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Abstract
The main goal of this study is to assess and compare three advanced machine learning techniques, namely, kernel logistic
regression (KLR), naïve Bayes (NB), and radial basis function network (RBFNetwork) models for landslide susceptibility
modeling in Long County, China. First, a total of 171 landslide locations were identified within the study area using historical
reports, aerial photographs, and extensive field surveys. All the landslides were randomly separated into two parts with a ratio of
70/30 for training and validation purposes. Second, 12 landslide conditioning factors were prepared for landslide susceptibility
modeling, including slope aspect, slope angle, plan curvature, profile curvature, elevation, distance to faults, distance to rivers,
distance to roads, lithology, NDVI (normalized difference vegetation index), land use, and rainfall. Third, the correlations
between the conditioning factors and the occurrence of landslides were analyzed using normalized frequency ratios. A
multicollinearity analysis of the landslide conditioning factors was carried out using tolerances and variance inflation factor
(VIF) methods. Feature selection was performed using the chi-squared statistic with a 10-fold cross-validation technique to assess
the predictive capabilities of the landslide conditioning factors. Then, the landslide conditioning factors with null predictive
ability were excluded in order to optimize the landslide models. Finally, the trained KLR, NB, and RBFNetwork models were
used to construct landslide susceptibility maps. The receiver operating characteristics (ROC) curve, the area under the curve
(AUC), and several statistical measures, such as accuracy (ACC), F-measure, mean absolute error (MAE), and root mean squared
error (RMSE), were used for the assessment, validation, and comparison of the resulting models in order to choose the best model
in this study. The validation results show that all three models exhibit reasonably good performance, and the KLRmodel exhibits
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•KLR, NB, and RBFNetwork models were compared in this study.
•The Chi-squared statistic was used to select conditioning factors.
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the models’ performances.
•KLR showed the most promising results.
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the most stable and best performance. The KLR model, which has a success rate of 0.847 and a prediction rate of 0.749, is a
promising technique for landslide susceptibility mapping. Given the outcomes of the study, all three models could be used
efficiently for landslide susceptibility analysis.

Keywords Landslide . Kernel logistic regression . Naive Bayes . RBF network . China

Introduction

Landslide susceptibility is considered to be the spatial distri-
bution of the probability of the occurrence of landslides by
various investigators (Constantin et al. 2011; Guzzetti et al.
2006; Van Westen 2004). By using various models for
predicting landslide, damage could be decreased to a certain
extent (Pradhan 2010). In many areas of China, the lives and
property of people have been seriously affected by landslides
(Peng et al. 2015; Wu et al. 2015; Zhang et al. 2015). This is
especially true in Long County, China, where thousands of
people live in high-risk threat areas related to landslides.
Therefore, it is necessary to prevent and assess landslide di-
sasters for this area.

In the literature, various methods have been carried out to
assess landslide susceptibility with the aid of GIS, such as
probabilistic methods (Youssef et al. 2016), bivariate statisti-
cal methods (Constantin et al. 2011; Dou et al. 2014; Jaafari
et al. 2014; Pradhan et al. 2014; Razandi et al. 2015; Regmi
et al. 2014; Zhang et al. 2016), multivariate logistic regression
methods (Park et al. 2013; Shahabi et al. 2015; Tien Bui et al.
2016), and knowledge-based methods (Althuwaynee et al.
2016; Kumar and Anbalagan 2016), etc.

Recently, machine-learning methods have been employed
in landslide susceptibility mapping, such as support vector
machines (Colkesen et al. 2016; Tien Bui et al. 2016), fuzzy
logic (Kumar and Anbalagan 2015; Shahabi et al. 2015),
neuro-fuzzy (Aghdam et al. 2016; Chen et al. 2017a;
Dehnavi et al. 2015), neural network models (Gorsevski
et al. 2016; Wang et al. 2016), kernel logistic regression
(KLR) (Chen et al. 2017b; Tien Bui et al. 2016), naïve
Bayes (NB) (Pham et al. 2017; Tsangaratos and Ilia 2016),
random forest (Chen et al. 2017c; Trigila et al. 2015), and
multivariate adaptive regression splines (Conoscenti et al.
2015; Felicísimo et al. 2013).

Although various methods have been used for landslide
susceptibility assessment by different investigators
throughout the world, some advanced machine-learning
techniques, such as KLR and NB, have seldom been ex-
plored for landslide modeling, and a comparative study of
the KLR, NB, and radial basis function network
(RBFNetwork) models has never been used in the area of
landslide susceptibility. Therefore, these three models were
chosen to assess landslide susceptibility for the Long
County area, China. This is an area where many landslides

have occurred during the last 10 years; however, the num-
ber of studies on these landslides is far from sufficient. The
main difference between the current study and the ap-
proaches described in the aforementioned publications is
that three state-of-the-art machine-learning techniques
have been employed to produce landslide susceptibility
maps, and their relative performance has been assessed
for the first time.

General description of the study area

Long County is located in the northwest part of Baoji City,
China (Fig. 1). The study area covers an area of 2400 km2 and
is located within 34°35′17^N to 35°6′45^N and 106°26′32″E
to 107°8′11″E. The elevation of the highest point is 2467 m
a.s.l, the lowest elevation is 778 m a.s.l., and the elevation
decreases from the west to the east.

The Qian River and theWei River are the main rivers in the
study area, and they both belong to the Yellow River system.
The Qian River is a tributary of the Wei River, and is the
largest river in the region. The length of the Qian River in
Long County is 68.8 km, the drainage area is 1957.9 km2,
the annual runoff is 3.54 × 108 m3, and the average flow is
5.6 m3/s.

The climate of Long County is affected by the Qinling
Mountains, but it is mainly controlled by the Siberian High.
According to the statistics of the Shanxi Meteorological
Bureau (http://www.sxmb.gov.cn), it has obvious
continental climate characteristics, which is a warm
temperate continental monsoon climate zone. The annual
average temperature is 10.7 °C. The hottest month is July,
with an average temperature of 23.4 °C, and the coldest
month is January, with an average temperature of −2.4 °C.
The mean annual precipitation (MAP) is 600 mm, the maxi-
mum annual precipitation is 937 mm, and the minimum an-
nual precipitation is 339.86 mm. In July–September, the total
precipitation is 345 mm, which accounts for 58.2% of the
annual precipitation.

Approximately 62% of the study area has a slope gradi-
ent less than 20°, whereas areas with a slope gradient
steeper than 40° account for 2% of the total study area.
Areas that fall into the slope category of 20–40° account
for 36% of the total study area.
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The main lithologies are loess, mudstone, sandstone,
conglomerate, glutenite, limestone, and igneous rocks.
There are more than 20 geological units in the study area,

and these geological units can be reclassified into 10 lith-
ological groups according the lithofacies and geologic
ages (Fig. 2).
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Fig. 1 Location of the study area
and landslide inventory



Research methods and models

Methodology

A flowchart of the methodology used in this study is shown in
Fig. 3. There are four main steps in the current study: (1) data
preparation, (2) landslide conditioning factor analysis, (3)
landslide susceptibility modeling, and (4) model performance
evaluation.

Data preparation

Landslide inventory

Landslide inventory maps are considered to be essential for
studying the relationship between landslides and landslide
influencing factors (Booth et al. 2015; Mohammady et al.
2012). In the current study, a landslide inventory map has

been produced from various sources, including existing
reports, interpretation of aerial photographs, and extensive
field surveys in the study area. The landslide inventory
map includes a total of 171 landslides, of which 120
(70%) landslides were randomly selected using Hawth’s
Analysis Tools for modeling, and the remaining 51 (30%)
landslides were used for validating the models. An analysis
of the landslide inventory map shows that the area of the
smallest landslide is 30 m2, the largest is 800,000 m2, and
the average is 60,000 m2. Figure 1 shows the distribution
of landslide locations in the study area.

Landslide conditioning factors

In previous studies, there has been no agreement in terms
of the selection of reliable landslide conditioning factors
because the root causes of landslides are very complex and
difficult to confirm (Carlini et al. 2016; Cook et al. 2015).
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Therefore, based on a review of the literature and condi-
tions within the study area, a total of 12 landslide condi-
tioning factors were selected, specifically slope aspect,
slope angle, plan curvature, profile curvature, elevation,
distance to faults, distance to roads, distance to rivers, li-
thology, normalized difference vegetation index (NDVI)
values, land use, and rainfall.

Slope angle, slope aspect, plan curvature, profile curva-
ture, elevation, and distance to rivers maps (Fig. 4a–e, g)
for the study area were derived from the ASTER Global
DEM with a spatial resolution of 30 × 30 m using ArcGIS
10.0 software. The ASTER Global DEM data were collect-
ed from the International Scientific & Technical Data
Mirror Site of the Computer Network Information Center,
Chinese Academy of Sciences (http://www.gscloud.cn).
The distance to faults map and the lithology map (Fig. 4f,
i) were extracted from geological maps at a scale of 1:
200,000, which were collected from the local Land and
Resources Bureau. The distance to roads map (Fig. 4h)
was created using a 1:50,000 scale topographic map of
the study area and ArcGIS 10.0 software. The NDVI and
land use maps (Fig. 4j, k) were extracted from Landsat 8
OLI_TRIS images using ENVI 5.1 software. The Landsat
8 OLI_TRIS images with a spatial resolution of 30 × 30 m

were obtained from the same website with the ASTER
Global DEM data. The rainfall map was constructed using
rainfall data covering the study area, which were obtained
and compiled from the Meteorological Bureau of Shaanxi
Province (Fig. 4l). All 12 landslide conditioning factors
were converted to the same spatial resolution (30 × 30 m).
Detailed information on the classes of each conditioning
factor is shown in Table 1.

Kernel logistic regression (KLR)

KLR is defined as a kernel version of logistic regression. The
main aim of this method is to find a discriminant function
which can solve classification problems by means of
transforming the original input space into a high-
dimensional feature space using kernel functions (Cawley
and Talbot 2008; Tien Bui et al. 2016). In landslide suscepti-
bility evaluation, suppose a training dataset has n input sam-
ples (vi, Ci) with vi∈Rn, Ci∈{0, 1}, where v is a vector of the
input space. In this case study, it indicates the selected land-
slide conditioning factors: slope aspect, slope angle, plan cur-
vature, profile curvature, elevation, distance to faults, distance
to rivers, distance to roads, lithology, NDVI values, land use,
and rainfall. Ci takes one of two values: 0 indicates a non-
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landslide pixel, and 1 indicates a landslide pixel. The aim of
KLR is to construct a discriminant function that can separate
the two classes, landslide and non-landslide. The discriminant
function can be expressed as:

logit C vð Þf g ¼ w⋅φ vð Þ þ b ð1Þ

where w is a vector of model parameters, φ(v) is a non-
linear transformation of the output vectors, v is defined by
a kernel function, and b is the bias term. Κ:v × v→ R eval-
uates the inner product between the image of input vectors
in the feature space, i.e., Κ(v, v') = ϕ(v) ⋅ ϕ(v'). For a kernel
to support the interpretation as an inner product in a fixed
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Fig. 4 Thematic maps of the study area: (a) slope aspect; (b) slope angle; (c) plan curvature; (d) profile curvature; (e) elevation; (f) distance to faults; (g)
distance to rivers; (h) distance to roads; (i) lithology; (j) NDVI; (k) land use; (l) rainfall



feature space, the kernel must obey Mercer’s condition
(Mercer 1909); that is, the Gram matrix for the kernel,

K ¼ Kij ¼ Κ vi; v j
� �� �l

i; j¼1
, must be positive semi-definite.

Provided that the training procedure can be formulated in
such a way that the input vectors, vi, appear only in the
form of inner products, this construction allows the use of

very high dimensional feature spaces, resulting in very
flexible, powerful models. The radial basis function
(RBF) kernel may be the most commonly encountered
kernel:

Κ v; v
0

� �
¼ exp η v−v

0�� ��2n o
; ð2Þ
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where η is a kernel parameter that controls the sensitivity
of the kernel.

When constructing a statistical model of a landslide-
prone area, as is the case here, it is prudent to take
steps to avoid over-fitting the training data. As a result,

the KLR model was trained using a regularized cross-
entropy loss function (Cawley and Talbot 2008):

Ε w; bð Þ ¼ − ∑
n

i¼1
pilogCi þ 1−pið Þlog 1−Cið Þf g þ μ

2
wk k2 ð3Þ
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wk k2 ¼ αTKα ð4Þ
where μ is a regularization parameter controlling the bias–
variance trade-off (Geman et al. 1992). The representer theo-
rem (Kimeldorf andWahba 1971; Schölkopf and Smola 2002)
states that the solution of the optimization criterion described
by Eq. (4) can be expressed in the form of an expansion over
training patterns:

w ¼ ∑
n

i¼1
αiφ við Þ ð5Þ

where αi, with i = (1, 2,⋯, n), is the vector of the dual model
parameters. Thus, the final form of KLR will be obtained:

logit C vð Þf g ¼ ∑
n

i¼1
αiΚ vi; vð Þ þ b ð6Þ

There are many kernel functions that can be found in
the literature, such as the linear kernel function, the RBF
kernel function, the polynomial kernel function, and the
normalized polynomial kernel function. Among these, the
RBF kernel function is the most popular and is applied in
this study.

K vi; v j
� � ¼ exp − vi−v j

�� ��2� �
=2δ2

� �
ð7Þ

where δ is the tuning parameter that controls the sensitiv-
ity of the kernel.

Naive Bayes (NB)

The NB classifier is considered to be a classification sys-
tem based on Bayes’ theorem. The NB classifier assumes

that all the attributes are fully independent given the out-
put class, which is called the conditional independence
assumption (Soria et al. 2011). The main advantage of
this method is that it is very easy to construct, and com-
plicated iterative parameter estimation schemes are not
needed (Wu et al. 2008). Additionally, the NB classifier
is robust to noise and irrelevant attributes. This method
has also been applied in the research field of landslide
susceptibility mapping (Pham et al. 2015, 2016; Tien
Bui et al. 2012).

Given an observation consisting of n attributes xi, i = 1,
2, …, k, where xi represents the landslide conditioning
factors of slope aspect, slope angle, plan curvature, profile
curvature, elevation, distance to faults, distance to rivers,
distance to roads, lithology, NDVI values, and land use, n
represents the number of landslide conditioning factors,
and y ∈ {m, n), where m and n indicate landslide and
non-landslide areas, respectively, is the output class. NB
estimates the probability P(yj/xi) for all possible output
classes. The prediction is made for the class with the
largest posterior probability as

yNB ¼ argmaxy
yi landslide; non−landslidef g

P yð ÞP x1; x2;…xijyð Þ ð8Þ

In this case, for computational convenience, NB assumes
that all attributes are conditionally independent (Kim et al.
2016), so Eq. (8) can be simplified as follows:

yNB ¼ argmaxy
yi landslide; non−landslidef g

P yð Þ ∏
k

i¼1
P xijyð Þ ð9Þ

To calculate each posterior probability P(xi| y), numerical
attributes are usually assumed to follow a normal distribution,

Table 1 Classes of landslide conditioning factors

Conditioning factors Classes

Slope aspect (1) Flat; (2) North; (3) Northeast; (4) East; (5) Southeast; (6) South; (7) Southwest; (8) West; (9) Northwest

Slope angle (°) (1) 0–10; (2) 10–20; (3) 20–30; (4) 30–40; (5) 40–50; (6) > 50

Plan curvature (1) −10.57 to −1.10; (2) −1.10 to −0.35; (3) −0.35 to 0.25; (4) 0.25–1.08; (5) 1.08–8.59

Profile curvature (1) −10.56 to −1.54; (2) −1.54 to −0.49; (3) −0.49 to 0.30; (4) 0.30–1.35; (5) 1.35–11.78

Elevation (m) (1) < 1000; (2) 1000–1200; (3) 1200–1400; (4) 1400–1600; (5) 1600–1800; (6) 1800–2000; (7) 2000–2200; (8) > 2200

Distance to faults (m) (1) < 1000; (2) 1000–2000; (3) 2000–3000; (4) 3000–4000; (5) > 4000

Distance to rivers (m) (1) < 200; (2) 200–400; (3) 400–600; (4) 600–800; (5) > 800

Distance to roads (m) (1) < 500; (2) 500–1000; (3) 1000–1500; (4) 1500–2000; (5) > 2000

Lithology (1) Group 1; (2) Group 2; (3) Group 3; (4) Group 4; (5) Group 5; (6) Group 6; (7) Group 7; (8) Group 8; (9) Group 9;
(10) Group 10

NDVI (1) −0.26 to 0.21; (2) 0.21–0.35; (3) 0.35–0.47; (4) 0.47–0.59; (5) 0.59–0.74

Land use (1) Farmland; (2) Bareland; (3) Residential areas; (4) Water; (5) Forest and grass

Rainfall (mm/year) (1) < 530; (2) 530–550; (3) 550–570; (4) 570–590; (5) 590–610; (6) 610–630; (7) 630–650; (8) > 650
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with the value of the probability density function in Eq. (9)
used for the posterior probability (Kim et al. 2016):

P xijyð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ ijyð Þ

p e
−

xi−μ ijyð Þð Þ2
2σ2

ijyð Þ


 �
ð10Þ

where μ is the mean and σ2 is the variance of xi.

RBFNetwork

RBFNetwork, a popular alternative to multilayer perceptron
neural nets, is defined as a supervised neural network formodel-
ing problems in polydimensional space (Hong et al. 2015b).
The architecture of this network consists of three layers in this
study: an input layer with 12 neurons, a hidden layer (referred to
as the RBF units), and an output layer that contains one neuron
(Fig. 5). The hidden layer is activated by a radially symmetric
basis function, and it can be expressed by ϕi: Rn→R; typically,
the Gaussian function is used for the activation function.

The input data are processed by the RBF units using the K-
means algorithm to reduce its dimensionality and then to trans-
form the data to a new space (Gil and Johnsson 2010). The
learning procedure of the RBFNetwork is carried out in two
phases: (1) the numbers of clusters (hidden neurons) are cal-
culated using the K-means algorithm, and (2) optimal estima-
tion of the kernel parameter is conducted (Tien Bui et al. 2016).

Landslide conditioning factor analysis

Multicollinearity analysis

Multicollinearity refers to the non-independence of landslide
conditioning factors that may occur in datasets because of

their high correlation, thus resulting in erroneous system anal-
ysis (Dormann et al. 2013). Tolerances and variance inflation
factor (VIF) methods are commonly used in the literature to
check the multicollinearity of landslide conditioning factors
(Hong et al. 2015a). In this study, multicollinearity among the
conditioning factors was identified using tolerances and VIF
methods. The formulas for calculating tolerances and the VIF
are as follows:

Tolerance ¼ 1−R2
j ð11Þ

VIF ¼ 1

Tolerance

� 
ð12Þ

where R2
j is the coefficient of determination for the regression

of the explanatory variable, j, on all the other explanatory
variables (Sar et al. 2016).

Factor selection based on the chi-squared statistic

In landslide susceptibility analysis, the quality of input data
should be as high as possible in order to reach an accurate and
reliable result. In addition to this quality requirement, the se-
lection of significant parameters (landslide conditioning fac-
tors) is another important step that must be carried out prior to
landslide susceptibility modeling (Regmi et al. 2010; Tien Bui
et al. 2016). Sometimes, several landslide conditioning factors
may cause noise that reduces the prediction capability of the
models (Lineback Gritzner et al. 2001). The chi-squared sta-
tistic-based feature selection method has been adopted in this
study to select significant landslide conditioning factors for
landslide susceptibility modeling (Andrews 1988; Rao and
Scott 1987).

Among the techniques used to quantify the predictive ca-
pability of landslide conditioning factors, the chi-squared
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Fig. 5 RBFNetwork used in this
study



statistic is a common test for significance of the relationship
between categorical variables (Press 1966). This method is
based on the fact that one can compute the expected frequen-
cies in a 2 × 2 contingency table (i.e., frequencies that we
would expect if there were no relationship between the vari-
ables). To calculate the importance of landslide conditioning
factors using the chi-squared statistic method, the null hypoth-
esis states that knowing the level of a landslide conditioning
factor does not help to predict the landslide occurrence
(Satorra and Bentler 2001).

A goodness-of-fit statistic, χ2, is defined as following:

χ2 ¼ ∑
n

i¼1

Foi−Feið Þ2
Fei

ð13Þ

where Foi represents the observed frequencies and Fei repre-
sents the expected frequencies. A higher chi-squared statistic
indicates higher performance of the landslide conditioning
factor in the identification of landslides.

Model performance evaluation

In landslide susceptibility modeling, it is important to perform
a validation of the predicted results. Without validation, the
predicted models and prepared maps are useless and without
scientific significance (Chung and Fabbri 2003). In the litera-
ture, the receiver operating characteristic (ROC) curve is a
useful tool that is commonly used for assessing the perfor-
mance of the landslide susceptibility models.

The ROC curve is a plot of the true positive rate (also
known as the sensitivity) and the false positive rate (also
known as 1-specificity) for all possible cut-off values. In land-
slide susceptibility analysis, true positives represent the num-
ber of pixels that are correctly classified as landslides, and
false positives are pixels in landslide-free areas that are
misclassified as landslide points. The area under the ROC
curve (AUC) is an indicator of the capability of a model to
predict the landslide and non-landslide pixels. An AUC value
of 1 indicates a perfect classification, while an AUC value of 0
indicates a non-informative model. For a random model, the
AUC value is 0.5 (Tien Bui et al. 2016; Walter 2002). In
addition to the AUC values, the standard error of the AUC
values was also used, and a smaller standard error indicates a
better model.

Several statistical measures, such as the accuracy (ACC),
the F-measure, the mean absolute error (MAE) and the root
mean squared error (RMSE), have also been used to assess the
predictive capability of the landslide models:

Sensitivity ¼ TP
TP þ FN

ð14Þ

Specificity ¼ TN
FP þ TN

ð15Þ

Accuracy ¼ TP þ TN
TP þ FP þ TN þ FN

ð16Þ

F−measure

¼ 2*Sensitivity*Specificity= Sensitivityþ Specificityð Þ ð17Þ

Mean absolute error MAEð Þ

¼ p1−a1j þ p2−a2j j þ⋯þ pn−anj jj
n

ð18Þ

Root mean squared error RMSEð Þ

¼ Sqrt
p1−a1ð Þ2 þ⋯þ pn−anð Þ2

n

 !
ð19Þ

where TP and TN are the proportions of pixels that are
correctly classified, FP and FN are the proportions of
pixels that are incorrectly classified, the F-measure com-
bines the sensitivity and specificity into their harmonic
mean, and pi is the predicted value, while ai is the actual
value (Tien Bui et al. 2014).

Results

Frequency ratio-based correlation between landslides
and conditioning factors

The frequency ratios (FR) for the class or type of each condi-
tioning factor were calculated by dividing the landslide occur-
rence ratio by the area ratio (Razavizadeh et al. 2017). In this
study, all calculated FRs were normalized to the range of 0 to 1
(NFR). Figure 6 shows the spatial relationship between each
landslide conditioning factor and landslide in terms of their
NFRs. For slope aspect, southwest-facing slopes have the
highest NFR value (0.198), followed by south-facing slopes
(0.159), southeast-facing slopes (0.138), northwest-facing
slopes (0.128), north-facing slopes (0.103), west-facing slopes
(0.096), east-facing slopes (0.092), northeast-facing slopes
(0.085), and flat areas (0). It can be seen that southwest-
facing slopes are more prone to landslides. In terms of slope
angle, the class of <10° has the highest NFR value (0.410); the
other classes, such as the 10–20° class (0.338), the 20–30°
class (0.228), the 30–40° class (0.023), the 40–50° class (0),
and the >50° class (0) have lower NFR values. In the case of
plan curvature, the 0.25–1.08 class is most prone to landslides
because it has the maximum NFR value (0.261), followed by
−0.35 to 0.25 (0.223), −1.10 to −0.35 (0.191), −10.57 to −1.10
(0.190), and 1.08–8.59 (0.135). For profile curvature, the
−10.56 to −1.54 class has the maximum NFR value (0.233),
representing a high probability of landslide occurrence. In the
case of elevation, the highest NFR value corresponds to the
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Fig. 6 Relationship between the landslides and the conditioning factors



elevation range between 1000 m and 1200 m (0.406), indicat-
ing that the highest probability of landslide occurrence is in
this range. For distance to faults, < 1000 m, 1000–2000 m,
2000–3000 m, 3000–4000 m, and >4000 m have NFR values
of 0.265, 0.293, 0.109, 0.168, and 0.166, respectively. It can
be seen that the class of 1000–2000 m has the highest NFR
value. In the case of distance to rivers, the highest value of
NFR is seen in the <200 m class (0.384). In general, smaller
distances to rivers correspond to greater landslide-occurrence
probabilities. For the distance to roads, the class of <500m has
the highest NFR value (0.323); similarly, smaller distances to
roads correspond to greater landslide-occurrence probabilities
in this study. In the case of lithology, the highest NFR value
corresponds to group 3 (0.224), whereas the lowest value of
NFR (0) corresponds to groups 5, 7, and 10. For NDVI, the
−0.26 to 0.21 class has the highest value of NFR (0.359),
followed by 0.21–0.35 (0.339), 0.35–0.47 (0.215), 0.47–
0.59 (0.076), and 0.59–0.74 (0.011). For land use, the highest
NFR value corresponds to bare land (0.407), while the lowest
NFR value corresponds to water (0). In the case of rainfall, the
highest NFR value corresponds to the class of 590–610,
whereas the lowest NFR values (0) corresponds to the classes
of <530, 530–550, and 550–570.

Multicollinearity analysis of landslide conditioning
factors

The calculated tolerances and VIF values for the 12 land-
slide conditioning factors are shown in Table 2. The results
show that the lowest tolerance is 0.284 and the highest VIF
value is 3.521 for the distance to rivers. All these values
satisfy the critical values (tolerance <0.1 or VIF >10),
which indicate that there is no multicollinearity among
the 12 landslide conditioning factors.

Selection of landslide conditioning factors

After the multicollinearity analysis of landslide condition-
ing factors has been conducted, the next step is to select the
best conditioning factors based on the chi-squared statistic.
Table 3 shows the calculated average merit (AM) as the
average chi-squared statistic and its standard deviation
(SD) using 10-fold cross-validation for the 12 landslide
conditioning factors. It can be seen that the highest AM
is for elevation (72.092), which means that elevation has
the highest predictive capability. This result is consistent
with that of another study that was carried out by Tien Bui
et al. (2016). Eight landslide conditioning factors have
smaller AM values, such as NDVI (65.830), land use
(64.661), lithology (45.291), distance to rivers (30.134),
distance to roads (22.465), slope angle (10.660), rainfall
(4.496), and distance to faults (1.962), which means these
eight factors make smaller contributions to landslide

modeling. Three landslide conditioning factors (slope as-
pect, plan curvature, and profile curvature) have AM
values of 0, which means that they make no contribution
to the landslide modeling. In consequence, the inclusion of
these three factors may reduce the predictive accuracy of
the resulting models, so they were discarded from the anal-
ysis in the study. Therefore, only nine conditioning factors
were adopted in this study.

Application of the KLR model

The KLR model was constructed using the Weka software
package (v.3.90). During the training process, a heuristic test
was carried out to find the best kernel parameters for the RBF
kernel using the training data and 10-fold cross-validation.

Table 2 Multicollinearity analysis for the landslide conditioning factors

Landslide conditioning factors Collinearity statistics

Tolerance VIF

Slope aspect 0.784 1.276

Slope angle 0.970 1.031

Plan curvature 0.980 1.020

Profile curvature 0.965 1.036

Elevation 0.459 2.177

Distance to faults 0.284 3.516

Distance to rivers 0.284 3.521

Distance to roads 0.936 1.069

Lithology 0.828 1.208

NDVI 0.941 1.062

Land use 0.423 2.363

Rainfall 0.913 1.095

Table 3 Average Chi-squared statistic for the landslide conditioning
factors

Number Landslide conditioning factors Average merit SD

1 Elevation 72.092 ± 4.738

2 NDVI 65.830 ± 3.960

3 Land use 64.661 ± 5.420

4 Lithology 45.291 ± 1.896

5 Distance to rivers 30.134 ± 6.040

6 Distance to roads 22.465 ± 2.832

7 Slope angle 10.660 ± 1.179

8 Rainfall 4.496 ± 4.577

9 Distance to faults 1.962 ± 3.927

10 Slope aspect 0 0

11 Plan curvature 0 0

12 Profile curvature 0 0
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The best values of the tuning parameter and the regularizing
parameter are 0.02 and 0.02, respectively. The model was then
applied to the whole study area. The calculated landslide sus-
ceptibility index (LSI) values were in the range of 0.000 to
0.955. Obviously, a higher landslide susceptibility index value
indicates a higher probability of a landslide occurrence. The
produced landslide susceptibility map (LSM) was reclassified
into five classes using the LSI intervals such as very low
(0.000–0.090), low (0.090–0.251), moderate (0.251–0.427),
high (0.427–0.625), and very high (0.625–0.955) using the
natural breaks method (Fig. 7). The results show that the very
low class has the largest area percentage (51.75%), followed
by the low (16.64%), moderate (13.61%), high (11.23%), and
very high (7.13%) classes.

Application of the NB model

The NB model was constructed in a similar way as the KLR
model. The calculated LSI values were in the range of 0.000–

0.999. Similarly, the produced landslide susceptibility map
was also reclassified into five classes using the LSI intervals,
such as very low (0.000–0.118), low (0.118–0.364), moderate
(0.364–0.619), high (0.619–0.842), and very high (0.842–
0.999), using the natural breaks method (Fig. 8). The results
show that the very low class has the largest area percentage
(57.19%), followed by the low (7.32%), moderate (6.63%),
high (8.68%), and very high (20.55%) classes.

Application of the RBFNetwork model

Similarly, LSI values were also calculated using the
RBFNetwork model. To determine the number of clusters
in the hidden layer, a heuristic test was also carried out
with varying numbers of clusters versus the area under the
receiver operating characteristics curve (AUC) and the
predictive accuracy (ACC) values using both the training
and validation data. Finally, the optimal number of clus-
ters in the hidden layer was determined to be 6 for the
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Fig. 7 Landslide susceptibility
map derived from the KLRmodel
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Fig. 8 Landslide susceptibility
map derived from the NB model

Fig. 9 Selection of clusters for the
RBFNetwork model
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Fig. 10 Landslide susceptibility
map derived from the
RBFNetwork model

Fig. 11 ROC curves for the three landslide susceptibility maps produced by the KLR, NB, and RBFNetworkmodels: (a) success rate, (b) prediction rate



RBFNetwork model (Fig. 9). The constructed model was
then applied the whole study area to calculate the LSI.
The calculated LSI values were in the range of 0.024–
0.817. All of the LSI values were imported into ArcGIS
10 to produce the landslide susceptibility map. The land-
slide susceptibility map was reclassified into five classes
using the LSI intervals, such as very low (0.024–0.130),
low (0.130–0.295), moderate (0.295–0.428), high (0.428–
0.574), and very high (0.574–0.817) using the natural
breaks method (Fig. 10). The results show that the very
low class has the largest area percentage (47.98%),
followed by the low (22.95%), moderate (12.38%), high
(9.88%), and very high (7.18%) classes.

Model performance and validation

Using the selected nine landslide conditioning factors, the
KLR, NB, and RBFNetwork models were constructed
using the training data. The ROC curves and AUC values
of these three models are shown in Fig. 11a and Tables 4
and 5. It can be observed that the KLR model has the
highest success rate of 0.847, followed by the NB and
RBFNetwork models, which have success rates of 0.816
and 0.824, respectively. In addition, four related evaluation
statistics, the ACC, the F-measure, the MAE, and the
RMSE, are included. It could be observed that the KLR
model has the highest ACC value (0.791), the highest F-
measure (0.787), the lowest MAE (0.259), and the lowest
RMSE (0.370), and these results also indicate that the KLR
model exhibits the best performance on the training
dataset.

The prediction rates of the three landslide models were
evaluated using the validation data, and the resulting ROC

curves and AUC values are shown in Fig. 11b and Tables 6
and 7. It can be seen that all the models have good predic-
tion capabilities, while the KLR model has the highest
prediction rate of 0.772, followed by the RBFNetwork
and NB models, with prediction rates of 0.749 and 0.732,
respectively. In addition, the four related evaluation statis-
tics, the ACC, the F-measure, the MAE, and the RMSE,
also show that the KLR model has the highest ACC value
(0.766), the highest F-measure (0.747), the lowest MAE
(0.269), and the lowest RMSE (0.408), which also indicate
that the KLR model exhibits the best performance on the
validation dataset.

Finally, to check the statistically significant differences be-
tween the three landslide models, the Wilcoxon signed-rank
test method with p and z values was used for pairwise com-
parisons of the three models. When p values are smaller than
the 0.05 significance level and z values exceed critical values
of z (−1.96 to +1.96), the performances of landslide models
are different (Tien Bui et al. 2016). The results show that the
performances of the three models in this study are significant-
ly different (Table 8).

Overall, all three landslide models are acceptable for land-
slide susceptibility mapping in the study area, and the KLR
model exhibits the most stable and best performance in this
study.

Discussions and conclusions

This study assesses the effectiveness of KLR, NB, and
RBFNetwork models for landslide susceptibility modeling
of the Long County area in China. To construct the land-
slide models, the concept of binary classification from

Table 5 Parameters of AUC for the training dataset

Test result variable (s) Area SE 95% Confidence interval

Lower bound Upper bound

KLR 0.847 0.0174 0.812 0.878

NB 0.816 0.0197 0.778 0.850

RBFNetwork 0.824 0.0186 0.787 0.857

Table 4 Performance of the three models on the training dataset

Parameters KLR NB RBFNetwork

AUC 0.847 0.816 0.824

ACC (%) 0.791 0.729 0.754

F-measure 0.787 0.746 0.745

MAE 0.259 0.279 0.268

RMSE 0.370 0.461 0.388

Table 6 Performance of the three models on the validation dataset

Parameters KLR NB RBFNetwork

AUC 0.772 0.732 0.749

ACC (%) 0.766 0.673 0.737

F-measure 0.747 0.692 0.719

MAE 0.269 0.326 0.298

RMSE 0.408 0.506 0.409

Table 7 Parameters of AUC for the validation dataset

Test result variable (s) Area SE 95% Confidence Interval

Lower bound Upper bound

KLR 0.772 0.0357 0.708 0.827

NB 0.732 0.0365 0.666 0.792

RBFNetwork 0.749 0.0358 0.684 0.807
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machine learning was adopted, in which the models were
trained in order to classify the pixels examined in the
study into two classes, landslide and non-landslide. In
addition, in order to use these methods, it is necessary
to create the training dataset and the validation dataset
for the models, respectively (Tien Bui et al. 2017). Since
the areas of the 171 landslides are very small compared to
the total study area, the undersampling method (Pradhan
2013) was used to generate the same non-landslide points
to avoid the problems associated with imbalanced distri-
butions. This is the most widely used sampling method in
landslide susceptibility; therefore, it may guarantee that
the results from the three models are comparable with
those in the literature. In addition, a total of 12 condition-
ing factors were selected based on analysis of the land-
slide inventory map, the characteristics of the study area,
and the literature, though their predictive abilities are
clearly different (Table 4). Slope aspect, plan curvature,
and profile curvature revealed non-predictive ability
values, and, therefore, they were excluded from this anal-
ysis. The distribution of landslides is relatively even
across the classes of the above three factors, which result-
ed in low values for the chi-squared statistic. In contrast
to those three factors, the other factors reveal predictive
ability values that indicate that the selection and coding of
these factors had been conducted successfully.

However, a standard guideline for the selection of land-
slide conditioning factors is still a topic of debate (Tien Bui
et al. 2016). Thus, the classifier attribute evaluation meth-
od was further used to assess variable importance for the
three models with the normalized predictive capabilities of

conditioning factors (Witten et al. 2011). It can be seen
that, although all included 9 factors have positive predic-
tive capabilities, they differ in contributions to different
models (Fig. 12). In the case of the KLR model, elevation,
NDVI, land use, and lithology have the highest contribu-
tions of 0.196, 0.177, 0.147, and 0.110, respectively. The
other five conditioning factors have contributions less than
0.100. The contributions of 9 landslide conditioning fac-
tors are similar for the NB and RBFNetwork models.
However, the contributions of elevation, NDVI, land use,
and lithology are 0.228, 0.171, 0.128, and 0.123 for the NB
model, while 0.199, 0.179, 0.149, and 0.125 for the
RBFNetwork model, respectively. Therefore, it can be con-
cluded that the predictive capability of a conditioning fac-
tor depends on the landslide model used (Tien Bui et al.
2016). Further studies are necessary to explore the selec-
tion methods of landslide conditioning factor.

The performance assessment shows that there is a dif-
ference between the three models in the classification of
the training dataset. The classification accuracy of the KLR
model is 79.1%, with an AUC of 0.847, indicating a good
result (better than those of the other models). Regarding
prediction capability, the NB model has the lowest capa-
bility compared to the KLR model and the RBFNetwork
model. The KLR model with the RBF kernel has a better
ability to adapt to the training data than the other models
do. On the other hand, the performance of the NB model is
influenced by its assumptions of conditional independence
(Lee and Lee 2006), and these assumptions were violated
in the training data of this study, resulting in the low clas-
s i f icat ion rate. Compared to the NB model , the
RBFNetwork performed better, due to its ability to better
adjust the weights in the training phase. Based on the
above analysis, we conclude that the KLR model is the
best suited for this study.

The outcomes of the study indicate that these three
models could be useful tools for producing landslide suscep-
tibility maps and could provide valuable information to local
government agencies for natural hazard management and
policy planning for the study area and other similar areas.

Table 8 Pairwise comparison for the three landslide susceptibility
models using Wilcoxon signed-rank test (two-tailed)

NO Pairwise comparison Z value P value Significance

1 KLR vs. NB −8.909 0.000 Yes

2 KLR vs. RBFNetwork −4.660 0.000 Yes

3 NB vs. RBFNetwork −10.008 0.000 Yes
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conditioning factors for the three
models
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