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Abstract
An experimental study that contributes to the understanding of the relationships between petrographic features and engineering
properties of igneous rocks is conducted. To this end, a wide range of igneous rocks were tested for their engineering properties
including abrasivity (Cerchar abrasivity index), mechanical (point load strength index Is(50)), basic physical (dry density and
porosity) and dynamic (P-wave velocity) characteristics. Moreover, a semi-automatic method has been developed to analyze
petrographic data that relies on digital image acquisition from representative parts of representative thin sections of samples,
semi-automatic image segmentation and image analysis. The method quantifies 18 petrographic features including size descrip-
tors (area, perimeter, equivalent circular diameter, minimum Feret’s diameter, maximum Feret’s diameter), shape descriptors
(elongation, orientation, eccentricity, compactness, rectangularity, solidity, convexity), rock fabric coefficients (index of
interlocking, index of grain size homogeneity, texture coefficient) and mineralogical indices (saturation index, feldspathic index,
colouration index). The Pearson’s correlation coefficient and multivariate regression analysis are employed to analyze the
relationships between extracted petrographic features and engineering properties. In general, fine-grained and basic igneous
rocks compared to the acidic and coarse-grained ones possess higher engineering quality and lower abrasiveness potential. The
results imply that mineralogical composition tends to be more important than rock fabric characteristics in determining the
engineering properties of igneous rocks. Furthermore, among rock fabric characteristics, size descriptors have significant influ-
ence on the engineering properties. Overall, it was found that mineralogical composition and rock fabric characteristics provide a
suitable complement to reliably predict engineering properties of igneous rocks.
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Introduction

It is believed that engineering properties of intact rocks are
some functions of their petrographic features and physical
characteristics. Rocks are mostly composed of varying per-
centages of minerals with different grain size, grain shape
and micro-fabric characteristics (Aligholi et al. 2017a).
Many research studies have dealt with the relationship be-
tween rock fabric and mechanical properties of different rock

types (Olsson 1974; Hugman and Friedman 1979; Howarth
and Rowlands 1987; Hatzor and Palchik 1997; Akesson et al.
2003; Jeng et al. 2004; Přikryl 2001, 2006; Ozturk and Nasuf
2013; Tandon and Gupta 2013; Pappalardo et al. 2016). Rock
fabric properties affecting the mechanical performance of
rocks are grain size, shape and degree of interlocking, porosity
(crack and pore), grain orientation and the nature of grain
boundaries (Howarth and Rowlands 1987). On the other hand,
some research studies were performed to investigate the rela-
tionship between mineral constituents and mechanical behav-
ior of different rocks (Bell 1978; Fahy and Guccione 1979;
Gunsallus and Kulhawy 1984; Ulusay et al. 1994; Tugrul and
Zarif 1999; Zorlu et al. 2008; Yilmaz et al. 2011;
Hashemnejad et al. 2016; Moradizadeh et al. 2016). As noted
by Howarth and Rowlands (1987), as well as Tandon and
Gupta (2013), some of these studies reported contradict out-
comes, for example about the relationship between quartz
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content and UCS in sandstone. This may be due to different
types of structural and non-structural conditions. Structural
conditions are pertaining to both the genesis of the rocks and
the environmental conditions such as regional tectonic setups,
temperature and hydrothermal solution, which cause different
degrees of alteration and weathering, while the non-structural
ones are mostly related to measurement methodology and
equipment conditions.

There are diverse studies presenting the qualitative rela-
tionship between rock fabric and mechanical properties of
rocks, but quantitative approach of petrographic character-
ization is adopted in rock mechanics studies only recently
(Brosch et al. 2000; Raisanen 2004; Přikryl 2001, 2006;
Gupta and Sharma 2012; Ozturk and Nasuf 2013; Tandon
and Gupta 2013). This is probably due to laborious and
time consuming factors (Přikryl 2006; Gupta and Sharma
2012). The need for the rapid and accurate quantitative
processing of microstructures has increased during recent
decades and leads to the implementation of computer
assisted image analysis in material sciences including ge-
ology (Přikryl 2006). Combining thin section examination
with computer programs that analyze rock photomicro-
graph allow fast measurement and quantitative analysis of
thin section features (Reedy 2006).

In this study we dealt with the problem of automated rock
photomicrograph analysis, as well as the effects of petrograph-
ic characteristic including rock fabric features and mineralog-
ical composition on engineering properties of igneous rocks.
For such purpose with the aid of digital microscopy and image
processing techniques, first representative digital images from
representative thin sections of studied igneous rocks were seg-
mented, then rock fabric features and mineralogical indices
were extracted and correlated with selected engineering
properties.

Materials

The aim of this research is to inquire the relationships between
petrographic features and engineering properties of igneous
rocks; for this purpose, 28 various types of igneous rocks have
been sampled in 15 different locations of Iran (Fig. 1). Awide
range of igneous rocks including plutonic, hypabyssal and
extrusive are examined in this study (Table 1). According to
Anon (1995), all samples were unweathered or slightly weath-
ered, and blocky samples carefully checked to ensure they
were homogeneous and free from visible plans of weakness.
Each block sample was drilled or cut to obtain cylindrical
cores or blocky specimens to inspect engineering properties.

Fig. 1 Location map of the rock
samples
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Thin sections were also prepared from each rock sample for
petrographic analysis.

Semi-automatic petrography

Image acquisition method

In this study, thin sections are imaged using a digital camera
mounted on a petrographic microscope. The microscope is
equipped with an analyzer and polarizer that might be rotated
independently. All images were captured under cross-
polarized light (XPL) using red, green and blue (RGB) com-
ponents in JPG format with a resolution of 5184×3456 pixels,
which are resized to 1037×692 to shorten the processing time.

Depending on grain size, the variations in grain size, and
rock homogeneity, at least two thin sections were studied for
each rock sample. Measurement of 50-200 grains is often
needed in order to adequately characterize a single thin section
(Middleton et al. 1985). Considering the grain size (i.e. mean

equivalent circular diameter of grains), the studied igneous
rocks were classified for image acquisition as follows:

& Fine-grained rocks (mean grain size 0.08 – 0.15 mm):
With respect to homogeneity of these rocks, image/
images were taken from 1 to 5 parts of thin sections [i.e.
center, upper (left and right) and lower (left and right) parts
of a thin section] under 100× microscope magnification.

& Fine- to medium-grained rocks (mean grain size 0.15 –
0.30 mm): With respect to homogeneity of these rocks,
image/images were taken from one to five parts of thin
sections under 40× microscope magnification.

& Medium- to coarse-grained rocks (mean grain size 0.30 –
1mm):With respect to homogeneity of these rocks, one or
two horizontal line/lines were scanned along the thin sec-
tions under 40× or 25× microscope magnifications. For
such purpose, firstly one or two representative scan line/
lines in a thin section selected [Fig. 2a], then imaging
carried out as follows:

Table 1 Modal analysis and rock names of the studied rocks

Rock
code

Qtz
(%)

Pl
(%)

Afs
(%)

Bt
(%)

Ms
(%)

Am
(%)

Chl
(%)

Cpx
(%)

Opx
(%)

Ol
(%)

Grt
(%)

OM
(%)

Ep
(%)

Gl
(%)

AM
<1%

Rock name*

R1 28 35 20 17 – – – – – – – – – – Zrn Micro-monzogranite
R2 38 24 28 3 7 – – – – – – – – – – Monzogranite
R3 31 21 34 4 9 – 1 – – – – – – – – Monzogranite
R4 – 41 – – – 5 – 8 5 – 2 2 1 36 – Hyalo-basaltic

andesite
R5 32 34 27 4 – 2 – – – – – 1 – – – Monzogranite
R6 – 47 – – – 4 – 19 5 9 – 13 3 – – Basalt
R7 37 22 31 7 – 1 2 – – – – – – – Zrn Monzogranite
R8 37 18 38 5 – 1 1 – – – – – – – Zrn Syenogranite
R9 41 14 40 2 – 1 2 – – – – – – – Zrn Syenogranite
R10 26 17 48 6 – – 1 – – – – – 2 – – Syenogranite
R11 12 34 7 9 – 3 – – – – – 3 – 32 – Hyalo-dacite
R12 29 38 22 4 – 3 2 – – – 1 1 – – – Monzogranite
R13 14 46 16 – – 12 9 – – – – 3 – – Zrn Quartz

Monzodiorite
R14 12 59 3 – – 7 9 4 – – – 6 – – – Andesite
R15 1 64 1 3 – 23 3 – – – 1 4 – – Spn Diorite
R16 4 63 6 – – 14 8 – – – – 5 – – – Andesite
R17 28 29 35 5 – – 3 – – – – – – – – Monzogranite
R18 – 48 – 4 – 3 – 16 6 – 9 6 8 – – Gabbro
R19 – 36 – 5 – 7 – 18 11 14 – 2 7 – – Gabbro
R20 – 57 2 4 – 6 – – 11 8 1 5 6 – Zrn Diorite
R21 – 58 3 4 – 4 – 13 3 7 1 4 3 – – Diorite
R22 13 33 41 1 – 9 – – – – – 3 – – – Quartz Monzonite
R23 7 40 44 1 – 6 – – – – – 2 – – – Quartz Monzonite
R24 12 24 56 2 – 4 – – – – – 2 – – – Quartz Syenite
R25 3 69 7 4 – 14 – – – – – 3 – – – Andesite
R26 27 41 19 6 – 4 1 – – – – 2 – – Spn Granodiorite
R27 29 45 9 7 – 6 2 – – – 1 1 – – Spn Granodiorite
R28 – 59 – 8 – 5 – 12 4 – – 2 6 4 – Micro-gabbro

*According to optical microscopy studies (Streckeisen, 1976)

**Qtz: Quartz; Pl: Plagioclase; Afs: Alkali feldspar; Bt: Biotite; Ms.: Muscovite; Am: Amphibole; Chl: Chlorite; Cpx: Clino pyroxene; Opx:
Orthopyroxene; Ol: Olivine; Grt: garnet; OM: Opac minerals; Ep: Epidote; Gl: glass; AM: Accessory minerals; Zrn: zircon; Spn: Sphene
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a) Camera field of view (FOV) was fixed at the end
of a scan line where the scan line located at the
lower part of camera FOV (Fig. 2b), and first im-
age was taken.

b) Then, using a mechanical stage thin section
moved towards another end of the scan line and
second image was taken, it is notable that the first
and the second images had about 30-40% overlap
with each other (Fig. 2c). The scheme was con-
tinued to the other end of the scan line.

c) Next, the thin section was moved vertically where the
scan line located at the upper part of camera FOV
(Fig. 2d), and next image was taken.

d) After that, thin section was moved towards the point
at which the imaging was started, and next image was
taken. This image had about 30-40% overlap with the
former image (Fig. 2e). The schemewas continued up
to the point at which the imaging was started.

Finally, these image series were merged to each
other to create a unified image for further analysis,
as an example, Fig. 3 illustrates one of the unified
images obtained from R26 sample.

& Coarse-grained rocks (mean grain size 1 – 1.3 mm): With
respect to homogeneity of these rocks, two or more scan
lines of thin sections were scanned under 25× microscope
magnification which had side by side overlaps.

It is notable that grain size (mean equivalent circular diam-
eter of grains) of the studied rocks ranged between 0.09mm to
1.21 mm.

Image segmentation method

Quantitative analysis of micropetrographic data such as rock
fabric and mineralogical composition is a time consuming
task. Thus, (semi-)automatically quantifying grain size, grain
shapes and grain contacts are commonly applied to

characterize mineral shape fabrics and determine modal rock
composition (Asmussen et al. 2015). The technique of
(semi-)automatic rock photomicrograph segmentation as a
prerequisite for any rock fabric analysis scheme is a challeng-
ing, popular, and important research topic in computational
geology, mineralogy, and mining engineering (Izadi et al.
2015).

So far, several image processing and pattern recognition
techniques such as color analysis, textural analysis, and fre-
quency domain analysis are employed in rock analysis; most
of such techniques are devoted to the field of (semi-)automatic
rock photomicrograph segmentation (Goodchild and Fueten
1998; Heilbronner 2000; Zhou et al. 2004; Barraud 2006;
Obara 2007; Fueten and Mason 2007; Filho et al. 2013), as
well as mineral identification (Ross et al. 2001; Thompson et
al. 2001; Marschallinger and Hofmann 2010; Aligholi et al.
2015, 2017b) as two prerequisite for any rock analysis
scheme. A number of petrographic image segmentation tech-
niques such as threshold, boundary-based, region-based, and
hybrid techniques can be found in the previously mentioned
literature. In this paper, a method has been developed to
segmenting petrographic images, which relies on the follow-
ing steps:

Step 1 (Convert RGB image to grayscale): 24-bit RGB
images were transformed into eight-bit intensity images
by forming a weighted sum of the R, G, and B
components.
Step 2 (Image enhancement): This step involves two cy-
cles of noise reduction bymeans of median filter, enhanc-
ing the contrast of images using histogram equalization,
and opening-closing by reconstruction, which uses the
fast hybrid grayscale reconstruction algorithm described
in (Vincent 1993). Such morphological operations reduce
negative effects of noise within grain regions (e.g. cracks,
twinning and undulose extinction) whilst retaining the
shape of the grains is of much interest.

(a) (b) (c)

(d) (e)

Fig. 2 Schematic view of image acquisition of medium to coarse grained
rocks; (a) selected scan lines in thin section; (b) first FOVon the right end
of the scan line, in which the selected scan line appears at the lower part of
the FOV; (c) second FOVon the right end of the scan line, which has an

overlap with first FOV; (d) first FOVon the left end of the scan line, in
which the selected scan line appears at the upper part of the FOV; (e)
second FOVon the left end of the scan line, which has an overlap with the
former FOV
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Step 3 (Image segmentation): To segment grains in rocks
under examination an algorithm described by Jin (2012)
was employed. The method has four main following
steps:

– Computing a gradient map or intensity map from the
image;

– Computing a cumulative distribution function from the
gradient map;

– Modifying the map using the selected scale level value;
and

– Segments the modified gradient map using a watershed
transform.

The method has good segmentation results, if good prepro-
cessing such as noise reduction and contrast enhancement
(step 2), as well as adequate adjustment of dynamic parame-
ters (i.e. scale level and edge level) are applied. The scale level
is computed from a normalized cumulative distribution func-
tion of the pixel values in the image. For example, the lowest
20% of gradient magnitude values are discarded from the
gradient image, if a scale level of 20 is employed. Increasing
the scale level keeps objects with the most distinct edges. The
method uses of edge level as a threshold for merge adjacent
segments, increasing the merge level results in more merging.
Over-segmented areas were merged using full lambda sched-
ule which iteratively merges adjacent segments based on a
combination of spectral and spatial information (Robinson et
al. 2002). Sobel edge detection method is provided for

applying a watershed algorithm on the modified gradient
map. The watershed transform is based on the concept of
hydrologic watersheds (Vincent and Soille 1991).

In this method, prior to segmenting the modified gradient
map, a preview window of the digital image can be segmented
at the selected scale level and merge level to determine if the
selected parameters will give the desired segmentation. The
dynamics parameters are the variables in this algorithm and
are different for each of rocks under examination, based on
our experience a scale level value about 70-80%, and an edge
level value of about 80-90 give satisfactory segmentation re-
sults for enhanced gray scale petrographic images. It is notable
that after segmentation, objects less than minimum grain size
of each rock are removed. The detailed algorithm used in
application of the described procedure is presented in Fig. 4.

Step 4 (Manual post-processing): Texture features of
some minerals, for example plagioclase and microcline
that show twinning commonly causes faulty segmenta-
tion of these minerals; so, a post-processing step is
required.

Feature extraction and microstructural analysis

For the sake of petrographic features extraction, firstly seg-
mented photomicrographs scaled using converted the pixel
values to millimeters by a conversion factor, which is obtained

1 (1037 692) 2 (1037 692) 3 (1037 692) 4 (1037 692) 5 (1037 692) 

6 (1037 692) 7 (1037 692) 8 (1037 692) 9 (1037 692) 10 (1037 692) 

11 (1037 692) 12 (1037 692) 13 (1037 692) 14 (1037 692) 15 (1037 692) 

16 (1037 692) 17 (1037 692) 18 (1037 692) 19 (1037 692) 20 (1037 692)

21 (6889 1103) 

× × × × ×

× × × × ×

× × × × ×

× × ×

×

× ×

Fig. 3 Prepared images from a
thin section of the R26 sample
with about 1 mm mean grain size
under cross polarized light. (1-20)
Camera FOVat different parts of
the thin section, in which selected
scan line appears at lower or up-
per of them (the scan line indi-
cated with a pencil); (21) unified
image from 1 to 20 images (size
of each images indicated, the
length of scan line is 29.13 mm,
and the microscope magnification
is 25×)
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based on a standard scaled thin section for each microscope
magnification. Then, the mean of basic size and shape descrip-
tors described in Table 2 of all grains are obtained for each

rock (Table 3). It is notable that for each rock, the mean of
orientation of all grains subtracted from 90 and the absolute
value of this number is reported as the orientation; higher

Fig. 4 Segmentation flow sheet
of unified photomicrograph from
a thin section of the R15 sample

S. Aligholi et al.2304



values of this parameter show that the grains of a rock are
more oriented to a specific direction. From Table 2, it can be
deduced that if grains of a rock were randomly oriented, its
mean that orientation would be around 90. Therefore, the
higher the deviation between computed orientation of a rock
and 90 is, the more oriented grains towards a specific direction
the rock has. According to Table 3, the R25 sample, which is a
fine-grained andesite is the most oriented sample. Fig. 5
shows a photomicrograph of the R25 sample, grains orienta-
tion of the sample can be compared with those of R26 (Fig. 3),
R15 (Fig. 4), R4 [Fig. 6a] and R11 [Fig. 6b] samples.
Moreover, modal composition of the studied rocks is obtained
from segmented photomicrographs using manual classifica-
tion of grains presented in Table 1. It is worth mentioning that
under cross-polarized light different minerals regarding the
angle between their thin sections and optical axes might show
similar optical characteristics in a specific direction and cannot
be recognized just based on a single image (e.g. quartz from
plagioclase showing no twinning nor alteration). In such
cases, thin sections were checked using a microscope to en-
sure that minerals are correctly classified.

Based on basic size and shape descriptors, some rock fabric
coefficients are computed for each studied rock. Moreover,
some mineralogical indices, which are used in modal classifi-
cation of igneous rocks (Jung and Brousse 1959), are comput-
ed using modal analysis of the rocks. The results are given in
Table 3. The fabric coefficients and mineralogical indices are
presented as follows:

Texture coefficient (TC) is a quantitative dimensionless co-
efficient which comprise grain shape parameters such as cir-
cularity, elongation, orientation of grains, and relative propor-
tions of grains and matrix. The coefficient is calculated by the

following formula that was suggested by Howarth and
Rowlands (1987):

TC ¼ AW� N0

N0 þ N1
� 1

FF0

� �
þ N1

N0 þ N1

� �
� AR1 � AF1

� �

ð1Þ
where AW is the area weighting (grain packing density), N0 is
numbers of grains with aspect ratio (ratio of the maximum to
the minimum Feret’s diameter) less than 2.0, N1 is numbers of
grains with aspect ratio greater than 2.0, FF0 is the arithmetic
mean of form factor of all N0 grains calculated using 4⋅π⋅Area

Perimeter2
,

AR1 is arithmetic mean of aspect ratio of N1 grains, and AF1 is
angle factor orientation which were computed for allN1 grains

which is calculated using 1
5 ∑

9

i¼1

1
5 where N is the total number

of elongated particles, Xi is the number of angular differences
in each class and i is the weighing factor and class number.

Index of interlocking (g) is an arithmetic mean of propor-
tion of rock grains perimeter which contacts neighboring
grains quantified by square root of their respective area
(Dreyer 1973). The increasing value of this parameter indi-
cates a higher complexity of the grains’ boundaries (Přikryl
2006). It is computed from the following formulas:

g ¼ 1

n
⋅∑

Lpiffiffiffiffiffi
Ai

p ð2Þ

in which n is the number of grains considered, Lpi and Ai

are the grain perimeter which contacts neighboring grains
and grain area, respectively. It is notable that the index of
interlocking of the R4 and the R11 samples are considered
as zero, because these samples are two hyaline extrusive
rocks, and their grains mostly do not contact with each
other (Fig. 6).

Table 2 Summary of the studied size and shape descriptors

Category Parameter Computation

Size descriptor Area Number of pixels in the object

Perimeter Length of the outline of the object

Size Equivalent circular diameter

Minimum Feret’s diameter Minimum caliper

Maximum Feret’s diameter Maximum caliper

Shape descriptor Elongation Ratio of the maximum to the minimum Feret’s diameter

Orientation Angle between the horizontal axis and the major axis of the ellipse equivalent to
the object (0-180 degrees, counterclockwise)

Eccentricity Ratio between the major and the minor axis of the ellipse equivalent to the object

Compactness Ratio of the area of the object to the area of a circle with the same perimeter

Rectangularity Ratio of the area of a rectangle (formed with length and width as sides) to the area of the object

Solidity Ratio of the area of the object to the area of the convex hull of the object

Convexity Ratio of the perimeter of the convex outline of the object to the perimeter of the object

Estimating engineering properties of igneous rocks using semi-automatic petrographic analysis 2305
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Index of grain size homogeneity (t) is a fabric parameter
describing grain size distribution in the material (Dreyer
1973):

t ¼ Aavgffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ Ai−Aavg
� �2q ð3Þ

where Aavg is the average area of the grains and Ai is the area of
individual grain.

Saturation Index (IS) is the ratio of the percentage of quartz
(Qtz) to summed percentage of quartz and feldspars (F):

IS ¼ Qtz%
Qtzþ Afsþ Plð Þ% � 100 ð4Þ

Feldspathic Index (IF) is the ratio of the percentage of
alkali-feldspars (Afs) to summed percentage of alkali-
feldspars and plagioclase (Pl):

IF ¼ Afs%
Afsþ Plð Þ% � 100 ð5Þ

Colouration Index (IC) is the sum of volume percentages
of the colored, or dark, minerals contained in the rock:

IC ¼ 100− Qtzþ Afsþ Plð Þ% ð6Þ

It is notable that for the computation of mineralogical indi-
ces of hyaline rocks, percentage of mineral phases is consid-
ered as 100.

Engineering properties

In this study, each block sample was drilled or cut to obtain
cylindrical cores or blocky specimens to inspect the physical,
dynamic and mechanical properties. Various standard test pro-
cedures were carried out to determine engineering properties
of the studied rocks. The basic physical properties of the rock
samples including density and porosity were measured ac-
cording to ISRM (1981). The P-wave velocity was determined
using a Portable Ultrasonic Nondestructive Digital Indicating
Tester (PUNDIT) according to ISRM (2007). Point load
strength test was performed on blocky or core samples (axial
test) according to ISRM (1985). Cerchar abrasivity test was
conducted following the ISRM suggested method (Alber et al.
2014) by means of the modified Cerchar apparatus as reported
by West (1989). The results are shown in Table 4.

Intact rock material strength is classified according to the
magnitude of uniaxial compressive strength or point load in-
dex test results (Bieniawski 1989). The point load test is an
attractive alternative to the UCS because it can provide similar
data at a lower cost (Gurocak et al. 2012). Also, the point load
strength index can be used to predict other strength parameters
such as uniaxial tensile and compressive strengths (Broch and
Franklin 1972; ISRM 1985; Kahraman 2001; Lashkaripour
2002; Palchik and Hatzor 2004; Heidari et al. 2012; Kohno
and Maeda 2012; Li and Wong 2013).

Rock abrasivity has become one of the necessary parame-
ters for mechanical excavation of rock in the tunneling indus-
try (Hassanpour et al. 2011). The Cerchar abrasivity index
(CAI) is a common method of predicting abrasiveness in ex-
cavation tools (Moradizadeh et al. 2016). The Cerchar
abrasivity test has also been employed by Colorado School
of Mines to predict the cutter life of the hard rock TBMs
(Rostami et al. 1996). Some researchers have investigated
the petrographic features affecting CAI (Suana and Peters

Fig. 6 Unified images from samples R4 (a) and R11 (b)

Fig. 5 Photomicrograph of R25 sample
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1982; Lassnig et al. 2008; Rostami et al. 2014; Selman Er and
Tugrul 2016). From these studies it is readily evident that both
rock fabric and mineralogical characteristics have important
effects on the abrasiveness potential of rocks.

Results and discussion

Correlations between the petrographical
and the engineering properties

To control the effectiveness of the proposed semi-automatic
petrographic analysis, firstly the Pearson’s correlation coeffi-
cient (R) is employed:

Rxy ¼ cov x; yð Þ
sxsy

ð7Þ

where to find the correlation between the variables by dividing
the covariance by their standard deviations.

From the results, it is obvious that among evaluated petro-
graphic features mineralogical composition, as well as size
descriptors have more correlation with engineering properties
of the igneous rocks (Fig. 7). From Fig. 7, no meaningful
correlations between engineering properties and neither indi-
vidual shape descriptors nor fabric coefficients can be
established. Texture coefficient as an index can be considered
as a significant and valid parameter to describe and classify
different lithotypes (Howarth and Rowlands 1987; Ozturk and
Nasuf 2013; Tandon and Gupta 2013), but as noted by Azzoni
et al. (1996) and proved later by Přikryl (2006), and regarding
the result of the present study, it is not reliable for accurately
predicting mechanical properties of all lithologies. The failure
of rock fabric coefficients including texture coefficient, index
of interlocking, and index of grain size homogeneity is prob-
ably because these measures ignore the effect of both grain
size and mineralogical composition of the studied rocks.

As shown in Fig. 7, it can be clearly seen that coarse-
grained igneous rocks have lower strength, dry density and
P-wave velocity generally. In different studies, it is reported

Table 4 Engineering properties
of the studied rocks Rock code Dry density (gr/cm3) Porosity (%) P-Wave velocity (m/s) CAI (mm/10) IS(50) (MPa)

R1 2.72 1.13 4841 4.3 6.14

R2 2.63 1.01 4451 4.0 6.72

R3 2.62 1.25 4301 4.1 5.63

R4 2.65 0.65 5715 3.2 9.78

R5 2.64 1.4 5406 3.3 7.77

R6 2.91 0.89 6193 3.3 14.64

R7 2.63 0.87 5109 4.1 7.72

R8 2.62 0.86 5064 4.5 7.65

R9 2.62 0.84 5195 4.6 8.69

R10 2.69 0.76 5136 3.8 5.49

R11 2.59 1.91 5351 2.7 10.24

R12 2.64 1.49 4115 3.2 7.78

R13 2.72 2.76 4394 3.9 8.36

R14 2.75 0.57 6156 2.9 12.29

R15 2.89 0.67 5422 3.0 11.93

R16 2.69 1.26 5825 3.1 8.69

R17 2.62 1.31 4555 4.5 6.91

R18 2.98 0.55 6182 2.6 11.41

R19 3.14 0.18 7239 2.8 12.29

R20 2.83 0.18 6365 2.9 11.08

R21 2.78 0.26 6342 2.9 10.87

R22 2.58 2.31 5246 3.6 7.00

R23 2.63 1.46 5135 3.4 8.19

R24 2.56 3.57 4531 3.1 5.59

R25 2.64 0.74 5783 2.9 10.49

R26 2.66 1.07 4277 3.8 7.27

R27 2.65 1.19 5367 4.4 6.07

R28 2.89 0.29 6491 3.0 10.68
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that mean grain size of rock has an inverse relationship with
strength properties of rocks (Onodera and Asoka Kumara
1980; Tugrul and Zarif 1999; Přikryl 2006). As mentioned
by Přikryl (2006) an explanation of this phenomenon based
on Griffith’s theory is given by Brace (1961) who supposed
the close connection between Griffith’s crack length and max-
imum grain size diameter.

Since igneous rocks have a variety of different mineralog-
ical compositions, in this study saturation index, feldspathic
index and coloration index, which are used in French modal
classification of igneous rocks, are employed to correlate with
engineering properties. Such mineralogical indices could

efficiently incorporate mineral variations in igneous rocks.
According to Fig. 7, there are some negative correlations be-
tween IS and index properties of the studied rocks including
density, P-wave velocity and point load strength. There is also
a good positive correlation between the IS and CAI, which
shows the high abrasiveness potential of acidic igneous rocks.
There are quite similar correlations between IF and engineer-
ing properties. In contrast, the IC decreases as the CAI in-
creases. Also, direct relationships exist between IC, density,
P-wave velocity and point load strength. As can be seen from
Fig. 7, there are significant correlation between engineering
properties and IC, with the exception of porosity which it is

Fig. 7 Pearson’s correlation
coefficient between
petrographical features and
engineering properties of the
studied rocks

Table 5 Correlations of the engineering properties of the studied rocks

R2 Dry density (gr/cm3) Porosity (%) P-Wave velocity (m/s) IS(50) (MPa) CAI (mm/10)
R

Dry density (gr/cm3) 0.31 0.54 0.52 0.24

Porosity (%) −0.56 0.38 0.26 0.02

P-Wave velocity (m/s) 0.73 −0.61 0.59 0.37

IS(50) (MPa) 0.72 −0.51 0.77 0.44

CAI −0.49 0.15 −0.61 −0.66
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expected. It is worth mentioning that this experimental study
showed that plagioclase and ferromagnesian minerals except
mica establish positive effects on engineering properties of the
tested rocks, but quartz, alkali feldspars and mica minerals
(biotite and muscovite) show negative effects on engineering
properties of igneous rocks. In general, based on the results of
laboratory tests and petrographic analysis of the studied un-
weathered igneous rocks, it might be concluded that fine-
grained and basic igneous rocks compared to the acidic and
coarse-grained rocks possess higher engineering quality and
lower abrasiveness potential.

Correlations of the engineering properties

There are numerous studies in the literature proposing empir-
ical correlations between mechanical, physical and dynamical
properties of various rock types (see e.g. Deere and Miller
1966; Palchik 1999; Kilic and Teymen 2008; Azimian 2017;
Aligholi et al. 2017c). From the results of the present study
there are direct relationships between density, P-wave velocity
and point load strength index (Table 5). Also, there are nega-
tive correlations between CAI and previously mentioned en-
gineering properties. In other words, basic rocks have higher
strength and lower abrasiveness potential.

Table 5 confirm that studied engineering properties are
more or less independent from each other, and reflecting a

variety of different properties of the studied igneous rocks.
Therefore, selected engineering properties are good options
for evaluation of micropetrographic data in order to predict
engineering properties of igneous intact rocks.

Multiple linear regression model

Most problems in mining and geology involve complex and
interacting forces, which are impossible to isolate and study
separately (Davis 1973). Engineering properties of rocks
might be affected by multiple petrographic features such as
mineralogy and modal composition, grain size, grain size ho-
mogeneity, grain shape, degree of interlocking, fractures and
discontinuities, weathering and alterations; so, for a reliable
and robust prediction of rock engineering properties, a reason-
able combination of some petrographic features is required.
Multiple regression analysis is a powerful modeling tech-
nique, which can help in the evaluation of the mechanical
properties of rock (Cobanoglu and Celik 2008).

Ulusay et al. (1994) used multivariate regression models to
investigate relationships between engineering properties and
petrographic characteristics of some litharenite sandstones.
Multivariate regression models are recently employed by
some researchers for rock engineering properties prediction
from simple methods (Karakus et al. 2005; Yilmaz and
Yuksek 2009; Gurocak et al. 2012; Minaeian and Ahangari

Table 6 Summary of the multiple regression models and some statistical parameters on evaluation of validity of developed models

Dependent variable Dry density
(g/cm3)

Porosity (%) P-Wave velocity
(m/s)

IS(50) (MPa) CAI (mm/10)

Constant 5.3050 −17.195 −47,196 63.765 51.529

Regression coefficient of independent variables Area (mm2) 0.0023 2.1210 −570.54 −1.1841 −0.3663
Perimeter (mm) 0.1199 −1.6088 1475.6 2.0366 −0.3242
Size (mm) 0.6045 −54.543 3432.2 −56.205 39.644

Min of Feret’s (mm) −3.0458 29.052 12,144 −13.938 −46.555
Max of Feret’s (mm) 0.9725 20.675 −14,269 32.589 4.2615

Elangation −0.7942 −3.0272 14,840 −3.4364 −13.304
Orienetation (0) 0.0058 −0.0172 1.9559 0.1527 0.0425

Eccentricity −0.0031 −0.2177 −812.23 0.1301 0.7748

Compactness 1.2809 −6.5062 −6843.7 112.56 14.429

Rectangularity 0.1371 2.9303 5075.0 13.566 −2.4908
Solidity −3.0899 28.963 19,019 2.2468 −24.287
Convexity −0.1793 5.8506 16,961 −138.93 −18.682
g 0.0037 −0.0252 38.415 −0.4606 0.0437

t 1.3889 19.955 −15,176 5.2283 −0.1394
IS 0.0072 −0.0195 8.4220 0.1444 0.0123

IF −0.0016 0.0035 −0.5043 −0.0841 0.0062

IC 0.0115 −0.0322 58.903 0.0700 −0.0199
Performance index R2 0.98 0.71 0.97 0.93 0.87

RMSE 0.04 0.68 244 1.07 0.37

p-Value 0.0000 0.2730 0.0000 0.0013 0.0151
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2013; Aligholi et al. 2017a, c), and better results than simple
regression analysis are reported.

In order to describe the relationships between multiple pet-
rographic features and engineering properties of the tested
rocks, multiple regression model with a 95% confidence level
by considering linear functions were applied:

Y ¼ β0 þ β1x1 þ β2x2 þ⋯þ βnxn ð8Þ
where Y is the dependent variable, β0 is a constant value, xl to
xn are the independent variables, and β1 to βn are partial

regression coefficients for xl to xn. The results of the regres-
sion analyses are given in Table 6. To check the validation of
the statistical models, the measured engineering properties
values are plotted versus the predicted values from these
models (Fig. 8). It can be clearly seen that, with the exception
of the porosity predictive model (Fig. 8d), points are distrib-
uted nearly uniformly around the diagonal lines, that proved
the validity of proposed models.

As shown by Table 6, as it is expected only the statistical
model developed to prediction of porosity from petrographic
features fails to reject the null hypothesis at the default α =

Fig. 8 Graphs of the predicted engineering properties from petrographical analysis versus the measured engineering properties: IS(50) (a), CAI (b), Dry
density (c), Porosity (d), and P-wave velocity (e)
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0.05 significance level, and other models are statistically sig-
nificant. To control the performance of developed models, the
root mean square errors (RMSE) was calculated for eachmod-
el, from the following formulas:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
yi−y

0
i

	 
s
ð9Þ

where y and y′ are the measured and predicted values and N is
the number of samples. If the R-squared (R2) is 1 and RMSE
is 0, the model proposed would be excellent.

Conclusion

This paper proposes a semi-automatic micropetrographic im-
age analysis scheme, which is relatively simple and requires
no sophisticated equipments for image acquisition. The pro-
posed method is based on extraction and integration of seven-
teen petrographic features including size descriptors (1. Area;
2. Perimeter; 3. equivalent circular diameter; 4. minimum
Feret’s diameter; 5. maximum Feret’s diameter), shape de-
scriptors (6. elongation; 7. orientation; 8. eccentricity; 9. com-
pactness; 10. rectangularity; 11. solidity; 12. convexity), rock
fabric coefficients (13. index of interlocking; 14. index of
grain size homogeneity) and mineralogical indices (15. satu-
ration index; 16. feldspathic index; 17. colouration index), and
is designed to allow rapid assessment of engineering proper-
ties of igneous rocks. The adopted methodology in this pro-
cedure involves: (1) generation of representative images using
digital microscopy, (2) pre-processing and segmentation of
images, (3) petrographic feature extraction, and (4) multivar-
iate regression analysis for accurate prediction of engineering
properties. The computer-aided procedure is examined for its
performance and efficiency by using typical engineering prop-
erties such as density, porosity, P-wave velocity, strength and
abrasivity of a wide range of Iranian igneous rocks.

This paper sheds further light on the relationships between
petrographic features of igneous rocks and the engineering
properties mentioned above. Based on the results of this study,
the following conclusions may be reached:

1. The study revealed that the influence of mineralogical
composition on engineering properties of igneous rocks
appears to be more important than rock fabric
characteristics.

2. Among rock fabric characteristics, size descriptors have
significant influence on the engineering properties.

3. Generally, fine-grained and basic igneous rocks pos-
sess higher engineering quality and lower abrasiveness
potential in comparison with the acidic and coarse-
grained ones.

4. We found no meaningful correlation between the engi-
neering properties and texture coefficients of the studied
igneous rocks.

5. Multivariate regression analysis is an efficient method for
the sake of petrographic analyses.

6. Our statistical models suggest that rock fabric features and
mineralogical composition make fine complements for
predicting the engineering properties of igneous rocks,
and that both of them must be considered for a complete
quantitative micropetrographic data analysis.

7. The results obtained from multiple regression models
prove the efficiency and success of such models in
predicting engineering properties. This shows that select-
ed mineralogical and rock fabric features are significantly
efficient in the engineering properties prediction of igne-
ous rocks, and if a well-organized method is available,
such features might be sufficient for an accurate predic-
tion procedure, which in many cases can avoid time-
consuming and tedious test methods.

Because of the petrographic variety and structural com-
plexity, igneous rocks exhibit a wide range of engineering
behaviors that may affect tunneling, mining, slope stability
and their use as a construction material. This research, how-
ever, concludes that petrographic quantification using the pro-
posed semi-automatic method is a reliable and inexpensive
approach for analyzing the engineering properties of igneous
rocks.
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