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Abstract
A new methodology is presented for 3-D automated mapping of joints that are exposed primarily as traces in a rock face as
opposed to planar facets. Themethod identifies 3-D points in a photogrammetry or a LiDAR derived point cloud that corresponds
to the traces of the joints as observed in image data. First, the 2-D trace texture is extracted from image data using a hybrid global
and local threshold method and integrating a series of image-processing algorithms. Second, data matching links the pixel
locations corresponding to the identified traces in an image to the 3-D coordinates in the point cloud. This matching is accom-
plished by a coordinate transformation between the image coordinates and point cloud coordinates. Finally, a 3-D discontinuity
trace map is acquired by analysing the 3-D spatial features of the traces. A case study of a rock slope along a highway is presented
using the proposed method. The results demonstrate that the fusion of image data and point cloud data improves the mapping of
discontinuities that primarily appear as traces in outcrops versus that achieved by existing methods that rely only on point cloud
data.
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Introduction

Discontinuity mapping is a fundamental task for rock mass
characterisation (Barton et al. 1974; ISRM 1978; Priest 1993;

Kulatilake and Wu 1984; Mouldon 1998; Zhang and Einstein
1998; Li et al. 2014; Zhu et al. 2014). Rock discontinuities in
outcrops can appear in the form of planar surfaces or embed-
ded traces as shown in Fig. 1. Collecting geological informa-
tion on rock discontinuities is difficult, time-consuming, and
often dangerous when using traditional field mapping and
hand-held direct measuring devices (Ferrero et al. 2009).

Digital image technology can be used to collect geological
information in steep, inaccessible areas. The relative 2-D geo-
metric relations of discontinuity traces can be extracted using
general-purpose image-processing methods that account for
changes in pixel intensities (Franklin et al. 1988; Crosta
1997; Reid and Harrison 2000; Hadjigeorgiou et al. 2003;
Lemy and Hadjigeorgiou 2003). Due to the lack of 3-D per-
spective, these approaches typically provide trace length esti-
mation, trace probability statistics, and discrete fracture net-
works in two dimensions, but they cannot measure the orien-
tation and spatial distribution of discontinuities in three
dimensions.

Currently, several techniques are available for creating
high-resolution 3-D representations of a rock surface, such
as photogrammetry (Roncella et al. 2004; Sturzenegger and
Stead 2009; Tannant 2015) and terrestrial and aerial LiDAR
(Gigli and Casagli 2011). Automated extraction of rock
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discontinuities is typically based on identifying the change in
the principal curvatures of the vertices (Umili et al. 2013),
searching for the best-fit planes (Otoo et al. 2011; Gigli and
Casagli 2011), Normal Tensor Voting theory (Li et al. 2016) or
moving a sample window or cube through a point cloud using
geometric regional trend analysis software such as
PlaneDetect (Lato et al. 2009; Lato and Vöge 2012; Vöge
et al. 2013), DiAna 3D (Gigli and Casagli 2011), Split-FX
(Slob et al. 2005; Slob et al. 2007) or Coltop 3D (Jaboyedoff
et al. 2007). These methods are mainly suitable for exposed
planar surfaces of discontinuities as shown in Fig. 1a.
However, when the rock face is dominated by embedded dis-
continuity traces as shown in Fig. 1b, existing software is
typically unsuccessful in extracting the discontinuity
orientations.

This paper proposes a methodology for automated discon-
tinuity mapping by identifying the 2-D discontinuity traces in
image data and linking these features to their 3-D point coor-
dinates in a point cloud acquired by terrestrial laser scanning
or photogrammetry. The proposed method adequately exerts
their advantages of point cloud and image data, visually de-
tects the traces texture in image data, and digitally acquires the
spatial coordinate of traces texture by fusion of point cloud
and image data.

Methodology

A terrestrial laser scanner can acquire millions of highly ac-
curate points to create a 3-D point cloud representation of a
rock face. Most terrestrial laser scanners also feature a camera
fixed in a coaxial orientation relative to the scanner that can
synchronously take photographs to record a 2-D digital im-
ages of a rock surface. Another approach to gathering similar
data is this use of multiple camera stations and photogramme-
try software to process the acquired images. Using either
workflow in the field, the resulting data consist of a large set

of point coordinates in an (x,y,z) coordinate system and im-
ages recording the spectral information in the scene expressed
as a matrix in an RGB format. The proposed methodology
takes advantage of both types of data and involves three steps,
as illustrated in Fig. 2.

Part I: The pixels corresponding to a discontinuity trace
are extracted from 2-D images. This process involves the
following sub-steps: convert an RGB image into a grey-
scale image, extract pixels that outline traces, remove
pixels that are ‘noise’ pixels, and extract the trace skele-
ton using a hybrid global and local threshold method.
Part II: The 3-D coordinates corresponding to the pixels
that are classified as a trace are extracted by a coordinate
transformation between the image coordinates and the
point cloud coordinates. The camera lens calibration pa-
rameters and the camera orientation are used to establish
the coordinate transform relationship between the image
coordinates and point cloud coordinates.
Part III: The best-fit plane through the 3-D points corre-
sponding to each individual trace is found. The dip, dip
direction, trace length, and location of each discontinuity
are acquired by analysing the geometrical features of the
3-D coordinates for each trace.

Convert image to grey-scale format

Digital images of the rock face in a RGB format are converted
into a grey-scale format as an M ×N matrix of grey values
(pixels) that contains luminance information as shown in
Fig. 3 and as expressed by Eq. 1.

F M ;Nð Þ ¼
f 1; 1ð Þ ⋯ f 1;Nð Þ
⋮ ⋱ ⋮

f M ; 1ð Þ ⋯ f M ;Nð Þ

2
4

3
5 ð1Þ

where F(M,N) is an M ×N matrix of grey values (pixels) and
f(i, j) is the grey value of a pixel. Digital images in an RGB
format are converted into a grey-scale format according to the
equation, grey value = (R × 30 + G × 59 + B × 11 + 50)/100,
where R, G and B are the RGB values.

Extract outlines of traces as black pixels

Discontinuity traces observed in the field and in images
tend to be darker than the rock surrounding them. Using
this feature as shown in Fig. 3, image segmentation
methods can be used to extract the outline of traces from
image data. However, many traditional image segmenta-
tion methods used for discontinuity traces, such as the

Fig. 1 Exposed rock discontinuities in outcrops: a planar surfaces and b
embedded traces
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local threshold algorithm, Otsu algorithm, maximum en-
tropy algorithm, and local mean algorithm (Lane et al.
2000; Cui 2002) do not work well when confronted with
complex trace distributions in an image. Therefore, a new
image segmentation method based on a hybrid global and
local threshold algorithm is proposed in this study. This
method requires two steps:

Step 1: Set local light grey colour to white (local thresh-
old algorithm)

The minimum grey value in a local region of an image
is used to determine whether a pixel remains unchanged
or is replaced by a white value. The minimum grey value
in a 7 × 7 local pixels grid window centred on the point

Fig. 3 a Image showing a joint
trace and b close-up 70 × 70 pixel
image of the joint trace after grey-
scale conversion

Fig. 2 Flowchart of the proposed method
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(x, y) is min(x, y), where x, y are the pixel grid coordinates
in the image. The average grey value in a larger 70 × 70
pixels grid window also centred on the point (x, y) is ave(-
x, y). The pixel grey value at the centre of the local grid
f(x, y) is changed to 0 (white) if min(x, y) < ave(x, y); oth-
erwise, the value remains unchanged (Eq. 2). This process
is repeated until all pixels within the image have been
analysed. Note that, for each cycle, the algorithm is ap-
plied to the original image. When this process is complet-
ed for all pixels in the image, a new image is generated
from the grey values of each local grid centre.

f x; yð Þ ¼ 0 min x; yð Þ < ave x; yð Þ
f x; yð Þ ¼ f x; yð Þ min x; yð Þ≥ave x; yð Þ

�
ð2Þ

Step 2: Otsu algorithm (global threshold algorithm)

The Otsu method relies on the maximum between-class
variance between the background region and the target region.
The total number of pixels in an image is N while n(g) is the
total number of pixels with a grey value g, as shown in Eq. 3.
Themaximum grey value in the image is gmax. The probability
distributions of pixel values Pg in the histogram of an image
are represented by Eq. 4. The threshold T0 of the Otsu algo-
rithm can be expressed as shown in Eq. 5.

N ¼ ∑
i¼1

gmax

ni ð3Þ

Pg ¼
n gð Þ
N

∑
i¼1

gmax

Pg ¼ 1 ð4Þ

T0 ¼ argmax
1≤g ≤gmax

σ2
B gð Þ� � ð5Þ

where σ2
B gð Þ is the maximum between-class variance.

Step 3: Binarization

Finally, any non-white pixel is replaced with a value of 0
(black) to create the final image containing only black and
white pixels.

Taking Fig. 1b as an example for extracting the trace out-
line, Fig. 4 shows the effect using the traditional methods and
the proposed method. Fig. 4a and b show that using the local
threshold or the Otsu method alone yields an image that does
not adequately identify the important joint traces. Fig. 4c
shows that the main traces are intermittent using the maximum
entropy method, and Fig. 4d shows that the secondary traces
are not distinct using the local mean method. Fig. 4e shows
that the main and the secondary traces are connected and dis-
tinct using the proposed method, making it superior to the
other methods.

Image clean-up and refinement

Closer examination of Fig. 4e shows that there are white
pixels where actual discontinuity traces occur, black
pixels in regions of solid rock, and irregular boundaries
at the edge of the traces. Therefore, further image process-
ing is used to ‘clean’ the image. The following three steps
are used to eliminate isolated white and black pixels, and
smooth irregular boundaries.

Step 1: An algorithm called the Dilation algorithm is
used to eliminate white pixels in regions where there
is a trace and black pixels in regions where intact
rock exists. The algorithm is defined as follows: All
points sets that still intersect the original image A
after being reflected by the structural element B are
offset by y pixels, as indicated in Eq. 6 (Cui 2002).

A⊕B ¼ xj B̂
� �

y∩A
� �

≠∅
n o

ð6Þ

Specific processing: A small 3 × 3 pixels window as
structural elements B is used to scan over every pixel of
the original image A; if any pixel among the surrounding
eight pixels is a black pixel, the target pixel of the original
image A is a black pixel. Otherwise, it is a white pixel.
Eventually, the original binary image is enlarged. This
process eliminates isolated pixels that were black or white
and expands the coverage of black pixels representing
traces.

Step 2: Small clusters of black pixels that are smaller
than a minimum detection threshold for trace lengths
are removed. This image filtering is accomplished
using the Bwareaopen function of Matlab. The crite-
rion for eliminating a small cluster is determined by
testing the actual image.
Step 3: A median filtering algorithm is used to
smooth the irregular edges of traces using a moving
neighbourhood window of 5 × 5 pixels. The median
filtering algorithm is defined as follows: n numbers in
a given array [a1, a2,⋯, an] are arranged in order of
their value, and the median is labelled by med[a1, a2,
⋯, an]. When n is an odd number, the median of n
numbers is the value at the intermediate position in an
array [a1, a2,⋯, an]; when n is an even number, the
median of n numbers is the average value of two
numbers in the middle position in an array [a1, a2,
⋯, an]. After an array [x(x, y)]M × N is median filtered
by the neighbourhood window An, the result array
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y(x, y) can be expressed as indicated in Eq. 7 (Cui
2002).

y i; jð Þ ¼ med
An x; jð Þ

x i; jð Þ½ � ð7Þ

where An(i, j) is the neighbourhood window of the pixel (i, j);
n is the number of pixels in the window.

Figure 5 a~d respectively demonstrate the initial image and
the resulting images corresponding to the three abovementioned
steps. The white spots, black spots and irregular boundaries are
eliminated or smoothed to create a simplified image of the
traces.

Thin trace outline

A trace-thinning operation is used to repeatedly remove pixels
belonging to the outside boundary of a trace while maintain-
ing the original shape and connectivity of pixels defining the
traces until the trace is 1 pixel wide (Kapur et al. 1989;

Mouldon 1998). The pixel-thinning operation uses a moving
neighbourhood window of 3 × 3 pixels and follows the thin-
ning rules regarding the deletion of the target pixel point:

(1) The number of white dots in eight pixels of its
neighbourhood window ranges from 2 to 6;

(2) The distribution of white dots in eight pixels of its
neighbourhood window is continuous;

(3) The upper neighbourhood point, the left neighbourhood
pixel and the right neighbourhood pixel are not all white
dots;

(4) The upper neighbourhood pixel, the left neighbourhood
pixel and the below neighbourhood pixel are not all
white dots.

Remove small branches

The removal of small branches further cleans the trace outlines
to focus on the larger features only. This removal is accom-
plished by identifying and removing short trace branches

Fig. 4 Results from using different trace extraction methods: a local threshold, b Otsu, c maximum entropy, d local mean, and e proposed method

Fig. 5 Image processing: a initial image, b isolated white pixels turned black, c small clusters of black pixels turned white, and d trace outlines smoothed
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extending from the main branch. The procedure involves end-
point identification, branch point identification and branch
removal.

(1) Endpoint identification

A 3 × 3 pixel window is used to evaluate every pixel in an
image. When the centre pixel is white, and if only one pixel in
the window is black, then this pixel is also an end point.

(2) Branch point identification

A 3 × 3 pixels window is used to evaluate every pixel in an
image. When the centre pixel is black and if the number of
pixels in the window that are white is 3 or 4, then a 5 × 5 pixels
window is used to detect and record the number of white
pixels inside the 2-pixel-wide border around the 3 × 3 win-
dow. If the number is equal to the number of white pixels
inside the 3 × 3 window, the detected point is a branch point.

(3) Branch removal

The trace outline is separated into connected segments
using the previously identified end points and branch
points. A segment between two branch points is classified
as a main branch, and a segment between an endpoint and
a branch point is classified as a secondary branch as
shown in Fig. 6a. The number of pixels Ni within each
secondary branch is calculated. A desired minimum
branch size, Nt, is then used to remove all smaller
branches by replacing black with white pixels in the im-
age, as shown in Fig. 6b. Figure 7 demonstrates the re-
sults of trace thinning and removal of small branches. For
the branch removal in this example, the minimum number
of pixels in a branch was set to 10.

Link black pixel location in an image to 3-D
coordinates in the field

Many LiDAR scanners also collect a photograph from a
camera mounted on the scanner. It is possible to find the
3-D coordinates of pixel locations in an acquired image
by establishing a transformation relationship between the
coordinate systems for the point cloud data and image
data. This transformation is accomplished using a coaxial
rotation between the scanner and the camera (Hu 2009;
Zhao 2011; Yan 2014).

Camera and scanner parameters

In general, a camera fixed to a LiDAR scanner uses a lens
with a fixed focal length. The internal orientation param-
eters or the lens calibration for the camera can be obtained
from the technical specifications or by performing a cam-
era calibration (Wang 2013) as shown in Fig. 8. The ex-
ternal orientation parameters of the camera for each pho-
tograph depend on a transformation matrix between the
camera coordinate system and the local coordinate sys-
tem. The external orientation parameters for the camera
for each photograph taken depend on a transformation
matrix between the camera coordinate system and the lo-
cal coordinate system. The transformation matrix between
the scanner and the camera involves four coordinate sys-
tems: the image coordinate system (ICS), the camera co-
ordinate system (CCS), the scanner coordinate system
(SCS) and the engineering coordinate system (ECS).
There is a coaxial rotational relationship between the
scanner and the camera. As an example, Eqs. 8, 9 and
10 show the transformation matrices for a Riegl LMS-
Z420i scanner.

Fig. 6 Endpoint, branch point
and small branch removal: a
connected pixels and b
identification of branch for
removal
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Mounting Matrix: Coordinate transformation matrix
between CCS and SCS.

M ¼
−0:003492804 −0:000179553
−0:022285786 −0:999751608

0:999993884 −0:247474454
−0:00025735 0:0141491500

0:9997455400 −0:022286548
0:0000000000 0:0000000000

0:003487935 −0:022638301
0:000000000 1:0000000000

2
64

3
75

ð8Þ

COP Matrix: Coordinate system rotation matrix be-
tween CCS at the shooting position of camera and CCS
at the initial position of camera.

COP ¼
−0:993114537 −0:117147411
0:1171474110 −0:993114537

0:000000000 0:0000000000
0:000000000 0:0000000000

0:0000000000 0:0000000000
0:0000000000 0:0000000000

1:000000000 0:0000000000
0:000000000 1:0000000000

2
64

3
75

ð9Þ

SOP Matrix: Coordinate system rotation and translation
matrix between SCS and ECS.

SOP ¼
0:291751063 0:952970224 0:082030910 −53:699865
−0:926339611 0:302876887 −0:223965437 −72:74738
−0:238277659 −0:010646327 0:971138720 3:1823090

2
4

3
5

ð10Þ
Coordinate system conversion

The engineering coordinates are indicated as Pw(Xw, Yw, Zw),
the camera coordinates are indicated as Pu(Xu, Yu, Zu) and the
image coordinates are indicated as (x, y). The relationship be-
tween ECS and CCS is expressed by Eq. 11 (Hu 2009).

X u

Yu
Zu

1

2
64

3
75 ¼ R t

0T 1

	 
 Xw

Yw
Zw

1

2
64

3
75

¼
r11 r12 r13 t1
r21 r22 r23 t2
r31
0

r32
0

r33
0

t3
1

2
64

3
75

Xw

Yw
Zw

1

2
64

3
75

¼ M ∙COP−1∙SOP−1

Xw

Yw
Zw

1

2
64

3
75 ð11Þ

Fig. 7 Extraction of a trace
skeleton: a trace thinning and b
removal of small branches

Fig. 8 Calibration parameters of camera
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where the rotation matrix t is the position coordinate of the
origin of ECS in CCS; the rotation matrix R is the orthogonal
rotation matrix and it satisfies Eq. 12.

r211 þ r212 þ r213 ¼ 1
r221 þ r222 þ r223 ¼ 1
r231 þ r232 þ r233 ¼ 1

8<
: ð12Þ

where rij is an element in the rotation matrix R.
The relationship between CCS and ICS is expressed by Eq.

13 (Hu 2009).

Zu

x
y
1

2
4

3
5 ¼

f 0 0 0
0 f 0 0
0 0 1 0

2
4

3
5

Xu

Yu
Zu

1

2
64

3
75 ð13Þ

where f is the lens focal length.
The conversion between ECS and ICS is expressed by Eq.

14 (Hu 2009).

Zu

x
y
1

2
4

3
5 ¼

f 0
0 f
0 0

0 0
0 0
1 0

2
4

3
5

X u

Yu
Zu

1

2
64

3
75

¼
f 0
0 f
0 0

0 0
0 0
1 0

2
4

3
5M ∙COP−1∙SOP−1

X u

Yu
Zu

1

2
64

3
75 ð14Þ

where all variables in Eq. 14 are the same as in Eqs. 9, 10, 11,
12, and 13.

Trace coordinates

After data matching, the points representing a trace in the
point cloud data and the trace pixels in the image will not
exactly overlap in a common coordinate system. The coordi-
nates along a trace can be obtained by interpolation within a
triangular irregular network constructed from a point cloud
using an orthogonal projection plane relative to the scanner.

Step 1: Data preparation.

The joint traces extracted from image data are discretized
into a series of finite discrete points according to a distance
interval related to the density scale of the point cloud data.
Using Eqs. 11 to 14, the point cloud data are projected into a
planar coordinate system that is perpendicular to the direction
of the scanner/camera. Delaunay triangulation is used to gen-
erate a triangular irregular network (Zhou and Liu 2006).

Step 2: Interpolation to find 2-D trace coordinates.

It is assumed that the coordinates of three vertex points in a
mesh unit ΔV1V2V3 are V1(x1, y1), V2(x2, y2) and V3(x3, y3) and
the coordinate of a discrete point on the trace line is P(x, y) in
ICS. In Fig. 9, the point P may lie within or outside the trian-
gular mesh unit. Three area coordinates L1, L2 and L3, for
point P are defined as follows (Zeng 2014):

L1 ¼ A1

A
; L2 ¼ A2

A
; L3 ¼ A3

A
ð15Þ

Eq. 15 can be transformed into Eq. 16

L1 ¼ x3−x2ð Þ y3−y2ð Þ− x−x2ð Þ y−y2ð Þ
A

L2 ¼ x1−x3ð Þ y1−y3ð Þ− x−x3ð Þ y−y3ð Þ
A

L3 ¼ x2−x1ð Þ y2−y1ð Þ− x−x1ð Þ y−y1ð Þ
A

9>>>>>=
>>>>>;

ð16Þ

where A, A1, A2 and A3, respectively, denote the areas of
ΔV1V2V3, ΔV2V3P, ΔV3V1P and ΔV1V2P.

In Fig. 9, the vertex points in a mesh unit are numbered
counter-clockwise. When P lies inside a mesh unit, L1 > 0,
L2 > 0 and L3 > 0. When P lies outside of a mesh unit, at least
one of the three area coordinates is less than zero. Therefore,
whether the discrete point P lies inside or outside of a trian-
gular grid ΔV1V2V3 can be determined by checking if L1, L2
and L3 are all greater than zero.

Fig. 9 Geometric relationship
between an interpolated point P
and a triangular mesh unit: a
within the unit and b outside the
unit
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Step 3: Interpolation to find 3-D trace coordinates.

The z coordinate of a discrete point P in the ICS can be
found using the coordinates V1(x1, y1, z1), V2(x2, y2, z2) and
V3(x3, y3, z3) of three vertex points in the corresponding mesh
unit containing point P in ECS and the coordinate P(x, y) of
the discrete point P in ICS (Zeng 2014).

Discontinuity characterisation

After extracting the discontinuity trace coordinates using a
combination of the point cloud and image data, the geometric
parameters and spatial position of the discontinuity can be
determined. To ensure that these parameters are meaningful,
the coordinate system of the point cloud should match the
geodetic coordinate system used at the site of interest.

Dip and dip direction

For a discrete set of points representing the jth trace, the coor-

dinates of any three points are x jk1 ; y jk1 ; z jk1
� �

,

x jk2 ; y jk2 ; z jk2
� �

and x jk3 ; y jk3 ; z jk3
� �

, where k1, k2 and k3

are any three integers between 1 and n. These coordinates
can be found by a ray-scanningmethod. A plane incorporating
any three points can be represented as a triangular facet com-

posed of x jk1 ; y jk1 ; z jk1
� �

, x jk2 ; y jk2 ; z jk2
� �

and

x jk3 ; y jk3 ; z jk3
� �

, as shown in Fig. 10. To recover a reasonably

accurate planar orientation, the maximum interior angle of this
triangular facet φjmax should be less than 150°. The reference
value of 150° is to guarantee that three points on a disconti-
nuity trace can be constituted of a triangle, and to determine
the plane equation of a triangle. If the angle is higher than the
selected threshold, three points on a discontinuity trace are
nearly collinear, which affect the accuracy of the calculation,
not determining the plane equation of a discontinuity trace.

When φjmax ≤ 1500, the normal vector of the jth trace trian-
gular facet is calculated as follows:

n!¼
i j k

x jk2−x jk1
� �

y jk2−y jk1
� �

z jk2−z jk1
� �

x jk3−x jk1
� �

y jk3−y jk1
� �

z jk3−z jk1
� �

��������

��������
ð17Þ

let,

aj ¼ y jk2−y jk1
� �

z jk3−z jk1
� �

− y jk3−y jk1
� �

z jk2−z jk1
� �

bj ¼ x jk3−x jk1
� �

z jk2−z jk1
� �

− x jk2−x jk1
� �

z jk3−z jk1
� �

c j ¼ x jk2−x jk1
� �

y jk3−y jk1
� �

− x jk3−x jk1
� �

y jk2−y jk1
� �

The dip and dip direction of the jth trace are represented by

Dip : θ j ¼ arccos
c jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2j þ b2j þ c2j
q

0
B@

1
CA ð18Þ

Dip direction : ∅ j ¼
arccos

ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2j þ b2j

q
0
B@

1
CA b≥0ð Þ

800 þ arccos
−ajffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2j þ b2j

q
0
B@

1
CA b < 0ð Þ

8>>>>>>>><
>>>>>>>>:

ð19Þ

Trace length

(1) Full trace length

The trace length is the distance between the end-
points of a trace that are projected onto the orthogonal
projection plane relative to the scanner/camera. The two
endpoints on the jth trace are (xj1, yj1, zj1) and (xjn, yjn,
zjn), and the coordinates of two projection points corre-

sponding to two endpoints are x
0
j1; y

0
j1; z

0
j1

� �
and

x
0
jn; y

0
jn; z

0
jn

� �
. The coordinate transformation relation be-

tween two endpoints and two projection points can be
represented by

x
0
j1 y

0
j1 z

0
j1

h i
¼ x j1 y j1 z j1

 �
∙ α1 α2 α3ð Þ ð20Þ

x
0
jn y

0
jn z

0
jn

h i
¼ xjn yjn zjn

 �
∙ α1 α2 α3ð Þ ð21Þ

where α1, α2 and α3 are the three unit vectors of the orthog-
onal direction vector of the orthogonal projection plane rela-
tive to the scanner and the camera.

The full trace length of the jth trace can be expressed by

Lj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x0
jn−x

0
j1

� �2
þ y0

jn−y
0
j1

� �2
þ z0jn−z

0
j1

� �2
r

ð22Þ
Fig. 10 Trace plane determined by three points
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(2) Mean trace length

The mean trace length can be calculated using a circu-
lar window sampling method (Zhang and Einstein 1998).
An automated trace sampling procedure (Umili et al.
2013) is used. Trace lines are projected onto an orthogo-
nal projection plane relative to the scanner/camera. Then,
the centres of circular windows with different radii are
placed in locations with dense traces. The mean trace

length is estimated using the following equation (Zhang
and Einstein 1998):

μ̂ ¼ π N̂ þ N̂0−N̂2

� �
2 N̂−N̂0 þ N̂ 2

� � wr ð23Þ

where N0 is the number of traces with both ends censored,
N1 is the number of traces with one end censored and one
end observable, N2 is the number of traces with both ends

(a) Traces texture extraction                                       (b) Data matching  

(c) Reducing the number of points                                 (d) Extracted traces  

Fig. 12 Trace extraction from analysis of an image and corresponding point cloud. aTraces texture extractionbDatamatching cReducing the number of
points d Extracted traces

Fig. 11 a Point cloud data and b digital image data of a roadside slope
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observable, and wr is the radius of the window.

Case study

Data acquisition

Scans of a roadside slope along the Cao-Wu highway in China
were captured. Point cloud data and image data acquired with
a Riegl LMS-Z420i terrestrial laser scanner and a Nikon D100
camera coaxially fixed to the top of the scanner. Scanning was
performed from one observation station located approximate-
ly 25 m far from the rock face. The point cloud had 189,215
points with a point resolution of approximately 5 mm.
Figure 11 shows a photograph of the rock face and the 3-D
point cloud. The vegetation cover is a thorny issue to automat-
ed extraction of rock discontinuities by photogrammetry or
LiDAR. When the vegetation completely cover the disconti-
nuity traces, it will seriously affect the correctness and accu-
racy of analysis. In a case study, the vegetation just covered a

little the discontinuity traces, and the raw point cloud data
were filtered to remove points corresponding to vegetation,
trimmed to cover a smaller area of the rock cut in a clear
exposed region of the discontinuities, and resampled to gen-
erate a convenient data set with uniform distribution using
Riscan Pro software.

Trace texture mapping and coordinate acquisition

The joint traces from the image data shown in Fig. 11b were
extracted using the proposed methods, as shown in Fig. 12.
Figure 12b shows the trace skeleton linked to the 3-D coordi-
nates from the point cloud data, which was obtained by data
matching and trace coordinate acquisition. The number of
points representing the traces was reduced to simplify geolog-
ical analysis, as shown in Fig. 12c. Figure 12d shows that the
individual traces are automatically identified, classified and
labelled by different colours. The Bwlabel function in
Matlab can label individual traces according to the connectiv-
ity of trace point sets in a binary image, and the Label2fgb
function in Matlab is used to label every connectivity in dif-
ferent colours.

Table 1 Extraction of discontinuity characteristics compared with manual measurements

No. Trace endpoints (m) Trace length (m) Dip direction (°) Dip (°) compass

X1 Y1 Z1 X2 Y2 Z2 Dip direction (°) Dip (°)

1a 6.55 15.78 9.00 6.36 20.12 6.19 5.2 273.2 32.9 273 33

1b 10.41 12.09 6.96 9.79 17.78 2.84 7.1 276.5 36.7 276 37

1c 12.99 7.97 7.20 12.68 12.94 2.73 6.7 274.8 42.7 275 43

2a 5.62 18.33 8.03 9.58 14.06 6.08 6.1 137.4 18.3 137 18

2b 6.63 20.47 5.58 10.12 17.53 2.68 5.4 130.1 32.6 130 32

3a 10.09 10.86 8.57 14.87 14.53 −0.22 10.7 52.3 56.5 52 56

3b 11.83 7.71 8.59 17.09 8.56 1.26 9.1 81.2 54.4 81 54

Fig. 13 Lower-hemisphere stereonet showing discontinuity orientations
Fig. 14 Traces sampled using circular windows of three radii at two
locations
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Joint characteristics

For each extracted trace, the dip, dip direction, and trace
length were obtained using the point coordinates along the
traces. The joint properties are listed in Table 1. For visuali-
sation purposes, the dip and dip direction were plotted on a
lower-hemisphere, equal-angle, stereonet as shown in Fig. 13.
The stereonet features three dominant clusters of poles, which
reflect the three sets of discontinuities present in this section of
the rock cut.

According to the circular window sampling method, the 3-
D trace coordinates are projected onto an orthogonal projec-
tion plane relative to the scanner. Two sets of circular windows
with three different radii (4.3, 3.2 and 2.15 m) were placed in
locations with dense traces to evaluate the mean trace length
and the trace midpoint density, as shown in Fig. 14 and
Table 2. The midpoint density of the traces ranges between
0.026 m−2 and 0.069 m−2, with a mean of 0.042 m−2. The
mean trace length ranges from 5.02 m to 11.25 m, and the
average value is 8.05 m.

Automatic mapping was found to yield discontinuity ori-
entations equivalent to those afforded by manual mapping
with a geological compass. However, the mapping efficiency
can be much higher with the proposed method. The use of a
combination of data from an image and a point cloud was an
improvement over the use of point cloud data alone. Further
research and testing will be conducted to ensure that this meth-
od works for a wide range of rock mass conditions and rock
face topologies.

Conclusion

This paper describes a new method of 3-D automated map-
ping for discontinuity traces that appear in exposures of rock
faces. The method offers an advantage over many existing
methods by using both point cloud data and image data cap-
tured for a region of interest. The proposedmethod adequately
exerts the advantages of point clouds and image, visually de-
tects the traces texture in image data, and digitally acquires the
spatial coordinate of traces texture by coordinate interpolation

based on data matching of point cloud and image data. A
series of image-processing techniques improves the trace ex-
traction and reduces the effect of noisy data in detecting the
traces. As demonstrated by the case study, the proposed meth-
od can efficiently and accurately extract embedded disconti-
nuity traces from a fusion of point cloud data and image data.
The method can be used to fundamentally integrate traditional
survey methods.
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