10−6RMR3.54

Read et al. (1999) Erm ¼ 0:1 RMR
10

� �3
Diederichs and Kaiser (1999) Erm ¼ 7� 3ð Þ

ffiffiffiffiffi
Q

0p
, Q

0 ¼ 10
RMR−44

21ð Þ
Ramamurthy (2004) Erm ¼ Eiexp RMR−100

17:4

� �
Gokceoglu et al. (2003) Erm = 0.0736 exp (0.0755RMR)

Chun et al. (2006) Erm = 0.3228 exp (0.0485RMR)

Isik et al. (2008b) Erm = (6.7RMR − 103.06) × 10−3

Mohammadi and Rahmannejad (2010) Erm = 0.0003RMR3 − 0.0193RMR2 + 0.3157RMR + 3.4064

Kang et al. (2013) Erm ¼ 10
10RMR−16

50ð Þ
Khabbazi et al. (2013) Erm = 9 × 10−7RMR3.868

Kavur et al. (2015) Erm ¼ 4
RMR−20

20ð Þ
Alemdag et al. (2015) Erm = 0.058 exp (0.0785RMR)

RMR and Ei Nicholson and Bieniawski (1990) Erm ¼ 0:01Ei 0:0028RMR2 þ 0:9exp RMR
22:82

� �� �
Mitri et al. (1994) Erm ¼ 0:5Ei 1−cos π�RMR

100

� �� �
Sonmez et al. (2006)

Erm ¼ Ei10

RMR−100ð Þ 100−RMRð Þ
4000exp −RMR

100ð Þ
	 
� �

Galera et al. (2007) Erm ¼ Eiexp RMR−100
36

� �
Shen et al. (2012) Erm ¼ 1:14Eiexp − RMR−116

41

� �2� �
GSI Only GSI and Hoek-Brown parameters Hoek and Brown (1997)

Erm ¼ ffiffiffiffiffic

100
p

10
GSI−10

40ð Þ

Hoek et al. (2002)
Erm ¼ 1− D

2

� � ffiffiffiffiffic

100
p 10

GSI−10
40ð Þ

Gokceoglu et al. (2003) Erm = 0.1451 exp (0.0654GSI)

Sonmez et al. (2004) Erm =Ei(S
a)0.4

Hoek and Diederichs (2006)
Erm ¼ 100

1−D2
1þexp 75þ25D−GSI

11ð Þ
� �

Isik et al. (2008b) Erm = 5.47 × 10−3GSI

Erm ¼ ffiffiffiffiffi
σc3

p
tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:56þ lnGSIð Þ2

q	 

Beiki et al. (2010) Erm = 0.0222GSI2 − 2.1172GSI + 54.24
Sanei et al. (2013)

GSI, Ei or RQD Hoek and Diederichs (2006)
Erm ¼ Ei 0:02þ 1−D2

1þexp 60þ15D−GSI
11ð Þ

� �

Beiki et al. (2010) Erm ¼ ffiffiffiffiffiffiffiffiffiffi
RQD3

p
log σcð Þ:tan ln GSIð Þð Þ

Q Grimstad and Barton (1993) Erm = 25logQ

Barton (1996) Erm ¼ 10Q
1=3
c , Qc ¼ Q� σc

100

Palmstrom and Singh (2001) Erm = 8Q0.4

Ajalloeian and Mohammadi (2014) Erm = − 0.016Q2 + 1.581Q + 0.961

Kang et al. (2013) Erm = 10(0.32logQ + 0.585)

RMi Palmstrom (1995) Erm = 5.6RMi0.375, RMi ¼ 10
RMR−40

15ð Þ
Palmstrom and Singh (2001) Erm = 7RMi0.4

RQD Conn and Merritt (1970) Erm =Ei(0.0231RQD − 1.32)
Gardner (1987) Erm =Ei(0.0231RQD − 1.32) RQD > 64%

Erm = 0.15Ei RQD < 64%
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sediments are underlain by limestone and argillaceous sedi-
ments in this region and the project structure was founded on
limestone and marly limestone.

Karun I dam and hydropower project is located 120 km
downstream of the Karun III dam. The dam is a 200 high
double-curvature concrete arch dam and the dam site
houses two power stations with a combined generating
capacity of 2000 MW. The underground power house
No. 2 is located in the Asmari formation which is com-
prised of thick beds of limestone with the average uniaxial
compressive strength of 100 MPa.

The histograms of in-situ measurements at project
sites are illustrated in Fig. 1. The measured deformation
modulus was in the range of 1 to 54 GPa and RMR
values varied from 32 to 77. The RMR value for each
plate jacking was measured, and the relationships be-
tween the RMR and the measured deformation modulus,
as well as RMR and normalised deformation modulus
(Erm/Ei) are shown in Fig. 2, which show sigmoid
shapes in both graphs. To investigate the ability of em-
pirical methods in estimation of the deformation modu-
lus, forty-one relationships were chosen. These

equations were selected based on their input parameters,
which are well-defined and can be acquired easily with-
out any special difficulty for their estimation (Clerici
1993). For cases where Q, RMi or GSI values were
not available in the filed measurements or there was a
need for conversion between classification systems,
these parameters were determined using the following
well-known equations;

Q ¼ 10
RMR−50

15ð Þ ð1Þ

GSI ¼ RMR76 or GSI ¼ RMR89−5 ð2Þ

RMi ¼ 10
RMR−40

15ð Þ ð3Þ

Five statistical approaches were employed to evaluate the
predictive performance of these empirical methods. Root
mean square error (RMSE) measures the departure of estimat-
ed values from the measured values and shows both bias and
precision where low RMSE value indicates high predictive
ability. RMSE is calculated as follows:
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a) b) Fig. 1 Histograms of filed
measurements: a) Measured
deformation modulus in plate
jacking tests and b) Rock mass
rating (RMR)

Table 2 (continued)

Classification System Researchers Equation

Kayabasi et al. (2003)
Erm ¼ 0:135

Ei 1þRQD
100ð Þ

WD

� �1:1811

Gokceoglu et al. (2003)
Erm ¼ 0:001

Ei
cð Þ 1þRQD

100ð Þ
WD

� �1:5528

Zhang and Einstein (2004) Erm =Ei10
(0.0186RQD − 1.91)

Chun et al. (2009) Erm ¼ 5:992Depth2þ1:883σ4cþ4:851RQD3þ0:031JS5þ2399:530JC
10000

Nejati et al. (2014) Erm = 7.192 + 0.06469UCS + 0.20481RQD
+ 0.30974JSR + 0.38384JCR + 0.01716GWR

Other parameters Ramamurthy (2001) Erm =Ei exp(−0.0115Jf)
Martins and Miranda (2012) Erm = − 8.1372 + 0.10005Depth

+ 0.6435UCS + 1.11458JC

Kallu et al. (2015) Erm = exp (−0.731 + 0.08465SF
+ 0.382 ln(BS) + 0.134RF + 0.157IF)
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑ Ai meas−Ai pred
� �2r

ð4Þ where N is the number of data points, Ai meas and Ai pred are the
measured and predicted deformation modulus, respectively.

Table 3 Evaluation of the predictive performance of empirical methods in estimation of the deformation modulus

Classification System Researchers RMSE VAF MAPE R2 F

RMR Only RMR Bieniawski (1978a) 6.40 87.91 36.59 69.25 124.03
Serafim and Pereira (1983) 5.70 70.57 60.20 79.62 106.48
Mehrotra (1992) 6.25 66.68 44.48 79.99 124.78
Aydan et al. (1997) 7.42 77.34 100.10 77.50 149.29
Read et al. (1999) 9.30 75.21 134.00 75.57 92.47
Ramamurthy (2004) 9.74 47.61 42.83 77.12 131.92
Gokceoglu et al. (2003) 8.93 57.31 38.77 81.25 239.12
Chun et al. (2006) 10.97 34.02 44.46 78.25 63.02
Isik et al. (2008b) 16.18 0.89 96.19 63.75 12.25
Mohammadi and Rahmannejad (2010) 6.55 79.94 85.43 79.95 165.50
Kang et al. (2013) 9.72 39.92 41.06 77.81 53.98
Khabbazi et al. (2013) 9.79 47.17 41.08 78.47 190.00
Kavur et al. (2015) 5.67 80.77 71.99 80.84 187.67
Alemdag et al. (2015) 9.18 56.94 40.74 81.40 264.84

RMR and Ei Nicholson and Bieniawski (1990) 6.72 61.22 86.62 71.03 58.02
Mitri et al. (1994) 28.89 45.41 431.70 55.28 26.05
Sonmez et al. (2006) 5.32 74.43 47.64 78.15 192.14
Galera et al. (2007) 10.54 60.57 176.40 64.95 26.11
Shen et al. (2012) 5.76 71.49 43.91 77.55 206.67

GSI Only GSI and Hoek-Brown parameters Hoek and Brown (1997) 5.72 70.24 59.28 78.06 114.47
Hoek et al. (2002) 5.66 71.88 65.17 77.11 119.51
Gokceoglu et al. (2003) 10.93 41.20 47.18 80.50 157.70
Sonmez et al. (2004) 11.38 59.31 183.81 61.66 32.48
Hoek and Diederichs (2006) 4.98 77.65 39.38 80.44 273.79
Isik et al. (2008b) 16.18 0.73 95.97 63.75 6.42
Beiki et al. (2010) 9.10 42.03 44.62 73.63 58.54
Sanei et al. (2013) 11.07 28.89 76.85 46.18 26.85

GSI, Ei or RQD Hoek and Diederichs (2006) 12.44 68.38 162.49 73.06 123.04
Beiki et al. (2010) 7.94 47.82 46.25 71.29 51.23

Q Grimstad and Barton (1993) 6.14 73.03 50.50 72.63 222.08
Barton (1996) 6.88 73.87 101.36 76.53 84.24
Palmstrom and Singh (2001) 5.77 73.41 62.21 79.51 59.38
Ajalloeian and Mohammadi (2014) 5.67 79.27 31.86 79.45 433.61
Kang et al. (2013) 10.64 36.20 43.08 78.35 65.49

RMi Palmstrom (1995) 6.72 78.48 97.52 79.62 106.48
Palmstrom and Singh (2001) 10.97 18.08 187.82 35.75 27.16

RQD Conn and Merritt (1970) 18.59 3.02 123.36 49.20 60.30
Gardner (1987) 14.21 9.49 128.58 53.20 81.66
Kayabasi et al. (2003) 8.94 24.05 132.02 44.06 3.01
Gokceoglu et al. (2003) 8.69 23.35 108.30 38.33 4.80
Zhang and Einstein (2004) 9.57 17.11 81.93 55.72 116.57

• For each statistical analysis, five of the empirical relationships with the highest predictive performance are shown in bold
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The variance accounted for (VAF) is the other statistical meth-
od which is used to measure preciseness of the prediction
method, and the one with high VAF denotes high predictive
performance for a given dataset. VAF is calculated as follows:

VAF ¼ 1−
var Ameas−Apred

� �
var Ameasð Þ

	 

� 100 ð5Þ

The mean absolute percentage error (MAPE) is a measure
of prediction accuracy of a forecasting method and usually
expresses the accuracy as a percentage as:

MAPE ¼ 1

N
∑

Ai meas−Ai pred

Ai meas

����
����� 100 ð6Þ

Low MAPE value shows high predictive perfor-
mance. The coefficient of determination (R2) is a mea-
sure of how well the prediction regression equation ap-
proximates the measured data points where R2 of 100%
indicates that the prediction regression line perfectly fits
the measured data.

Fig. 4 Evaluation of empirical
methods in estimation of the
deformation modulus using VAF

Fig. 3 Evaluation of empirical
methods in estimation of the
deformation modulus using
RMSE
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R2 ¼ 100

�
∑ Ai pred−Apred

� �
Ai meas−Ameas

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Ai pred−Apred

� �2
∑ Ai meas−Ameas

� �2
r

8>><
>>:

9>>=
>>;

2

ð7Þ

where Apred and Ameas are the mean of predicted and
measured deformation modulus values, respectively.

The F-test is a statistical analysis, which is used to compare
the variances of two data sets, and the F-statistic can be used to
evaluate the quality of regressions. The high F-statistic indicates

that the error is low relative to the predicted value, and the equa-
tionwith higher F-statistic has better predictive performance for a
given dataset. The F-statistic is calculated as follows:

F ¼ var Apred
� �

1

N−2
var Ameas−Apred

� � ð8Þ

As the measured rock mass modulus values varies consider-
ably in this study and the F-statistic is strongly influenced by the
error of largest values, logarithmic transformation was applied
on the input data to address this variation (Kallu et al. 2015).

Fig. 6 Evaluation of empirical
methods in estimation of the
deformation modulus using R2

Fig. 5 Evaluation of empirical
methods in estimation of the
deformation modulus using
MAPE
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Results and discussion

The predictive performance of empirical methods was evalu-
ated using five statistical analyses of RMSE, VAF, MAPE, R2

and F-statistic, and the results are presented in Table 3. Based
on each analysis, the calculated statistical values were sorted,
and the results are presented in Figs. 3, 4, 5, 6 and 7 (to
provide better comparisons in these figures, thirty empirical
equations with higher predictive performance are shown). The
number of data in statistical analyses for equations of Coon
and Merritt (1970), Bieniawski (1978a, b), Grimstad and
Barton (1993) and Palmström (2001) were lower than other

equations due to limitation of the range of applicability of
these equations, as noted in Table 1. In these equations,
Mitri et al. (1994) equation tends to overestimate the defor-
mation modulus while Isik et al. (2008a, b) equations under-
estimate the deformation modulus in most cases.

Comparison of the results show that different empirical
equations show the highest predictive performance based
on each statistical analysis. However, empirical ap-
proaches of Hoek and Diederichs (2006), Ajalloeian and
Mohammadi (2014), Alemdag et al. (2015), Kavur et al.
(2015) and Gokceoglu et al. (2003) in most of the analy-
ses show high estimation accuracy compared to the

Fig. 8 Prediction error of
empirical approaches for each
measured data point

Fig. 7 Evaluation of empirical
methods in estimation of the
deformation modulus using F-
statistics
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others. Therefore, these equations were chosen for de-
tailed analyses.

The prediction error (PE) is ameasure of prediction accuracy
for each data point and is usually expressed as a percentage as:

PE %ð Þ ¼ Apred−Ameas

Ameas
� 100 ð8Þ

The negative value of PE shows underestimation while its
positive value shows overestimation of the deformation modu-
lus. The graph of prediction error for measured data points is
depicted in Fig. 8. Comparison of the PE of the selected empir-
ical approaches show that the Ajalloeian and Mohammadi
(2014) and Hoek and Diederichs (2006) equations provide the

lowest error in estimation of the deformationmodulus while the
Kavur et al. (2015) equation tends to overestimate and
Gokceoglu et al. (2003) and Alemdag et al. (2015) equations
tend to underestimate the deformation modulus.

The PE cumulative frequency graph of the selected empirical
approaches is shown in Fig. 9. The steep curve of PE cumulative
frequency, which is located close to the vertical axis, can be a
good representative of prediction precision and accuracy. The
Ajalloeian and Mohammadi (2014) and Hoek and Diederichs
(2006) equations are the closest curves to the vertical axis. The
Ajalloeian and Mohammadi (2014) equation provides the most
precise estimation of the deformation modulus (due to steepness
of the curve compared to the Hoek and Diederichs (2006)

Fig. 10 Predicted deformation
modulus versus the measured one
for the selected empirical
approaches

Fig. 9 Cumulative frequency of
the prediction error of the selected
empirical approaches
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equation). The vertical axis intercept of the PE cumulative fre-
quency curve can be a measure of the empirical equation true-
ness. The Ajalloeian and Mohammadi (2014) equation underes-
timates the deformation modulus in 78% of the data points while
the Hoek andDiederichs (2006) equation shows underestimation
in 44% of the data points.

The graph of estimated deformation modulus versus the mea-
sured one for the selected empirical equations is illustrated in
Fig. 10. This graph shows that equation of Kavur et al. (2015)
overestimates the deformation modulus while Alemdag et al.
(2015) and Gokceoglu et al. (2003) equations underestimate
the deformation modulus. Empirical relationships of Hoek and
Diederichs (2006), Ajalloeian and Mohammadi (2014) slightly
underestimate the deformation modulus based on this graph, but
they are on the safe side from practical design considerations.

Conclusions

In this study, the predictive performance of empirical methods
in estimation of the deformation modulus was evaluated. There
were 99 data of plate jacking tests from three dam and
hydropower project sites in Iran provided, and the reliability
of empirical equations was evaluated using different statistical
analyses. Results of this study clearly show that empirical
equations of Hoek and Diederichs (2006) and Ajalloeian and
Mohammadi (2014) provide the most precise and accurate es-
timation of the deformation modulus.

One of the main sources of inaccuracy in empirical estima-
tion of the deformation modulus is related to employed data for
developing the empirical equations. Several approaches have
been proposed for measurement of the deformation modulus
where in some of them there is a need for a correction factor due
to small volume of the stressed rock mass and disturbance of
the rock near the loading place. The difficulty in interpretation
of the experiment results especially in anisotropic rock masses
can lead to misleading estimation of the deformation modulus.
The other source of inaccuracy in empirical equations is related
to the limited number of measurement data in a narrow range of
rock mass classification systems which results in uncertainty
beyond the range for which these equations have been
derived. The Hoek and Diederichs (2006) equation, which is
developed based on around 500 data in a wide range of rock
characteristics, provides the most reliable estimation of the rock
mass modulus based on the results of this study. However,
development of new equations based on a wide range of data
set in well-characterised rock masses are recommended for fu-
ture studies to increase the accuracy and precision of the defor-
mation modulus estimation for practical purposes. New im-
provements in numerical modelling, especially in discrete ele-
ment modelling, can also be employed to enhance our under-
standing regarding the effect of rock mass characteristics on the
deformation modulus.
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