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Abstract
Liquefaction has caused many catastrophes during earthquakes in the past . The strain energy-based method is one of the modern
methods used to estimate liquefaction potential. In this study, wide-ranging experimental data were gathered from cyclic tests and
centrifuge modeling of liquefaction. A model was then developed based on the strain energy needed for liquefaction to occur
using the group method of data handling and the gravitational search algorithm. Contributions of the effective variables were
evaluated through a sensitivity analysis. To check the accuracy of the developed strain energy model, cyclic triaxial tests were
conducted on sandy soil and silty sand specimens. Comparison of the energy required to initiate liquefaction in the tested soil
specimens with values predicted by the developed model indicated high accuracy of the energy-based model. Subsequently, the
accuracy of the energy model was assessed in field conditions using the amount of strain energy released by real earthquakes in
various sites. The ability of the model to distinguish liquefied areas from non-liquefied ones confirms its accuracy in field
conditions. Finally, the developed model was compared with some available relationships to estimate the strain energy required
for liquefaction to occur.
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Introduction

Earthquakes can cause a lot of geotechnical damage, including
the phenomenon of liquefaction (Ishihara 1996; Sonmez and
Ulusay 2008; Zhuang et al. 2016). Liquefaction occurs when
saturated soil loses strength due to the earthquake loading and
increased pore water pressure (Papathanassiou et al. 2011;
Javdanian and Hoseini 2016; Mehrzad et al. 2016;
Javdanian and Seidali 2016). Traumatic experiences from this
phenomenon has stimulated researchers to use various
methods to estimate the potential for liquefaction (e.g.,
Kaveh et al. 2016; Rahman and Siddiqua 2017).Models based
on strain energy (W) absorption in soils are amongst the
newest methods for estimation of liquefaction potential
(Baziar et al. 2011; Jafarian et al. 2012). In the strain energy
method, liquefaction within the critical state framework oc-
curs with the arrival of a seismic wave of energy exceeding a

certain threshold that represents the liquefaction potential of
the soil deposit in terms of energy.

The stress-based method (Youd et al. 2001; Seed and Idriss
1971; Whitman 1971) and strain-based method (Dobry et al.
1982) are common techniques for the estimation of liquefac-
tion potential (Baziar and Jafarian 2007). In these methods,
the generation of pore water pressure and subsequently lique-
faction incidence is correlated with the amount of seismic
shear stresses and shear strains in the soil, respectively. In fact,
the energy-based method relates the incidence of liquefaction
to the levels of stress and strain induced by cyclic loading.
Therefore, the strain energy method is physically more realis-
tic than these other two techniques (Kokusho and Mimori
2015). The quantity of energy needed for the initiation of
liquefaction is obtained from experimental results or field da-
ta. The area inside the hysteresis loop (the shear stress-shear
strain curve) indicates the amount of dissipated strain energy
at the unit volume of the soil mass (Figueroa et al. 1994;
Jafarian et al. 2011). The total amount of this strain energy
needed for the occurrence of liquefaction is equal to the
amount of strain energy needed for initiation of this phenom-
enon. The existence of more accurate models for estimation of
this amount of strain energy reduces uncertainty in the estima-
tion of liquefaction potential.
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In recent years, novel appearance of optimization, modeling,
and problem solving have evolved regarding the pervasive
progress in computational approaches. These aspects are re-
ferred as soft computing-based methods and are very powerful
methods for multivariate and non-linear modeling (Javdanian
2017). Soft computing-based techniques such as artificial neu-
ral networks (Baziar and Jafarian 2007; Caglar and Arman
2007; Javdanian et al. 2012; Jafarian et al. 2014; Mohammadi
et al. 2015), genetic programming (Baziar et al. 2011), linear
genetic programming (Alavi and Gandomi 2012), multi-
expression programming (Alavi and Gandomi 2012), adaptive
neuro-fuzzy inference systems (Javdanian et al. 2015b; Li et al.
2017; Javdanian 2017), multivariate adaptive regression splines
(Zhang and Goh 2013, 2016; Goh and Zhang 2014), and sup-
port vector machines (Xue and Yang 2016) have contributed
widely to the various topics of geotechnical engineering. In
recent years, the group method of data handling (GMDH)-
based networks have provided successful evaluations in prob-
lems associated with soils (e.g., Kalantary et al. 2009;
Najafzadeh et al. 2013; Javdanian et al. 2015a; Najafzadeh
and Tafarojnoruz 2016; Javdanian et al. 2017).

In the present research, a neuro-fuzzy GMDH (NF-GMDH)
model was developed for evaluation of the soil liquefaction
potential. For this purpose, a comprehensive database of cyclic
laboratory tests was applied to develop a strain energy-based
model. Also, the gravitational search algorithm (GSA) was
used in a topology plan of the NF-GMDH-based model for
evaluation of the triggering of liquefaction. In addition, the
applicability of the proposed model was assessed using centri-
fuge data. A sensitivity analysis was carried out to evaluate the
behavior of the developed model in relation to the variation of
influential parameters. To evaluate the performance of the NF-
GMDH-GSA-based model, cyclic triaxial tests were conducted
on sandy soil and silty sand specimens and the test results were
compared with the values obtained from the proposed energy
model. Performance of the developed model was appraised in
field conditions using the real strain energy released by earth-
quakes in different regions. Finally, a comparison was carried
out between the performance of the developed model and some
available recommendations.

Database of cyclic tests and centrifuge
modeling

With the progression of cyclic laboratory tests on soil speci-
mens and assessment of dynamic soil behavior, considerable
data have now been gathered and there is now a wide-ranging
database for sands and silty sands. In our research, available
laboratory data were re-analyzed and an effort was made to
suggest a statistical model for predicting the strain energy re-
quired for triggering of soil liquefaction. A relatively large da-
tabase (consisting of 424 datasets) was gathered from the

available experimental tests performed by Towhata and
Ishihara (1985), Arulmoli et al. (1992), Liang (1995), Rokoff
(1999), Green (2001), Tao (2003), Kanagalingam (2006), and
Jafarian et al. (2012). Table 1 summarizes the main features of
these experimental programs. These tests were conducted on
sands and silty sands by cyclic torsional shear, cyclic triaxial,
and cyclic simple shear apparatuses. For validation of the per-
formance of developed model, the centrifuge tests results (Dief
2000) (Table 1) were also used as validation dataset.

Influential parameters

A thorough understanding of the factors affecting the cyclic be-
havior of soils is required to obtain the precise strain energy
needed for liquefaction occurrence. The experimental findings
of Towhata (1986) and Figueroa et al. (1994) showed that the
effective confining pressure (σ’0) and relative density (Dr) have
significant effect on the strain energy needed for soil liquefaction.
The influence of these parameters on the liquefaction potential of
soils has been confirmed by other researchers (e.g., Seed and Lee
1966; Jafarian et al. 2010). The experimental and field studies
indicate the significant effect of fines content (FC) on the behav-
ior of cyclic soils (Naeini and Baziar 2004; Chien et al. 2002;
Thevanayagam 1998; Baziar and Dobry 1995). Moreover, ex-
tensive studies were conducted on the effect of particle size on
the cyclic resistance of soils (e.g., Liang 1995; Lee and Fitton
1968). Results showed that the cyclic resistance of sandy soils is
affected by characteristics of particle size distribution such as
coefficient of uniformity (Cu) and mean particle size (D50)
(Rokoff 1999; Lee and Fitton 1968). Baziar and Jafarian
(2007) showed that the use of coefficient of curvature (Cc) does
not improve the accuracy of liquefaction potential estimation.
Therefore, this study used five parameters including Dr, mean
initial effective confining stress (σ’0), FC, mean grain size (D50),
and Cu to estimate the strain energy required for soil liquefaction
triggering. The characteristics of the influential parameters on the
collected experimental results are presented in Table 1.

Model descriptions

Neuro-fuzzy group method of data handling
(NF-GMDH)

The GMDH-based network is machine learning tool for deci-
sion making and classification; it is a kind of artificial neural
network with polynomial activation function. The model con-
verges to a termination criterion after a sufficient number of
epochs using series of embedded operations (Madala and
Ivakhnenko 1994). Various extensions of this network have
been addressed in the literature (e.g., Hwang 2006). One of the
well-known extensions is called NF-GMDH, which is con-
structed automatically by a self-organized algorithm (Hwang
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2006; Najafzadeh and Azamathulla 2013). Evolutionary algo-
rithms adapt easily with the NF-GMDH algorithm due to its
high flexibility. In addition, a simplified fuzzy reasoning rule
such as “If x1 is equal to Fk1 and x2 is equal to Fk2, output y is
equal to wk” is used to improve the GMDH network (Takashi
et al. 1998). The function of Gaussian membership is
employed in terms of Fkj which is associated with the kth
fuzzy rules in the extent of the jth input values xj (Eq. 1):

Fkj x j
� � ¼ exp −

x j−akj
� �2

bkj

 !
ð1Þ

where akj and bkj are the constant amounts for each fuzzy rule.
Also, the y parameter is specified as an output, which has been
represented as Eqs. 2 and 3:

y ¼ ∑
K

k¼1
ukwk ð2Þ

uk ¼ ∏
j
Fkj x j
� � ð3Þ

where wk is the real value for kth rules (Najafzadeh and Lim
2014; Hwang 2006; Takashi et al. 1998).

In the NF-GMDH model, each neuron has two input vari-
ables and one output variable. The output of each neuron in a
layer is directly connected to the input entry of the next layer.
Calculating the average of the outputs from the last layer, the
final output is obtained. The inputs variables from the mth

model and pth layer are the output variables of the (m − 1)-th
andm-th model in the (p − 1)-th layer. The mathematical func-
tions to compute ypm are as follows (Eqs. 4 and 5):

ypm ¼ f yp−1;m−1; yp−1;m
� � ¼ ∑

K

k¼1
μpm
k :wpm

k ð4Þ

μpm
k ¼ exp −

yp−1;m−1−apmk;1
� �2

bpmk;1
−

yp−1;m−apmk;2
� �2

bpmk;2

8><
>:

9>=
>; ð5Þ

where μpm
k is the kth Gaussian function and wpm

k is its corre-
spondingweight param,eter, which are related to themth mod-
el at the pth layer. Furthermore, apmk and bpmk are the Gaussian
parameters which are used for the ith input variable from the
mth model and pth layer. Also, the final output variable is
represented by Eq. 6:

y ¼ 1

M
∑
M

m¼1
ypm ð6Þ

The process of learning of feedforward NF-GMDH is an
iterative procedure for solving complicated systems. The error
parameter, in each iteration, can be determined as Eq. 7:

E ¼ 1

2
y*−y
� �2 ð7Þ

where y* is the predicted value.

Table 1 Summary of soil characteristics compiled in the database

Study Testing apparatus Soil type σ’0 (kPa) Dr (%) FC
(%)

Cu D50 (mm) W (J/m3)

Towhata and
Ishihara (1985)

Cyclic torsional Toyoura sand 294 43.1–50.7 0 1.57 0.19 5000–6300

Arulmoli et al.
(1992)

Cyclic simple shear,
cyclic triaxial

Nevada sand 40–160 41.6–62.7 0 2.27 0.15 398.2–10,868

Liang (1995) Cyclic torsional Reid Bedford sand 41.1–124.1 48.6–75.5 0 1.67 0.26 593–2737

Cyclic torsional LSFD sand 41.1–124.1 57.2–91.7 28 5.88 0.13 517–1379

Cyclic torsional LSI-30 sand 41.1–124.1 49.1–71.9 0 2.39 0.39 839–4098

Rokoff (1999) Cyclic torsional Nevada sand 46.2–141.3 42.6–71.1 0 2.27 0.15 466–6238

Green (2001) Cyclic triaxial Monterey sand and
silty sand

93.74–101.4 −4.7 – 98.3 0–75 1.63–1.87 0.14–0.46 480–34,970

Cyclic triaxial Yatesville sand and
silty sand

95.32–103.1 −44.5 – 105.1 0–100 2.44–4.44 0.03–0.17 300–8320

Tao (2003) Cyclic torsional LSFD sand–silt
mixtures

41.1–124.1 44–78 0–45 1.88–9.19 0.09–0.15 789–7130

Kanagalingam
(2006)

Cyclic triaxial Ottawa sand–silt
mixtures

100–400 9.38–91.78 0–60 1.52–28.12 0.03–0.23 590–15,000

Jafarian et al. (2012) Cyclic hollow cylinder
torsional

Toyoura sand 55–166 29.26–76.93 0 1.5 0.2 415–6032

Dief (2000) Centrifuge tests Nevada sand 28.4–34.7 58.5–76.3 0 2.27 0.15 590–1405

Reid Bedford sand 28.8–34.6 51–80.4 0 1.67 0.26 550–1680

LSFD sand 14.1–32.3 55–93 28 5.88 0.13 385–508

Cu coefficient of uniformity, D50 mean particle size, Dr relative density after consolidation, FC fines content, W strain energy, σ’0 confining pressure,
LSFD Lower San Fernando Dam
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NF-GMDH development using a gravitational search
algorithm

One of the useful swarm intelligence algorithms is GSA,
which explores in a multidimensional search space for extre-
mum values of target function. In this algorithm, optimization
is performed on the basis of the gravity rule and movement in
an artificial system with discrete time coordinates (Rashedi
et al. 2009). According to GSA, a collection of masses turns
into search agents, in a way in which every mass can percept
the location and position of other masses. Therefore, the in-
formation is transferred between different masses using the
gravitational force.

In GSA, for a minimization problem, the mass of each
agent is computed after calculating the current population fit-
ness (Najafzadeh and Lim 2014; Rashedi et al. 2009) (Eqs. 8
and 9):

qi tð Þ ¼
fiti tð Þ−worst tð Þ
best tð Þ−worst tð Þ ð8Þ

Mi tð Þ ¼ qi tð Þ
∑
N

j¼1
qj tð Þ

ð9Þ

where Mi(t) and fiti(t) stand for the mass and the fitness
amount of agent i at time t; and N represents the population
size. Also, for a minimization problem,worst(t) and best(t) are
defined as follows (Eqs. 10 and 11:

best tð Þ ¼ min
j∈ 1;…;Nf g

fit j tð Þ ð10Þ

worst tð Þ ¼ max
j∈ 1;…;Nf g

fit j tð Þ ð11Þ

For calculating the acceleration of an agent, all forces from
heavier masses applied to it should be computed by simulta-
neously considering the law of gravity and the second law of
Newton on motion (Eq. 12) (Rashedi et al. 2009). After this,
the updated velocity of an agent is obtained as a fraction of its
current velocity added to its acceleration (Eq. 13). Then, its
situation could be determined using Eq. 14.

adi tð Þ ¼ ∑
j∈kbest; j≠i

rand jG tð Þ M j tð Þ
Ri; j tð Þ þ ε

xdj tð Þ−xdi tð Þ
� �

; d

¼ 1; 2;…; n ; i ¼ 1; 2;…;N

ð12Þ
vdi t þ 1ð Þ ¼ randi � vdi tð Þ þ adi tð Þ ð13Þ
xdi t þ 1ð Þ ¼ xdi tð Þ þ vdi t þ 1ð Þ ð14Þ

where xdi , v
d
i and a

d
i stand for the position, velocity, and accel-

eration of agent i in dimension d, respectively. randi and randj

are two uniform randoms at the range of [0, 1], ε is a small
amount, n is the dimension of the search space, and Ri, j(t) is
the Euclidean distance between two agents i and j that were
defined as Ri, j(t) = ‖Xi(t), Xj(t)‖2. It is noteworthy that X i ¼
x1i ; x

2
i ;…; xni

� �
expresses the position of ith agent in the

search space. kbest is the set of first K agents with the best
fitness value and biggest mass, which is in terms of time,
initialized to K0 at the start and decreased by time. Here, K0

is set to the total number of agents (N) and is decreased
linearly to 1. G is a descending function of time, which is
set to G0 at the beginning and decreases exponentially with
time as in Eq. 15:

G tð Þ ¼ G0e−α
t
T ð15Þ

In the optimization process, the values of G0 and α are
adjusted to 100 and 20, respectively. Also, the number of
agents is 50 and the maximum number of iterations is 100.
The GSA optimized coefficients of weighting in each neuron
of the developed NF-GMDH network.

Data division

In machine learning procedures, as a usual method, the
database is divided into two subsets: training and testing.
The learning procedure is carried out using the training
subset while the testing subset validates the trained predic-
tive model. The data division method can impress the mod-
el efficiency (Shahin et al. 2004). In the present study, the
dataset was distributed between training and testing sub-
sets (Table 2) in a trial selection procedure, in which the
main statistical parameters of two subsets (i.e., mean, max-
imum, minimum, and standard deviation) became close to
each other. Eighty percent of the data (339 cyclic tests)
were considered for the training and the rest of the data
(85 cyclic tests) for the testing subset. Table 2 shows the
statistical specifications of these subsets.

Performance measures

In order to assess the efficiency of developed models, mean
absolute error (MAE), root mean squared error (RMSE), and
the coefficient of determination (R2) were calculated for the
measured and predicted strain energy needed for liquefaction
occurrence (Javdanian et al. 2015b). These are widely used
statistical parameters for performance measurement (e.g.,
Jafarian et al. 2014). Theoretically, a predictive model with
R2 of unity and MAE and RMSE of zero is considered to be
excellent. Also, the objective function (OBJ) (Eq. 16)
(Gandomi et al. 2012; Najafzadeh and Azamathulla 2013)
was used as a criterion of how well the predicted values agree
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with the measured experimental data. The best GMDH-based
model was inferred by minimizing Eq. 16:

OBJ ¼ No:tr−No:te
No:all

� �
� RMSEtr þMAEtr

R2
tr

þ 2� No:te
No:all

� �
� RMSEte þMAEte

R2
te

ð16Þ

where No.tr, No.te, and No.all are the number of training, test-
ing, and all datasets, respectively.

The OBJ captures the changes of MAE, RMSE, and R2

together. Lower RMSE andMAE values and higher R2 values
result in lower OBJ and, consequently, indicate a more accu-
rate model.

Results and discussion

In this study, several networks with different initial parameters
were investigated, and the most accurate model was finally
selected based on the calculated error parameters. The accu-
racy of the proposed model as determined by comparing the
measured strain energy values (LogW) and those predicted by
an NF-GMDH-GSA-based network is presented in Fig. 1a.
The R2, MAE, and RMSE values of the developed model
for estimation of the strain energy required for liquefaction
onset are 0.937, 0.024, and 0.036 in the training stage and

0.883, 0.040, and 0.051 in the testing stage, respectively.
Moreover, the optimal OBJ value is equal to 0.203. As
depicted in Fig. 1a, the Log W values predicted by NF-
GMDH-GSA are limited to the lines corresponding to ±30%
(i.e., predicted = 0.7 × measured, and predicted = 1.3 × mea-
sured). It is worth noting that more than 97.6% of all experi-
mental results used in model development are limited to the
lines corresponding to ±20%, indicating reasonable accuracy
of the GMDH-based model in estimation of the strain energy
required for initiation of liquefaction. Table 3 presents R2,
MAE, and RMSE values of the proposed strain energy model
for the training, testing, and all datasets.

Moreover, for further investigation into the model’s accu-
racy in predicting LogW, the difference between the measured
and predicted values (residuals) was calculated and presented
in Fig. 1b. As shown in this figure, the relative error of pre-
dicted Log W results is less than 0.6 J/m3 and approximately
97% of the results had a relative error less than 0.4 J/m3.
Figure 1c also shows the plot of the normalized Log W (i.e.,
the ratio of the measured to the predicted LogW values) versus
the predicted Log W values. The figure demonstrates that the
average value of the normalized Log W is 0.995, which con-
firms that the predictions were unbiased. In addition, the
minimum and the maximum values of normalized Log W
were 0.80 and 1.19, respectively.

In order to confirm generality of the developed model,
centrifuge test results from Dief (2000) were used as

Table 2 Statistical analysis of
inputs and output parameters of
database

Variable Dataset Statistical parameters

Maximum Minimum Mean Standard deviation

σ’0 (kPa) All data 400 40 102.92 49.99

Training 400 40 101.79 43.77

Testing 400 41.1 107.43 69.64

Dr (%) All data 105.1 −44.5 51.7 29.28

Training 105.1 −44.5 51.8 29.62

Testing 96.8 −32.3 51.27 28.01

FC (%) All data 100 0 17.95 23.99

Training 100 0 18.01 24.38

Testing 100 0 17.69 22.56

Cu All data 28.12 1.5 4.02 5.97

Training 28.12 1.5 4.09 6.08

Testing 28.12 1.5 3.75 5.55

D50 (mm) All data 0.46 0.029 0.211 0.11

Training 0.46 0.029 0.212 0.11

Testing 0.46 0.029 0.206 0.11

Log W (J/m3) All data 4.544 2.477 3.26 0.41

Training 4.544 2.477 3.26 0.42

Testing 4.44 2.69 3.25 0.38

Cu coefficient of uniformity, D50 mean particle size, Dr relative density after consolidation, FC fines content, W
strain energy, σ’0 confining pressure
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validation testing set. Dief (2000) carried out these tests
(Table 1) on Nevada, Reid Bedford, and LSFD sands.
Figure 2 depicts predicted versus measured strain energy
values for the centrifuge validation dataset. The R2, MAE,
and RMSE values of the developed model for this dataset
were calculated as being equal to 0.733, 0.081, and 0.098,
respectively (Table 3). In reality, the developed NF-GMDH-
GSA-based model has obtained sufficient precision for both
testing and validation sets.

Sensitivity analysis

The sensitivity analysis was conducted to investigate (i) how
each parameter affects the strain energy needed for soil lique-
faction occurrence; and (ii) the compliance of NF-GMDH-
GSA performance with the experimental results to ensure
the physical behavior of the developed model. To this end,
the effect of changes in each input parameter on the amount
of strain energy was investigated, while other parameters were
assumed constant at their mean values in the database
(Table 2). The strain energy (W) changes with Dr, σ’0, FC,
D50, and Cu are presented in Figs. 3a–e, respectively.

Figure 3a–e also present a diagram of the Log W value with
respect to each effective parameter for all cyclic experimental
results (Table 1) used in model development along with their
best fitted curve.

According to Figs. 3a and b, strain energy (W) increases
with increasing σ’0 and Dr. This finding is consistent with
experimental studies of Lee and Seed (1967) and Figueroa
et al. (1994). An increase in FC first increased and then de-
creased W (Fig. 3c). Although some researchers (e.g., Chien
et al. 2002) have reported a decrease in liquefaction resistance
as FC increases, Carraro et al. (2003), Polito and Martin
(2001), and Hazirbaba and Rathje (2009) have reported an
initial increase and subsequently a decrease in liquefaction
resistance with increasing FC. W decreased by increasing Cu

(Fig. 3d). In addition,W increased by increasingD50 (Fig. 3e).
Liang (1995) showed that coarse-grained soils need a greater
amount of strain energy than fine-grained soils for initiation of
liquefaction. In general, comparison of changes in W when
subjected to the most important parameters affecting the strain
energy required for incidence of liquefaction with experimen-
tal studies (Figs. 3a–e) indicated the accuracy of the proposed
GMDH-based model.
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Fig. 1 a Measured values of
strain energy versus group
method of data handling–
gravitational search algorithm
(GMDH-GSA)-based predicted
values for training and testing
datasets; b histogram of the
residuals; and c normalized Log
W versus predicted Log W values.
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Fig. 2 Predicted strain energy versus measured values for the centrifuge
validation dataset. Log W strain energy values, NF-GMDH-GSA neuro-
fuzzy group method of data handling–gravitational search algorithm

Table 3 Accuracy of the Log Wmodel for the training, testing, all data,
and validation sets

Dataset Number of data Performance

R2 MAE RMSE

Training 339 0.937 0.024 0.036

Testing 85 0.883 0.040 0.051

All element tests 424 0.924 0.027 0.039

Validation (centrifuge tests) 22 0.733 0.181 0.198

Log W strain energy values, MAE mean absolute error, R2 coefficient of
determination, RMSE root mean squared error
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Experimental verification

Within the scope of this study, in order to verify NF-GMDH-
GSA, a series of isotropically consolidated undrained (CU)
cyclic triaxial laboratory tests were carried out on
reconstituted samples of the sandy and silty sandy soils
attained from the Khuzestan province in Iran. The particle size
distribution curves of the tested soil specimens are depicted in
Fig. 4. The soils are classified as poorly graded sand (Marandi
and Javdanian 2012) according to the ASTM D2487. The
maximum void ratio (emax), minimum void ratio (emin), and

specific gravity (Gs) of the tested sands were measured in
accordance with ASTM D4253, ASTM D4254, and ASTM
D854, respectively. Figure 4 also presents some physical
properties of the soils used in the present research.

The under-compaction procedure was used to prepare the
soil specimens (Ladd 1978). All soil specimens were saturated
with running water through the specimen. The controlling
measure for full saturation was Skempton’s saturation param-
eter B = 0.95 – 1. The height and the diameter of the speci-
mens were 100 and 50 mm, respectively. Strain-controlled
cyclic tests with the single strain amplitude of 0.5% were
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conducted on each soil specimen. Each cyclic test was contin-
ued until the initial liquefaction happened. It is noteworthy
that the initial liquefaction was supposed to happen when
the excess pore water pressure became identical to the initial
confining pressure (ru = 1). The tests were conducted at con-
fining pressures (σ’0) of 50 and 100 kPa and relative densities
after consolidation (Dr) of approximately 40% and 70%. The
test series are summarized in Table 4, in which Nl is the num-
ber of cycles needed to liquefaction onset.

Axial loads, vertical displacements, and excess pore water
pressures were measured during the cyclic tests. The mea-
sured axial strain amplitude (ε) was converted to shear strain
amplitude (γ) using γ = 1.5ε, which assumes the Poisson’s
ratio (ν) of 0.5 for an undrained loading condition (Ishihara
1996; Jafarian et al. 2015; Jafarian et al. 2016a, 2016b;
Jafarian and Javdanian 2017). Typical results of the experi-
ment conducted on a silty sandy specimen at σ’0 = 50 kPa and
Dr = 38.6% are illustrated in Figs. 5a–e. These figures dem-
onstrate the shear stress–strain curve (hysteresis loops)
(Fig. 5a), history of excess pore water pressure (ru) (Fig. 5b),
history of cyclic shear strain (Fig. 5c), history of cyclic shear
stress (Fig. 5d), and stress-path diagram (Fig. 5e).

The dissipated energy per volume (J/m3) was determined by
computing the inter area of the hysteresis loop (shear stress–
shear strain curve) during a cycle of test. The dissipated strain
energy until the soil liquefaction onset may be computed using
Eq. 17:

Δw ¼ 1

2
∑
n

i¼1
τd;iþ1 þ τd;i
� �

γa;iþ1−γa;i
� � ð17Þ

where Δw is the accumulative dissipated strain energy per soil
volume up to liquefaction triggering, τd,i is the shear stress dif-
ference in the ith recorded point, n is the recorded points up to
liquefaction occurrence, and γa,i is the shear strain difference in
the ith recorded point (Green 2001; Baziar and Sharafi 2011).

Calculated strain energy (W) up to liquefaction triggering in
the cyclic triaxial tests on sandy and silty dandy soils are pre-
sented in Table 4. Comparison of cyclic triaxial tests results
with values predicted by NF-GMDH-GSA is demonstrated in
Fig. 6. As seen in this figure, the proposed model has good
accuracy in prediction of the strain energy required for soil
liquefaction onset (R2 = 0.701, MAE = 0.126, RMSE =
0.147). It is worth noting that the model is more accurate in
estimation of the energy required for liquefaction onset in sandy
soil (R2 = 0.734, MAE = 0.112, RMSE = 0.135) than in silty
sand (R2 = 0.671, MAE = 0.141, RMSE = 0.158) specimens.

Field verification

The data recorded during real earthquakes has been used to
check the accuracy of the developed model under field condi-
tions. On the basis of data from different earthquakes and
using methodology followed by Davis and Berrill (1998),
Butterfield (2004) calculated the stress and strain time histo-
ries and subsequently the history of dissipated strain energy in
soil deposits. This amount of strain energy is known as re-
leased strain energy by earthquake source to a special site. The
value of energy allotted to the soil deposit in a liquefiable site
(which is imparted by an earthquake) should be greater than
the predicted strain energy needed for liquefaction onset
(which is assessed using the developed NF-GMDH-GSA-
based model), and vice versa.

The amounts of released strain energy from an earthquake
in several sites (Butterfield 2004) are used for field verifica-
tion in our research. These sites at which the average stress
and strain were assessed included the Sunamachi site (situated
on a reclaimed peninsula immediately beside the estuary of
the Ara River in Tokyo Bay, Japan) during the 1987 Chiba-
Toho-Oki earthquake, Lotung Large Scale Seismic Test
(LSST) (situated on the Lanyang plain, near the city of
Lotung in northeast Taiwan) during the 1986 Event 16
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Table 4 Summary of the cyclic triaxial tests conducted on sands in this
research

Soil Dr (%) σ’0 (kPa) Nl W (J/m3)

Sand 40.3 50 25.6 516

40.1 100 40.7 1351

68.7 50 33.2 885

70.4 100 57.6 2671

Silty sand 38.6 50 26.8 497

41.5 100 46.1 1437

69.2 50 36.3 902

73.1 100 64.9 2804

Dr relative densities after consolidation, Nl number of cycles needed to
liquefaction onset, W strain energy, σ’0 confining pressure
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earthquake, andWildlife Refuge Array of Imperial Valley (sit-
uated on the flood plain of the Alamo River in Imperial
County, Southern California, USA) during the 1987
Superstition Hills earthquake. Available research indicates
that liquefaction occurred during the Superstition Hills earth-
quake in the Wildlife Refuge Array of Imperial Valley

(Butterfield 2004). Also, the pore pressure generated during
the Chiba-Toho-Oki earthquake in Sunamachi and the Event
16 earthquake in Lotung LSST shows that a liquefaction phe-
nomenon was not accrued in these sites (Ishihara et al. 1989;
Zeghal et al. 1995).

A comparison of the amount of strain energy released by
earthquakes with the strain energy required for liquefaction
(predicted by the developed NF-GMDH-GSA-based model)
is presented in Fig. 7. Points above the bisector indicate that
the amount of energy released by earthquakes exceeds the
energy required for liquefaction and, therefore, these points
represent liquefaction cases. On the other hand, points below
the bisector indicate that the amount of energy released by an
earthquake is less than the energy required for liquefaction
and, therefore, these points represent non-liquefaction cases.
As seen in Fig. 7, the developed strain energy model accurate-
ly forejudges between liquefied and non-liquefied conditions
for all real cases.

Comparison with some available
relationships

The proposed NF-GMDH-GSA-based strain energy mod-
el has been compared with some available relationships
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(Figueroa et al. 1994; Liang 1995; Dief and Figueroa
2001; Baziar and Jafarian 2007; Alavi and Gandomi
2012) for evaluation of the strain energy required for liq-
uefaction occurrence. Based on the results of the cyclic
tests, Figueroa et al. (1994), Liang (1995), and Dief and
Figueroa (2001) recommended various strain energy rela-
tionships using multiple linear regression (MLR). Baziar
and Jafarian (2007) developed a MLR-based equation for
estimation of W on the basis of a database of cyclic tests
results. Alavi and Gandomi (2012) recommended a rela-
tionship for assessment of strain energy needed for lique-
faction onset using linear genetic programming. The
values of R2, MAE, and RMSE for the developed NF-
GMDH-GSA-based model and the aforementioned rela-
tionships for estimation of the strain energy required for
liquefaction onset are presented in Table 5. The results
presented in Table 5 confirm higher accuracy of the pro-
posed NF-GMDH-GSA model than of the available
recommendations.

Summary and conclusions

Awide-ranging database of cyclic experiments on sandy soils
and silty sands was gathered in this study. Most important
parameters affecting strain energy (W) required for liquefac-
tion occurrence were determined through literature review and
by studying soil behavior in different conditions. Amodel was
developed using NF-GMDH and GSA to estimate W.
Assessing the accuracy of developed model indicates high
accuracy of the NF-GMDH-GSA-based model in estimation
of the strain energy (R2 = 0.924, MAE = 0.027, RMSE =
0.039). Comparison of strain energy results from centrifuge
tests with predicted values confirmed reasonable accuracy of
the developed model. The sensitivity analysis was performed
to investigate the effect of each parameter on the amount ofW
and to ensure the behavior of the developed model. The W
increased by increasing σ’0, Dr, and D50. In addition, W de-
creased by increasing Cu. An increase in FC first increased
and then decreased W. Generally, the changes in W when
subjected to the most important parameters affecting W were
consistent with experimental tests results.

An experimental program was scheduled to assess the ac-
curacy of developed NF-GMDH-GSA model in laboratory
conditions. For this purpose, cyclic triaxial tests were carried
out on two types of soil, namely sandy soil and silty soil. The
cyclic tests were conducted under various effective confining
pressures and relative densities. The amount of strain energy
dissipated until liquefaction onset (ru = 1) was calculated
using the hysteresis loops. Comparison of strain energy results
from experiments and predicted values indicated its accept-
able accuracy. The amounts of energy released by real earth-
quakes in different areas were used for field verification of the
proposed model. The ability of the NF-GMDH-GSAmodel to
distinguish liquefied areas from non-liquefied ones reflects its
reasonable accuracy in field conditions. Comparison with
available relationships confirms satisfactory performance of
the proposed model. Certainly, further experiments under dif-
ferent conditions being conducted could improve the perfor-
mance of strain energy-based models for estimation of soil
liquefaction potential. However, this will require further re-
search on the liquefaction phenomenon.
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