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Residual factor as a variable in slope reliability analysis
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Abstract In the past, residual factor R in strain-softening
soil slopes has been included, either directly or indirectly,
as a deterministic variable in both deterministic and prob-
abilistic studies. This paper discusses the uncertainties as-
sociated with R and outlines a systematic approach for the
reliability analysis of a natural slope in which shear strength
parameters and pore pressure ratio are random variables, each
assumed with a lognormal probability distribution. For the
residual factor R, seven probability distribution options under
the generalized beta-distribution system are considered. Slope
reliability is computed based on the first order reliability
method (FORM) and validated against Monte-Carlo simu-
lation (MCS). Results obtained from two illustrative exam-
ples indicate that the probability of failure, with R as one of
six random variables, can be orders of magnitude higher
than that based on five random variables with R considered
as a deterministic parameter. The magnitude of influence of
R as a random variable is, however, highly dependent on
its probability distribution, the left-skewed triangular dis-
tribution having the most significant influence in both the
examples. Results of sensitivity analyses reveal that, for
almost all of its assumed probability distributions, R is

the most dominant among the six random variables. Effects of
variation of some of the statistical and correlation properties of
the other random variables, viz. the shear strength parameters
and the pore pressure ratio, on the results of reliability analyses
are also studied.

Keywords Slope reliability . Peak and residual strengths .

Probability distribution . Pore water pressure . Coefficient of
variation . Correlation coefficient

Introduction

The processes of progressive failure are often associated
with a decrease in the values of shear strength parameters
in strain-softening soils. Skempton (1964, 1985) proposed
a definition of residual factor at a point in a soil mass as the
extent to which shear strength has decreased from its peak
value to its residual value. The definition of local residual
factor that has become accepted is the ratio [(sp – s)/(sp – sr)]
in which sp, sr, and s denote the peak shear strength, the resid-
ual shear strength, and the current shear strength respectively
at the concerned point in soil mass. If no decrease has oc-
curred, the residual factor is equal to 0; if the strength has
decreased to the residual value, the residual factor is 1; and
in all other cases the residual factor lies between 0 and 1. It is
very useful to consider an alternative definition of the residual
factor which represents the whole of a potential slip surface.
For a perfectly brittle soil, strain-softening will lead to one part
of the slip surface being at residual shear strength and the
remaining part at peak shear strength.

Skempton (1964) also proposed that the overall or av-
erage residual factor R for a slip surface in a slope could be
represented as the proportion of slip surface length along
which the shear strength has decreased to the residual, i.e.,
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R = Lr /L in which L is the total length of a slip surface of
which the length Lr is at the residual shear strength, the re-
maining length (L – Lr) still being at the peak shear strength.
The magnitude of the average residual factor represents
the state of nature for a slope at a given point in time,
being a consequence of the decrease in material strength
parameters associated with processes of progressive fail-
ure. Considering average shear strength along a slip
surface, the two definitions are found to be consistent
with each other as shown in Appendix 1. The first def-
inition is convenient for formulation of performance
function to include the residual factor as a variable.
The second definition is useful to visualize the change
in shear strength along one or more sections of a po-
tential slip surface in a slope when strain-softening pro-
cess occurs.

For analysis of a potential first-time slope failure, it is
generally assumed that peak shear strength is operative all
along a slip surface. For analysis of potential reactivation
of a landslide along a pre-existing discontinuity, on the
other hand, residual shear strength is considered to be op-
erative all along the slip surface. Yet, careful research over
several decades has revealed that the shear strength may
have decreased to the residual within parts of a slope with
no observed history of sliding of the slope as a whole and
thus part of a potential slip surface may already be at the
residual shear strength (James 1971; Morgenstern 1977).
Significant relative displacement is often considered as a
precondition for decrease of shear strength to a residual
value. However, research has revealed important excep-
tions with far-reaching implications. The shear strength
of clays along bedding planes can fall from the intact to
the residual condition as a result of quite modest displace-
ments, and, on pre-existing shear surfaces, the residual
condition may be reached at virtually zero displacement
(Skempton 1966, 1985; Skempton and Petley 1967;
Skempton and Vaughan 1995). The displacement required
to reach the residual, however, is expected to depend on the
initial degree of clay particle orientation parallel to the
bedding plane, the thickness of the shear zone and the
direction of shearing.

Mesri and Shahien (2003) carried out a comprehensive
review of long-term stability of stiff clay and clay shale
slopes and detailed re-analyses of 99 case histories of
slopes in soft clays to stiff clays and clay shales. They
concluded that, for first-time slope failures in stiff clays
and clay-shales, the slip surface may be unsheared prior to
the occurrence of a landslide but a part of the slip surface
may be at the residual condition before the final slope is
formed. They cited extensive published evidence in sup-
port of the view that, in geological settings other than
reactivated landslides, a potential slip surface may incorporate
a segment that is at the residual state. Shear strength along

horizontal and sub-horizontal bedding planes, laminations,
and weak seams can reduce to residual condition after rela-
tively small shear displacements, measured in millimeters or
centimeters rather than meters, as commonly assumed for ho-
mogeneous clays or across laminations. More recently, the view
that the average shear strength along a potential slip surfacemay
be at levels in between the peak and the residual has been
supported during discussion of case histories of slope stability
and landslides by Stark andHussain (2010, 2011) and byHamel
and Adams (2011).

In the past, residual factor has been included, either directly
or indirectly, as a deterministic variable in both deterministic
and probabilistic studies (e.g., Lo and Lee 1973; Christian and
Whitman 1969; Chowdhury et al. 1987; Chowdhury and
Zhang 1993). However, because of uncertainties associated
with R, it is very important to consider it as a random variable
in reliability studies.

The main objectives of this paper are to highlight the
importance of the residual factor R as an additional random
variable for assessing the reliability of natural slopes, to
update the analysis method, and to study the influence of
the residual factor, relative to other variables, on slope
reliability. Fulfilment of these objectives, however, in-
volves the following essential steps: (1) discuss the uncer-
tainties associated with the residual factor, (2) express the
overall residual factor R for a slip surface in terms of av-
erage values of current shear strength, peak shear strength
and residual shear strength, (3) demonstrate how the factor
of safety F can be modified by including R as an additional
geotechnical parameter, (4) discuss sensible alternatives
for assuming the probability distribution of residual factor
R, (5) carry out reliability analyses considering both sym-
metrical and asymmetrical (skewed) probability distribu-
tions of R, and discuss the relative influence of different
distributions; (6) carry out sensitivity analyses in order to
study the relative influence of different random variables
including R. It is of real interest to know whether the in-
fluence of R is more or less significant than that of pore
water pressure or that of peak and residual shear strength
parameters, and to discuss how this influence may be re-
lated to the assumed distribution of R.

For the performance function, considered as (F – 1), an
expression for the factor of safety F is developed for an
‘infinite slope’ analysis. Due to space limitations, analyses
for natural slopes corresponding only to this assumption
are included in this paper. The authors have already ex-
tended the concepts to slopes with curved slip surfaces
using Bishop simplified and Spencer methods and including
the search for critical slip surfaces (Metya et al. 2016a, b;
Metya 2017). While full details are outside the scope of this
paper, a modified expression for F, considering a curved slip
surface and based on Bishop simplified method, is given in
Appendix 2.
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Uncertainties associated with the residual factor

Uncertainties associated with the residual factor R may be due
to a number of factors. Natural slopes may have potential slip
surfaces which include portions belonging to old landslides but
the precise extent of that proportion may be difficult to estimate.
Even in man-made slopes such as excavations and fills, the
proportion of slip surface length already at the residual shear
strength is not known accurately. Moreover, in both natural and
man-made slopes, the location of the part of slip surface with
residual shear strength is often unknown. In some slopes the rear
part of a potential slip surface below the crest may already be at
the residual strength whereas the remaining part may be at the
peak strength. For example, such was the interpretation, based
on some early studies, concerning the bi-planar slip surface of
Kettleman Hills landfill (Gilbert et al. 1998). In contrast, the
upper part of a slip surface in an excavated slope may still be
at peak strength while the lower part is at the residual strength.

It is also important to highlight uncertainties associated with
shear strengths along slip surfaces within both failed slopes and
those currently stable. In brittle strain-softening soils uncer-
tainties in shear strength, combined with other factors, lead to
uncertainties in the proportion of slip surface at the residual and
in the location of the residual part of the slip surface relative to
the rest of the length. Back-calculated strengths for failed slopes
are often subject to considerable uncertainty. Shear strengths
measured in the laboratory may be significantly different from
mobilized field shear strengths. Hamel and Adams (2011) state
that shear strength could be higher by 20% to 50% of the Bshear
strengths measured in laboratory tests of practical duration on
small samples^ implying field residual factor between 0 and 1.
They also concluded that amongst intermittently creeping col-
luvial slopes, some quasi-stable masses Bhave nominal strength
reserve—perhaps on the order of 20% above field residual
level^. The percentages would, of course, be different in other
regions with different geology, soil types, and environmental
conditions, highlighting the significant uncertainties associated
with such estimates.

With regard to the Kettleman Hills landfill case history men-
tioned earlier, uncertainties were explored by a number of in-
vestigators and summarized by Gilbert et al. (1998). This slope
failure involved slippage along two distinct interfaces, a
geotextile/geomembrane interface and a geomembrane/clay in-
terface. A back analysis procedure was used to account for
uncertainty through probability theory. Based on a number of
assumptions and using Bayesian analysis, the probability distri-
bution of a non-dimensional, average shear strength mobiliza-
tion factor Rs was estimated. This factor is directly related to the
average residual factor by the relationship: Rs = 1 – R. The
outcome was a mildly skewed probability distribution for Rs

with a mean of 0.44. As the relationship between Rs and R is
linear, R will have the same distribution as that of Rs, with a
mean of (1 – 0.44) or 0.56.

Overall or average residual factor

Slip surface of planar shape in an ‘infinite slope’— special
case

From the original definition of residual factor at a point in soil
mass considered earlier, the overall or average residual factor
R over a slip surface of length L could be expressed as follows
for a simple slope assuming a slip surface parallel to the
ground surface.

R¼ sp−sav
sp−sr

ð1Þ

In Eq. (1) above, sp is the average peak shear strength, sr
is the average residual shear strength, and sav is the average
current shear strength along a slip surface. Assume that
steady seepage also occurs parallel to the slope surface.
Therefore, pore water pressure and, hence, the effective
normal stress is constant along the slip surface. Both the
peak shear strength sp and the residual shear strength sr are
thus constant along the slip surface of length L. In a per-
fectly brittle strain-softening soil, any part of a potential
slip surface will be either at the peak strength or at the
residual strength. If Lr is the length of the portion of slip
surface over which strength has decreased to the residual,
the average current shear strength sav over the whole of the
slip surface is [sr Lr + sp (L – Lr)]/L which, when substitut-
ed in Eq. (1), yields the average residual factor R as equal
to the ratio Lr/L. Thus, in this special case of ‘infinite
slope’ and planar slip surface, the definition of an overall
residual factor for a slip surface in terms of the part of
length of a slip surface at residual strength relative to the
whole length (Skempton 1964) is consistent with that for a
local residual factor in terms of average current shear
strength, average peak strength and average residual
strength. As outlined below and in Appendix 1, the same
conclusion can be reached for the general case of a slip
surface of arbitrary shape for which the shear strength
may vary from point to point.

Slip surface of arbitrary shape — general case

In accordance with Eq. (1), the overall residual factor must be
expressed in terms of average values of shear strength —
peak, residual, and current. Consider a slip surface of arbitrary
shape and of length L along which shear strength varies in an
arbitrary manner. Let part of the length Lr be at the residual
shear strength and the remaining length (L – Lr) be still at the
peak shear strength. The expression for average residual fac-
tor, defined in terms of average shear strengths, is again shown
to be the ratio (Lr /L). The derivation is given in Appendix-A.
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Expression for factor of safety in terms of R

Average shear strength in terms of R

From Eq. (1), the average shear strength may be expressed in
terms of the average or overall residual factor R as follows:

sav¼R srþ 1−Rð Þ sp ð2Þ

The Mohr-Coulomb shear strength equation relates shear
strength to cohesive and frictional strength parameters through
the normal effective stress as s = c′ + σ′ tanϕ′. Thus, the peak
and the residual shear strengths can be related to corresponding
strength parameters as follows:

sp ¼ c
0
p þ σ

0
tanϕ

0
p ð3aÞ

sr ¼ c
0
r þ σ

0
tanϕ

0
r ð3bÞ

From Eqs. (2) and (3),

sav¼R c
0
rþσ

0
tanϕ

0
r

h i
þ 1−Rð Þ c

0
pþσ

0
tanϕ

0
p

h i
ð4aÞ

or,

sav¼ Rc
0
rþ 1−Rð Þc0

p

h i
þσ

0
Rtanϕ

0
rþ 1−Rð Þ tanϕ0

p

h i
ð4bÞ

Factor of safety for ‘infinite slope’ analysis

Consider the simple ‘infinite slope’model for the stability of a
slope with a potential slip surface parallel to the ground sur-
face assuming first that no strain-softening has occurred.
Denote the ground surface inclination by i, the vertical depth
to potential slip surface by z, the unit weight of the soil by γ,
the shear strength parameters by c′ and tan ϕ′, and the dimen-
sionless pore water pressure ratio by ru (corresponding to pore
water pressure u). The peak shear strength parameters are
denoted by suffix p and residual shear strength parameters
by suffix r. Assume now that strain-softening has occurred
over part of the slip surface within such a slope and that the
residual factor is represented by a variable R. The average
shear strength along the potential slip surface may be obtained
from Eq. (4) after substituting for normal effective stress as
given by:

σ
0 ¼ γz cos2i–u ð5aÞ

One may now use the dimensionless pore pressure ratio ru
(ru = u /γz), instead of u. Considering seepage parallel to slope
surface, a value of ru = 0.5 represents seepage occurring
throughout the slope with top flow line at ground surface. A
value of ru < 0.5 indicates that the top flow line is below the

ground surface. Thus, the effective normal stress, in terms of
the dimensionless pore pressure ratio, is given by:

σ
0 ¼ γz cos2i–ru

� � ð5bÞ

From Eqs. (4a) and (5b), the average shear strength along
the potential slip surface is given by:

sav ¼ R c
0
r þ γz cos2i−ru

� �
tanϕ0

r

i
þ 1−Rð Þ c

0
p þ γz

h
cos2i−ru

u� �
tanϕ0

p

h i
ð6Þ

The average shear stress along the potential slip surface
parallel to the slope surface is given by:

τav ¼ γz sin i:cos i ð7Þ

The factor of safety may be defined simply as the ratio of
average shear strength and average shear stress. Thus, from
Eqs. (6) and (7), one obtains the factor of safety for a slope in
which strain-softening has occurred over part of the slip sur-
face, as the following expression.

F ¼
R c

0
r þ γz cos2i−ruð Þtanϕ0

r
� �þ 1−Rð Þ c

0
p þ γz cos2i−ruu

� �
tanϕ0

p

h i
γz sinicosi

ð8Þ

Alternative derivation of expression for F

It is important to underline the importance of residual factor R
as an independent field variable defined by the ratio of length
of slip surface at residual strength Lr to the total length of slip
surface. Therefore, an alternative way to derive Eq. (8) is to
consider factor of safety F as a ratio of total resisting force to
total driving force. Consider a long slope of finite length L
with slip surface parallel to ground surface. (The slope is as-
sumed to be long enough so that end effects can be neglected).
A portion Lr of the slip surface is at residual strength and the
remaining part (L – Lr) still at peak strength. The total resisting
force along the slip surface is: Lrsr + (L – Lr) sp. The total
driving force is L (γz sin i cos i). The factor of safety F is the
ratio of resisting force and driving force. Thus F = [Lrsr + (L –
Lr) sp]/ [L (γz sin i cos i)]. Dividing numerator and denomi-
nator by L, noting that R = (Lr/L), substituting for sr and sp
from Eqs. (3a) and (3b), and substituting for the effective
normal stress from Eq. (5b), the factor of safety expression
is still given by Eq. (8).

Probability distribution assumptions for random
variables

Choice of random variables and probability distributions

For slope stability, the most important parameters are the four
shear strength parameters (two for peak strength and two for
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residual strength), the pore water pressure ratio and the resid-
ual factor. Thus, it is reasonable to consider a total of six
random variables for a reliability analysis and these are:
c
0
p; c

0
r; tanϕ

0
p; tanϕ0

r; ru and R
h i

.
In geotechnical reliability, the factor of safety is often as-

sumed to have either a normal or a lognormal distribution.
The probability distributions of shear strength parameters and
pore pressure ratio have often been assumed to be normal (e.g.,
Li and Lumb 1987; Xue and Gavin 2007; Ji et al. 2012).
However, for those random variables which cannot take nega-
tive values, such as the shear strength parameters and the pore
pressure ratio, a lognormal distribution assumption may be con-
sidered preferable. For examples considered in this paper, a
lognormal distribution assumption has been made for all the
random variables except for the residual factor R.

For the residual factor R, a choice may be made between the
assumption of a normal distribution and that of a generalized
beta distribution. The choice of a normal distribution allows
wide flexibility in accommodating the mean value of R and its
standard deviation. However, errors will arise as the mean
values approach the end points 0 and 1.Moreover, consideration
of skewed distributions is excluded. A generalized beta distri-
bution with the end points of 0 and 1 seems more appropriate.
Both symmetrical and skewed distributions can be included
with the assumption of a beta system. For given values of mean
and standard deviation of R, a corresponding beta distribution
can be obtained [see comments after Eqs. (11) and (12)].
Therefore, it is feasible to independently vary the mean of R
and the standard deviation of R. For this paper, it was considered
appropriate to study both symmetrical and skewed distributions
and hence a generalized beta distribution was assumed for R.
Moreover, given the nature of the variable with end points of 0
and 1, a beta distribution is conceptually appealing and has
practical benefits for accuracy.

Assumed shapes of the beta distribution

The probability density function (PDF) for the generalized
beta distribution representing a variable between given
bounding values a and b is represented by the following
(Harr 1977):

f xð Þ ¼ 1

C
x−að Þq−1 b−xð Þr−1 ð9Þ

where,

C ¼ q−1ð Þ! r−1ð Þ! b−að Þqþr−1

qþ r−1ð Þ! ð10Þ

The following seven probability distributions were chosen
for analysis to cover both symmetrical and skewed shapes.

(i). Shape (1): Triangular skewed right (r > q) [q=1, r=2]
(ii). Shape (2): Triangular skewed left (q > r) [q=2, r=1]
(iii). Shape (3): Curved symmetrical about (a+b)/2 [q=2, r=2]
(iv). Shape (4): Curved symmetrical about (a+b)/2 [q=3, r=3]
(v). Shape (5): Curved symmetrical about (a+b)/2 [q=6, r=6]
(vi). Shape (6): Curved skewed right (r > q) [q=2, r=6]
(vii). Shape (7): Curved Skewed left (q > r) [q=6, r=2]

In the above, the numbers in parenthesis, (1), (2), (3),…etc.
assigned to the different shapes of beta distributions are re-
ferred to as ‘R-shapes’ in tabular and graphical forms of pre-
sentation of results. For the sake of visual impression, these
are presented in Fig. 1 below.

The expected value and variance of the beta distribution [a,
b] are given by:

E x½ � ¼ aþ q
qþ r

b−að Þ ð11Þ

and,

V x½ � ¼ qr b−að Þ2
qþ rð Þ2 qþ r−1ð Þ ð12Þ

It may be noted that if expected value and variance of resid-
ual factor are known or assumed, q and r can be calculated from
Eqs. (11) and (12) (with a = 0 and b = 1). With those values of q
and r, the corresponding beta distribution is defined by Eq. (9).
A symmetrical beta distribution (of a variable x with a = 0 and b
= 1) results only when the expected value of the variable is 0.5.
Substituting for expected value of 0.5 in Eq. (11) and with a = 0
and b = 1, yields q = r. Then Eq. (9) becomes a symmetrical
distribution with the actual value of q and r corresponding to the
variance of x. For expected values of x other than 0.5, the beta
distribution is skewed. Since the residual factor R can have a
wide range of expected values within the boundaries of 0 and 1,
skewed distributions are most likely. Therefore, the assumption
of a symmetrical distribution (such as a normal distribution) is
unduly restrictive. The degree of skewness will be low to mild
for expected values very close or close to 0.5. However, the beta
distribution will be highly skewed for expected values much
higher or lower than 0.5. In order to get a broad view or the
range of slope reliability values in strain softening soils, four
skewed distribution shapes have been adopted which range
from a medium to high degree of skewness. The other three
distributions adopted are symmetrical.

Statistical parameters of assumed shapes of beta
distributions

The residual factor R varies from 0 to 1. Hence, a = 0 and b = 1.
Assuming different values for q and r, Eqs. (11) and (12) yield
values of mean and standard deviation for the seven shapes of
PDF given above, and are listed in Table 1.
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Methodology for reliability analysis

Choice of reliability analysis method

The first order reliability method is widely regarded as a rig-
orous method of reliability analysis. The method is free from
the shortcomings (Ang and Tang 1984; Metya and
Bhattacharya 2012) of the mean value first order second mo-
ment (MVFOSM) method used by early geotechnical re-
searchers (Hassan and Wolff 1999; Duncan 2000;
Bhattacharya et al. 2003). The FORM is also regarded as a
versatile method in view of the fact that it can handle non-
normal probability distributions of the basic random variables
of a system (Haldar andMahadevan 2000). Keeping the above
in mind, the FORM has been adopted in this study. In this
method, the reliability index βHL is defined as the minimum
distance from the origin to the failure surface in the standard
normal space, using a linearization of the performance func-
tion around the design point as originally proposed byHasofer
and Lind (1974). The performance function, also called the
limit state function, for the slope stability analysis is usually
defined as g(X) = F – 1, X being the vector of basic state (or
design) variables of the system consisting of the uncertain
geotechnical parameters.

Reliability index, βHL

Awidely used expression for the reliability index βHL (Low
and Tang 2004; Huang and Griffiths 2011) is given by
Eq. (13).

βHL ¼ min
g Xð Þ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xi−μN

i

σN
i

� �T

C½ �−1 Xi−μN
i

σN
i

� �s
ð13Þ

where, μi
N and σi

N are the equivalent normal mean and stan-
dard deviation respectively of the ith random variable Xi and
[C] is the matrix of correlation coefficients between the stan-
dard normal variables. The determination of the reliability
index βHL is, thus, a problem of optimization, and, as indicat-
ed byWang et al. (2011), the successful application of FORM
relies on the selection of a robust optimization algorithm for
the multi-dimensional minimization. Keeping this inmind, the
sequential quadratic programming (SQP) (Rao 2009) in the
MATLAB environment is employed to solve this problem.
The solution yields the design point on the failure surface
and the corresponding reliability index βHL. The adoption of
the SQP technique is based on its recommendations in the
literature. For example, Hong and Roh (2008) reported that
‘an extensive comparative study of nonlinear programming
codes presented by Schittkowski (1980) ranked the perfor-
mance of the SQP method to be the highest’.

Probability of failure, pF

Having obtained the computed value of the reliability index,
βHL, the probability of failure can be obtained from Eq. (14)
on the assumption that the performance function follows a nor-
mal distribution.

pF ¼ Φ –βHLð Þ ð14Þ
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whereΦ (.) denotes the standard normal cumulative distribution
function.

Direction cosine as sensitivity index

In the reliability analysis using FORM, the unit vector α′ nor-
mal to the limit state surface at the design point is a measure of
the sensitivity of the reliability index with respect to variations
in each of the standard normal variates given by (Cho 2007),

α
0 ¼ ∇XβHL ð15Þ

where the notation ∇X stands for the operators ∂/∂X1′1,
∂/∂X2′,….,∂/∂Xn′. X1′, X2′,….Xn′ being the standard normal
variates. The elements (α'i) of the vector α

' are the direction
cosines along the reduced co-ordinate axes X′i corresponding
to the ith random variable, Xi.

Illustrative examples on natural slopes

The above formulation for the analysis of strain-softening
slopes is illustrated below with the help of two example prob-
lems [example 1 in Fig. 2(a) and example 2 in Fig. 2(b)] of
natural slopes which can be analyzed on the basis of the ‘in-
finite slope’ model. Both the example problems assume ho-
mogeneous slope in cohesive soil with a slip surface parallel to
the ground surface and with seepage occurring parallel to the
slope surface. They, however, differ in the data on slope incli-
nation, depth to the potential failure plane, and the shear
strength parameters.

Assumed slope data

In example 1 [Fig. 2(a)] the slope is assumed to have an
inclination i = 15°, depth to potential failure surface z = 5 m,
and bulk unit weight of soil γ = 20 kN/m3. In example 2
[Fig. 2(b)] the corresponding values are taken as i = 12°, z =

3m, and γ = 20 kN/m3. These three parameters are considered
to be deterministic and constant in both the deterministic and
the probabilistic studies.

For a deterministic analysis, shear strength parameters
(peak and residual) and pore pressure ratio, are each single-
valued constants.

For a probabilistic analysis, each shear strength parameter
is regarded as a random variable and the pore pressure ratio is
also regarded as a random variable. At least two statistical
parameters of each random variable must be known or as-
sumed. These are the mean of the random variable and its
standard deviation (or the coefficient of variation COV).
Moreover, advanced methods of reliability analysis, such as
the FORM, also makes use of the information regarding the
probability distribution of the in Choice of random variables
and probability distributions, a lognormal distribution is used
for all the reliability analyses to guard against occurrence of
negative values. For convenience and comparison between
deterministic and probabilistic analyses, the mean value of
each random variable is selected as the single-valued constant
for each deterministic analysis.

Fluctuation of pore water pressure ratio, ru

Reliability of natural slopes is often influenced significantly by
rainfall-induced seepage. The top flow line within a slope may
be located at any depth below the surface of the slope and above
the potential slip surface. The pore pressure ratio is a non-
dimensional parameter and, as defined earlier, is the ratio of pore
water pressure u to the product of γ and z. Where pore pressure
varies over a slip surface, an average value of ru representing the
whole slip surface is often used for parametric studies. Rainfall-
induced seepage pore pressure reduces slope stability. Thus, a
landslide caused by seepage induced by rainfall is often a con-
sequence of pore water pressures increasing to critical values.

An average value of ru = 0.5 represents seepage throughout
the slope in a direction parallel to the ground surface and the

Table 1 Statistical properties of the residual factor R for various shapes of beta distributions

Sl. No. Geometrical shape Beta distribution parameters Designation Statistical properties

q r Mean μR Standard
deviation σR

Coefficient of
variation (COV) δR

1. Triangular skewed right (r > q) 1 2 R-shape (1) 0.333 0.236 0.707

2. Triangular skewed left (q > r) 2 1 R-shape (2) 0.667 0.236 0.354

3. Curved symmetrical about (a+b)/2 2 2 R-shape (3) 0.500 0.224 0.447

4. Curved symmetrical about (a+b)/2 3 3 R-shape (4) 0.500 0.189 0.378

5. Curved symmetrical about (a+b)/2 6 6 R-shape (5) 0.500 0.139 0.277

6. Curved skewed right (r > q) 2 6 R-shape (6) 0.250 0.144 0.577

7. Curved Skewed left (q > r) 6 2 R-shape (7) 0.750 0.144 0.193
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corresponding value of factor of safety F will be a minimum
for a given set of strength parameters and a given value of the
residual factor R. A value of ru < 0.5 indicates that the top
seepage line is below the ground surface. In deterministic
analysis, a value of ru for which F = 1 is considered to be
the critical value representing overall slope failure.

In reliability analysis, both the mean and the COV of the
pore pressure ratio are required to estimate the reliability index
and probability of failure. The critical pore pressure may be
defined in relation to zero reliability index (β = 0) which
corresponds to a probability of failure pF = 50%. However,
it may be desired to set a higher pF value as the benchmark for
critical ru, especially to define catastrophic failure. One must
remember, however, that values of pF > 50% correspond to
negative values of the reliability index. An inconsistency may
be observed in the computed values of a negative reliability
index β if the COV is varied. For example, with a given value
of the mean of the performance function F, an increase in its
standard deviation would tend to decrease the negative value
of β, which means an increase in algebraic value. This is
opposite to how the computed value changes in the positive
domain of β (an increase in standard deviation of F decrease
reliability index). Such an inconsistency has little practical
significance because the negative range of reliability indicates
a state of failure. Moreover, with a fixed number of variables
(either 5 or 6), such an inconsistency does not arise. In other

words, the change in reliability index or probability of failure
with increasing pore pressure ratio shows a consistent trend.

Assumed data on (a) pore water pressure ratio and (b)
shear strength parameters

Assumed value for pore water pressure ratio

Because of uncertainties related to pore water pressure, it is
important to consider pore water pressure ratio as a random
variable in slope reliability analysis. Most of the analyses in
this paper have been carried out for pore pressure ratio with a
mean of 0.2 and a coefficient of variation of 0.1. However, to
check whether a change in the value of mean ru (from the
selected value of 0.2) results in a change in the trend of reli-
ability analysis results, a parametric study has been carried out
by considering different values of mean ru, specifically, 0.1,
0.15, 0.25, 0.3, 0.4, and 0.45 (besides 0.2), while keeping the
value of COVof ru 0.1. Further, the effect of variation in the
value of COV of ru within its range (in combination with
variation in the values of COV’s of the other random variables
within their respective ranges) has also been studied through
another parametric study in which the mean of ru remains 0.2.
The assumed range of mean and COV values of the pore
pressure ratio is shown in Table 2 at the bottom.
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Fig. 2 Slope sections considered
in (a) Example 1 and (b) Example
2. Note: The top seepage line is
shown as a small dashed line. Its
location changes with the rate of
rainfall infiltration



Assumed values of shear strength parameters

The assumed mean values of the peak and the residual shear
strength parameters are as given in Table 2. As far as the
uncertainty or variability of each random shear strength pa-
rameter is concerned, there is a range within which its coeffi-
cient of variation (COV) is known to vary. These ranges are
collected from the literature (Hong and Roh 2008), and pre-
sented in Table 2 for the sake of ready reference. As stated
before, all analyses are carried out with the assumption of
lognormal distribution for each of these five random variables.

Correlations between random variables

To highlight the versatility of the adopted method of analysis,
some studies reported here include assumed correlations be-
tween peak and residual shear strength parameters. These
studies were found to be useful. However, in order to concen-
trate on the main aims of this paper, correlations between
parameters were ignored in other studies reported in this pa-
per. It must be emphasized that, provided data on correlation
between any pair of variables become available, methods de-
veloped in this paper are still applicable and the analyses can
be extended accordingly.

Correlation coefficients between shear strength parameters c
and ϕ have been presented in a number of published papers
such as Lumb (1970), Yuceman et al. (1973), Matsuo and
Kuroda (1974), Wolff (1985), Low and Tang (1997),
Khajehzadeh et al. (2010) etc. The magnitude of this correlation
coefficient depends on type of soil, and on whether the data for
shear strength parameters are obtained from drained, undrained,
or consolidated undrained shear tests. Some researchers men-
tion a negative correlation between c and ϕ (or tan ϕ) from
drained shear tests relevant to slope stability problems (e.g.,
Lumb 1970; Yuceman et al. 1973; Wolff 1985); others mention
little or negligible correlation

It is important to note that significant data are not available
concerning correlations between shear strength parameters.
The evidence is inconsistent in the few reported cases where
correlations have been investigated. Consequently, it is not
surprising that slope reliability assessments are often based
on the assumption of uncorrelated random variables (e.g.,
Duncan 2000, Xue and Gavin 2007, Hong and Roh 2008;
Metya and Bhattacharya 2014;Metya 2017;Metya et al. 2017).

The value of the proposed new variable R over a slip sur-
face may depend on a number of factors and it is reasonable,
therefore, to regard it as an independent random variable.
Moreover, no evidence has been presented in the vast geotech-
nical literature concerning correlation between R and any oth-
er geotechnical parameter.

As stated above, the effect of correlation between the
peak and residual shear strength parameters has been exam-
ined based on a range of assumed values of the correlation

coefficients. The reason for considering only positive values
of the correlation coefficients must, therefore, be stated.
During the strain-softening process the composition and min-
eralogy of a soil remain unchanged. Therefore, it is entirely
reasonable to stipulate that any correlation between peak and
residual friction angles, and that between peak and residual
cohesion, will be positive rather than negative. Reliable evi-
dence is needed before a credible value can be adopted in
design problems or case studies.

Deterministic analyses and results

Table 3 presents a series of results of deterministic analyses of
the slopes in example 1 and example 2 in the form of values of
factor of safety F when the values of the shear strength param-
eters (peak and residual) are taken to be equal to their respec-
tive mean values and the value of the pore pressure ratio is
varied within the range of its mean values (0.1 - 0.45) as given
in Table 2. In addition, the residual factor is varied from R = 0
(when the entire slip surface is at peak strength) to R = 1
(when the entire slip surface is at residual strength). In be-
tween these two limiting values, factor of safety has also been
evaluated considering seven discrete values of R equal to its
mean values corresponding to the seven shapes of beta distri-
butions (R-Shapes) to be considered for the reliability analy-
ses of the slopes (Table 1). From Table 3, the following can be
observed for both the example problems:

Variation in residual factor R and/or pore pressure ratio ru
leads to very large variation in the value of factor of safety F.
For instance, as value of R varies from 0 to 1 together with ru
which varies from 0.1 to 0.45, the value of F varies from 2.025
to 0.668 for example 1, and from 1.926 to 0.689 for example
2. Further, for any value of pore pressure ratio ru, as the value
of residual factor R increases, the value of factor of safety
decreases. Again, for any value of residual factor R, as the
value of pore pressure ratio ru increases, the value of factor
of safety decreases. Both these observations are as per expec-
tation, and, therefore, the results of the deterministic analyses

Table 2 Statistical properties of the random variables except R

Random
Variable

Probability
distribution

Mean Range of
COV*

Example 1 Example 2

c′p Lognormal 10.0 kPa 5.0 kPa 0.2–0.5

c′r Lognormal 1.0 kPa 0.5 kPa 0.2–0.5

tanϕ′p Lognormal tan 26° 0.36 0.1–0.2

tanϕ′r Lognormal tan 18° 0.26 0.1–0.2

ru Lognormal (0.1–0.45) (0.1–0.45) 0.1–0.2

Note: *Range of COV for the shear strength parameters are collected
from Hong and Roh (2008); the pore pressure ratio ru is assumed in this
study
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are seen to be consistent. Further, quite a few combinations of
R and ru lead to F < 1.0, which indicates overall slope failure.
These values are shown in italics in Table 3.

In these two examples of relatively flat slopes the critical
pore pressure ratio ru (which leads to F = 1) is reached only at
high values of the residual factor R. In both examples, these
critical values of ru are below the maximum of 0.5 which
represents seepage occurring throughout the slope.

Reliability analyses and results

Probability distributions used in the analyses

FORM based reliability analysis has been carried out consid-
ering all six random variables including the residual factor R
for which the seven probability distributions [R-shapes (1)
through (7)] listed in Table 1 (and Fig. 1) have been used in
turn. Thus, for a given set of statistical properties (mean and
COV) of the random variables other than R, the results of
reliability analysis comprise a total of seven sets of values of
reliability index βHL and probability of failure pF, correspond-
ing to the seven R-shapes. A comparison of these seven sets of
values of βHL and pF then reveals the critical R-shape which
yields the lowest value of βHL or the highest value of pF.

All the results presented in section Results — reliability
index and probability of failure are based on the assumption
of a lognormal probability distribution for all random vari-
ables except R (four shear strength parameters and one pore
pressure ratio, a total of 5 variables).

Reliability analysis: general features

Case I and case II analysis

Further, as a means to quantify the effect of including the resid-
ual factor R as one of the random variables on the reliability
results, reliability analysis has also been carried out considering
the residual factor as a deterministic variable in which case there
are only five random variables as listed in Table 2. For the sake
of convenience this is referred to as the case I analysis while the
one considering R as random (with six random variables) is
referred to as the case II analysis. The effect of treating R as a
randomvariable is then brought out from the difference between
the values of the reliability index (and probability of failure)
obtained from the case I and case II analyses. In order for such
a difference to be meaningful, the deterministic value of R in
case I analysis has been taken as equal to the mean value of R
considered in the corresponding case II analysis.

Sensitivity analysis

As stated earlier, in a reliability analysis using FORM, the

direction cosines (α
0
i, i=1,n) for the n nos. of random variables,

whose values are obtained as part of the solution, indicate
sensitivity indices for the random variables (Haldar and
Mahadevan 2000). Taking advantage of this feature, a sensi-
tivity study has been carried out in order to compare the con-
tribution of the residual factor relative to that of the other
random variables.

Table 3 Variation of factor of safety F with variation of R and ru for examples 1 and 2

Residual factor R Pore pressure ratio ru Remarks

0.1 0.15 0.2 0.25 0.3 0.4 0.45

Example 1

0.000 2.025 1.928 1.830 1.733 1.635 1.440 1.342 Entire slip surface at peak strength

0.250 1.800 1.710 1.621 1.531 1.442 1.263 1.174 R=mean of R-shape (6)

0.333 1.724 1.638 1.551 1.464 1.378 1.204 1.117 R=mean of R-shape (1)

0.500 1.574 1.493 1.411 1.330 1.249 1.086 1.005 R=mean of any of R-shape (3),(4),(5)

0.666 1.423 1.348 1.272 1.196 1.120 0.968 0.893 R=mean of R-shape (2)

0.750 1.348 1.275 1.202 1.129 1.056 0.910 0.836 R=mean of R-shape (7)

1.000 1.123 1.058 0.993 0.928 0.863 0.733 0.668 Entire slip surface at residual strength

Example 2

0.000 1.926 1.838 1.749 1.661 1.572 1.395 1.307 Entire slip surface at peak strength

0.250 1.729 1.647 1.564 1.488 1.399 1.235 1.152 R=mean of R-shape (6)

0.333 1.663 1.583 1.502 1.422 1.342 1.181 1.101 R=mean of R-shape (1)

0.500 1.531 1.455 1.379 1.303 1.227 1.074 0.998 R=mean of any of R-shape (3),(4),(5)

0.666 1.400 1.328 1.255 1.183 1.111 0.967 0.895 R=mean of R-shape (2)

0.750 1.334 1.264 1.194 1.124 1.054 0.913 0.843 R=mean of R-shape (7)

1.000 1.136 1.072 1.008 0.945 0.881 0.753 0.689 Entire slip surface at residual strength
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Effect of variation of statistical properties and correlation

In regard to the input data for the reliability analysis, it is noted
in Table 2 that while the COV’s of the random shear strength
parameters are known to vary within their respective ranges,
the mean and COV of the random pore pressure ratio ru are
also considered here to vary within some assumed ranges. It
would thus be of interest to investigate the effect of varying (i)
the COV’s of the random variables other than R, as well as (ii)
the mean value of the pore pressure ratio ru. It would also be of
interest to investigate the effect of any kind of correlation
between the shear strength parameters.

Four studies — study 1 to study 4

The analyses mentioned above (in sub-sections Case I and
case II analysis, Sensitivity analysis, Effect of variation of
statistical properties and correlation) have been covered under
the following four studies:

Study 1: Study 1 comprises case I (R-deterministic) and
case II (R-random) analyses assuming (i) the random var-
iables as uncorrelated, (ii) mean ru = 0.2, and (iii) the
COV’s of random variables (other than R) equal to the
lowest values in their respective ranges (Table 2). For this
initial study, FORM based results in terms of probability
of failure are also compared with those fromMonte Carlo
simulation (MCS).
Study 2: Study 2 is similar to study 1 except that the
random variables for the peak and residual components
of shear strength parameters are assumed to be correlated.
Study 3: Study 3 is also similar to study 1 except that the
COV’s of the random variables (other than R) are varied
within their respective ranges (Table 2).
Study 4: Study 4 is also similar to study 1 except that
mean ru is varied within its range (Table 2). Specifically,
ru = 0.1,0.2,0.3,0.4, and 0.45 have been used.

Results — reliability index and probability of failure

Results of study 1

For this initial reliability analyses, while the residual factor R
is assumed to have all seven forms of beta distributions [R-
shapes (1) to (7)] detailed in Fig. 1 and Table 1, the statistical
properties of the other five lognormally distributed random
variables are taken as in Table 2. Based on the data in
Table 2, the pore pressure ratio ru is assumed to have a mean
value of 0.2, and the COVs of the random variables are taken
as the base values in their respective ranges. Further, all the six
random variables are assumed to be uncorrelated.

Table 4 presents the values of reliability index obtained from
case I and case II studies of both the example problems. It is seen
that for the case II analysis of both the example problems, R-
shape (2) results in the lowest value of βHL (and therefore, the
highest value of pF). Thus, for the residual factor, the assumption
of triangular left-skewed beta distribution [R-shape (2)] is found
to be the critical distribution, followed by R-shape (7), also a left
skewed distribution. This is not surprising because these distri-
butions correspond to the highest mean values of R among the
seven distributions selected for analysis. For right skewed distri-
butions, mean values of R are low and, therefore, the reliability
indexes are relatively higher. Thus R-shape (6) results in the
highest value of βHL. In general, the reliability index will de-
crease as mean value of R increases if the standard deviation is
the same. An increase in COV for given mean value decreases
the reliability index. This is clear from the results for R-shapes
(3), (4), and (5). It may also be noted that the correspondence
between the ranks of the intermediate values of βHL and R-
shapes is identical for both the example problems.

As stated earlier, the difference between the βHL values ob-
tained for case I and case II analyses for each of the seven cases
of R distributions quantifies the effect of treating R as a random
variable. Table 4 shows that the amount of reduction in the value
ofβHL from case I to case II varies significantlywith the assumed
beta distribution. The reduction is largest for R-shape (2) and
smallest for R-shape (6). The largest reduction is as high as
65% for example 1 and 61% for example 2, while the smallest
reduction is 36% for example 1 and 32% for example 2. Thus,
even the smallest reductions are also substantial. Consequently,
the probability of failure based on residual factor as a random
variable can be one or more orders of magnitude higher than that
based on assumption of residual factor as deterministic.

For the sake of validation through comparison, values of pF
for the case II analyses have also been obtained based on the
direct MCS with 106 number of simulations and a seed of
28061987. Table 5 shows that there is a reasonably good
agreement between the two sets of values (being of the same
order of magnitude); further, the FORM based values of pF
are, for all R-shapes, a little higher than theMCS based values,
and, hence, the former is on the conservative side.

Results of study 2

In study 1 described above, all the random variables were
assumed to be uncorrelated. In this study, however, correla-
tions are assumed to exist between the peak and the residual

cohesion parameters c
0
p and c

0
r as well as between the peak

and the residual friction parameters tanφ
0
p andtanφ

0
r.

In absence of published data, a parametric study has been
carried out with assumed values of the correlation coefficients

between c
0
p and c

0
r and between tanφ

0
p and tanφ

0
r. For simplic-

ity, these two correlation coefficients are assumed to be of
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equal value and denoted by ρ. A parametric study has been
conducted considering values of ρ as 0.25, 0.5, 0.75, and 1.0.
The cross correlation coefficients between the different
strength parameters are, however, assumed to be zero.

Table 6 presents, for example 1, a summary of values of
reliability index for all seven R-shapes. By comparing the re-
sults of study 2 with those from study 1 above [i.e., for ρ = 0 in
Table 4], it is observed that the trend of results in study 2 re-
mains essentially the same as in study 1. For any non-zero value
of ρ, like study 1, R-shape (2) results in the lowest value of βHL

and the R-shape (6) results in the highest value of βHL, in a case
II analysis. For any situation, as ρ increases, βHL decreases,
which is expected in view of the assumed positive correlation.
Moreover, as the value of ρ increases from 0.0 to 1.0, the value
of βHL decreases by nearly 5% and 9% in the case II analysis
with R-shape (2) and R-shape (6) respectively. It is seen that the
trend of results in terms of the reduction in the values of reli-
ability index from case I analyses (R-deterministic) to case II
analyses (R-random) remains the same in Table 4 and Table 6.
Specifically for ρ = 1.0, the largest and the smallest reductions
corresponding to R-shape (2) and R-shape (6) respectively, are
nearly 55% and 32% in place of 65% and 36% noted in study 1.
Details of corresponding results for example 2 are not presented

here due to space limitations. On the whole it can be stated
that correlation between the peak and residual strength pa-
rameters has no major influence on the trend in reliability
results although the influence can be significant for a spe-
cific analysis relevant to a given example with another set
of data. In view of such an observation from this study, in
the subsequent studies, e.g., study 3 and study 4, no corre-
lation has been considered between the random variables to
save space. Figure 3 presents a plot of probability of failure
vs ρ for study 2 on example 1. The plot of pF vs ρ for
study 2 on example 2 has been found to be very similar to
that for example 1.

Results of study 3

In the study 1 and study 2 described above, the COVs of the
shear strength parameters were taken equal to their base values
(the lowest values) in their respective ranges (Table 2) and the
effect of treating R as a random variable has been brought out.
It, however, remains to be seen how the effect changes for
higher level of uncertainty (variability), and, therefore, the same
has been undertaken here in study 3. The COVs for the different
random variables except R are assumed to vary linearly within
their ranges in terms of a parameter η which varies from 0 to 1.
Thus, the COVs of the five random variables are represented by
δc′p = 0.2 + 0.3 η; δc′r = 0.2 + 0.3 η; δtanϕ′p = 0.1 + 0.1 η; δtanϕ′r =
0.1 + 0.1 η and δru = 0.1 + 0.1 η, and several values of the
parameter η such as η = 0.0, 0.25, 0.50, 0.75, and 1.0 have been
considered (η = 0.0 corresponds to the base values of the COVs
considered in study 1 and study 2). For the sixth random vari-
able R, different shapes of the probability distribution are con-
sidered one by one, as in study 1 and study 2. The results for
reliability index are tabulated in Table 7 for example 1.

By comparing the results of study 3 with those from study 1
[i.e., for η = 0 in Table 4], it is observed that the trend of results
in study 3 remains essentially the same as in study 1. For any
non-zero value of η, like study 1, R-shape (2) again results in
the lowest value of βHL and the R-shape (6) again results in

Table 5 Comparison between FORM and MCS results in study 1

R-shape Probability of failure, pF

Example 1 Example 2

FORM MCS FORM MCS

(1) 8.12x10-3 6.10x10-3 7.88x10-3 5.90x10-3

(2) 1.18x10-1 8.99x10-2 1.09x10-1 8.12x10-2

(3) 2.14x10-2 1.66x10-2 2.06x10-2 1.56x10-2

(4) 9.24x10-3 7.40x10-3 9.22x10-3 7.50x10-3

(5) 1.53x10-3 1.10x10-3 1.73x10-3 1.30x10-3

(6) 5.71x10-5 3.00x10-5 6.88x10-5 4.00x10-5

(7) 9.52x10-2 7.70x10-2 8.91x10-2 7.17x10-2

Table 4 Summary of results of reliability analyses in study 1

Statistical properties of residual factor, R Reliability index, βHL

Example 1 Example 2

R- shape (1) Mean(2) COV(3) Case I (4) Case II (5) Difference (%) (6) Case I (7) Case II (8) Difference (%) (9)

(1) 0.333 0.707 5.681 2.403 57.70 5.319 2.415 54.61

(2) 0.667 0.354 3.335 1.184 64.52 3.157 1.229 61.06

(3) 0.500 0.447 4.743 2.026 57.29 4.457 2.042 54.18

(4) 0.500 0.378 4.743 2.356 50.33 4.457 2.357 47.12

(5) 0.500 0.277 4.743 2.961 37.56 4.457 2.924 34.39

(6) 0.250 0.577 6.000 3.858 35.69 5.605 3.812 31.98

(7) 0.750 0.193 2.461 1.309 46.80 2.358 1.346 42.91
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the highest value of βHL in a case II analysis. For any situa-
tion, as η increases, βHL decreases, which is expected.
Moreover, as the value of η increases from 0 to 1, the value
ofβHL decreases by nearly 31% in the case II analysis both for
R-shape (2) and R-shape (6), which are substantial. It is seen

that the trend of results in terms of the reduction in the values
of reliability index from case I analyses (R-deterministic) to
case II analyses (R random) remains the same in Table 4 and
Table 8. Specifically, for η = 0.75, the largest and the smallest
reductions, corresponding to R-shape (2) and R-shape (6) re-
spectively, are nearly 46% and 4% in place of 65% and 36%
noted in study 1. However, details of such results for example
2 are not presented here to save space. That the amount of
reduction is less in study 3 compared to study 1 is also expect-
ed because, while the level of uncertainty for the other five
random variables (considered in case I analysis) increases
with non-zero value of η, there is no corresponding increase
in the level of uncertainty in the residual factor R. Figure 4
presents a plot of probability of failure vs η for study 3 on
example 1. The plot of pF vs η for study 3 on example 2 has
been found to be very similar to that for example 1.

Results of study 4

In all three studies described above, the effect of treating the
residual factor R as a random variable has been brought out for
a medium level of pore water pressure, considering the pore
pressure ratio ru as having a mean value of 0.2. It would be
interesting to study how the trend of results presented above
changes with change in the level of pore pressure. Keeping
this in mind, study 4 has been undertaken which is similar to
study 1 except that here the mean of ru is varied from 0.1 to
0.45.

Table 8 presents, for example 1, a summary of the values of
reliability index obtained from case II analyses. It is seen that
for mean ru = 0.1, 0.15, and 0.25, the trend of results is the
same as for study 1, 2, and 3 with mean ru = 0.2. In other
words, R-shape (2) again results in the lowest value of βHL

Table 6 Values of reliability index βHL for study 2 on example 1

R-
shape

Analysis case Reliability index, βHL

ρ = 0.0 ρ = 0.25 ρ = 0.5 ρ = 0.75 ρ = 1.0

(1) Case I 5.681 5.357 5.092 4.871 4.689

Case II 2.403 2.372 2.342 2.312 2.284

Difference (%) 57.70 55.71 54.01 52.53 51.29

(2) Case I 3.335 3.053 2.832 2.653 2.509

Case II 1.184 1.169 1.156 1.142 1.129

Difference (%) 64.52 61.69 59.19 56.94 54.99

(3) Case I 4.743 4.377 4.086 3.848 3.656

Case II 2.026 1.994 1.963 1.933 1.905

Difference (%) 57.29 54.44 51.95 49.76 47.88

(4) Case I 4.743 4.377 4.086 3.848 3.656

Case II 2.356 2.308 2.261 2.217 2.175

Difference (%) 50.33 47.28 44.66 42.40 40.50

(5) Case I 4.743 4.377 4.086 3.848 3.656

Case II 2.961 2.868 2.780 2.698 2.624

Difference (%) 37.56 34.48 31.97 29.89 28.22

(6) Case I 6.000 5.731 5.509 5.322 5.168

Case II 3.858 3.761 3.669 3.581 3.502

Difference (%) 35.69 34.37 33.41 32.72 32.24

(7) Case I 2.461 2.269 2.116 1.992 1.892

Case II 1.309 1.282 1.256 1.231 1.208

Difference (%) 46.80 43.49 40.66 38.22 36.16
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(highest value of pF), while R-shape (6) results in the highest
value ofβHL (lowest value of pF). It is also seen that the largest
reductions in the value of βHL [for R-shape (2)] are 59.29%,
61.83%, and 67.47% for mean ru = 0.1, 0.15, and 0.25 respec-
tively, compared to 64.52% for mean ru = 0.2. Similarly, the
smallest reductions in the value of βHL [for R-shape (6)] are
37.52%, 36.92%, and 33.68% for mean ru = 0.1, 0.15, and 0.25
respectively, compared to 35.69% for mean ru = 0.2. For mean
ru = 0.3, however, it is seen that R-shape (2) does not result in
the numerically lowest value of βHL. It yields a βHL of 0.389,
which is higher than the value of 0.246 corresponding to R-
shape (7) which, again, is a left-skewed distribution. For mean
ru = 0.4 and 0.45, the assumption of R-shape (2) gives case II
analysis results to be higher (less negative) than those from the
corresponding case I analysis. This is the apparent inconsistency
to which reference was made in section Fluctuation of pore
water pressure ratio, ru concerning the effect of change in
COVon computed value of reliability index. For fixed number
of random variables (either 5 or 6), this inconsistency does not
arise. There is a consistent trend for change of reliability index
or probability of failure with increasing pore pressure ratio.

Finally, a computed negative value of reliability index is
very useful for estimating the highest value of probability of
failure due to a combination of high residual factor (or adverse
probability distribution) and high pore pressure ratio. As an

illustration of one such combination, for R-shape 7 and pore
pressure ratio of 0.45, reliability index is –1.225 for case II
analysis (see Table 8). The corresponding probability of fail-
ure from computation is 88.4%.

Figure 5 presents graphical variation of the probability of
failure obtained from case II analysis of example 1 with var-
iation in the mean of pore pressure ratio for the seven proba-
bility distributions of the residual factor. From Fig. 5, it is
observed that (i) the relationships are nonlinear and the shape
of each curve is influenced by the probability distribution of
R; (ii) the probability of failure increases at a somewhat de-
creasing rate as the mean pore water pressure increases; and
(iii) the probability of failure at any mean pore pressure ratio
can vary by several orders of magnitude depending on the
probability distribution of R.

Observations from the results obtained from example 2
being very similar to those for example 1, are not presented
here.

Study on sensitivity index of the random variables

As stated earlier, in a reliability analysis using FORM, the

direction cosines (α
0
i, i = 1 to n) for n number of random

variables whose values are obtained as part of the solution,

Table 7 Values of reliability
index βHL for study 3 on example
1

R-shape Analysis case Reliability index, βHL

η = 0.0 η = 0.25 η = 0.5 η = 0.75 η = 1.0

(1) Case I 5.681 4.434 3.622 3.049 2.621

Case II 2.403 2.253 2.120 1.997 1.882

Difference (%) 57.70 49.19 41.48 34.49 28.20

(2) Case I 3.335 2.606 2.121 1.772 1.508

Case II 1.184 1.074 0.978 0.894 0.817

Difference (%) 64.52 58.80 53.86 49.57 45.86

(3) Case I 4.743 3.705 3.024 2.540 2.177

Case II 2.026 1.866 1.726 1.599 1.483

Difference (%) 57.29 49.64 42.92 37.03 31.89

(4) Case I 4.743 3.705 3.024 2.540 2.177

Case II 2.356 2.150 1.970 1.806 1.657

Difference (%) 50.33 41.96 34.86 28.87 23.90

(5) Case I 4.743 3.705 3.024 2.540 2.177

Case II 2.961 2.644 2.366 2.118 1.897

Difference (%) 37.56 28.63 21.75 16.61 12.86

(6) Case I 6.000 4.680 3.824 3.221 2.772

Case II 3.858 3.545 3.247 2.952 2.655

Difference (%) 35.69 24.26 15.07 8.34 4.22

(7) Case I 2.461 1.920 1.557 1.293 1.093

Case II 1.309 1.145 1.008 0.889 0.786

Difference (%) 46.80 40.36 35.27 31.25 28.07
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directly indicate the values of sensitivity index for the random
variables (Haldar and Mahadevan 2000). Taking advantage of
this feature, a sensitivity study has been carried out in order to
compare the contribution of the residual factor R to the reli-
ability indexβHL relative to that of the other random variables.
Based on studies 1 through 4 described above, the following
four sets of observations have been made on the sensitivity
indexes of the six random variables.

Study 1: Based on the results of Study 1 on example 1,
values of the sensitivity indexes, in terms of direction
cosines, of the six random variables are presented in the
form of a histogram in Fig. 6. From Fig. 6 it is observed
that the residual factor R has the highest value of the
direction cosine, and therefore, has the single largest con-
tribution or influence on the reliability index for all the R-
shapes except for R-shape (7) in which case R has a joint

largest influence along with tanφ
0
r. From the results of

study 1 of example 2, the observations are similar.

Study 2: From the results of study 2 on both the exam-
ples, the observations are the same as in study 1.

Study 3: From the results of study 3 on both the examples,
the observations are, however, somewhat different from

those from study 1 or study 2. It is seen that the rank of
the sensitivity index for R is heavily dependent on its
distribution (R-shape). For all of R-shapes (1), (2), (3),
and (4), R has the single largest sensitivity index. For R-
shapes (5) and (7), R has a joint largest sensitivity index

along with tanφ
0
r. For R-shape (6), R has the single largest

sensitivity index for low to medium level of uncertainty
of the other five random variables, i.e., η = 0.0 and 0.25.
However, at higher level of uncertainty of the other five
random variables, e.g., η = 0.5, 0.75, and 1.0, it is seen

that tanφ
0
p has the highest sensitivity index, followed by

c
0
p, tanφ

0
r, ru, R and c

0
r in decreasing order.

Study 4: From the results of study 4 on both the examples,
the observations are the same as in study 1 or study 2.

Discussion

Practical applications and challenges

The proposed method is ready for assessing reliability of slopes
in practice. The application may be for analysis of natural
slopes, assessment of landslide areas as well as the reliability

Table 8 Summary of reliability results due to variation of mean ru (Study 4 on Example 1)

R-shape Analysis case Reliability Index, βHL

ru = 0.10 ru = 0.15 ru = 0.20 ru = 0.25 ru = 0.30 ru = 0.40 ru = 0.45

(1) Case I 7.489 6.625 5.681 4.689 3.696 1.839 1.001

Case II 3.225 2.808 2.403 2.018 1.654 0.961 0.610

Difference (%) 56.93 57.62 57.70 56.96 55.24 47.74 39.11

(2) Case I 5.209 4.299 3.335 2.352 1.387 –0.406 –1.219

Case II 2.121 1.641 1.184 0.765 0.389 –0.284 –0.611

Difference (%) 59.29 61.83 64.52 67.47 71.94 29.93 49.86

(3) Case I 6.648 5.732 4.743 3.720 2.710 0.844 0.005

Case II 2.926 2.473 2.026 1.594 1.181 0.394 0.002

Difference (%) 55.98 56.86 57.29 57.15 56.42 53.33 51.05

(4) Case I 6.648 5.732 4.743 3.720 2.710 0.844 0.005

Case II 3.311 2.837 2.356 1.875 1.399 0.466 0.003

Difference (%) 50.19 50.51 50.33 49.60 48.37 44.77 42.56

(5) Case I 6.648 5.732 4.743 3.720 2.710 0.844 0.005

Case II 4.050 3.520 2.961 2.380 1.783 0.586 0.003

Difference (%) 39.08 38.59 37.56 36.03 34.21 30.51 28.83

(6) Case I 7.717 6.898 6.000 5.046 4.080 2.250 1.417

Case II 4.822 4.351 3.858 3.347 2.819 1.723 1.159

Difference (%) 37.52 36.92 35.69 33.68 30.91 23.42 18.24

(7) Case I 4.250 3.376 2.461 1.532 0.620 –1.086 –1.867

Case II 2.378 1.848 1.309 0.772 0.246 –0.751 –1.225

Difference (%) 44.06 45.27 46.80 49.63 60.30 30.83 34.39
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of excavated slopes. Based on the results discussed in this paper,
inclusion of R as a random variable will lead to more accurate
assessment of reliability for any slope. Ignoring R or treating it
as a deterministic variable is likely to overestimate reliability
and underestimate the probability of failure even if other impor-
tant parameters are considered as random variables.

The main challenge in reliability analysis relates to avail-
ability of data and, in particular, the distributions of parame-
ters assumed as random variables. In this respect the inclusion
of residual factor R offers both a challenge and an opportunity
to any researcher or geotechnical practitioner. As noted earlier,
one group of researchers has shown how a probabilistic ap-
proach may be used for back-analysis of a significant land-
slide in such a way that the probability distribution of R can be
assessed.

As stated above, for some cases, the mean and standard
deviation of R would have to be assessed on the basis of
experience or judgment in the form of some simple rules or
procedures. Such procedures have been proposed for
assessing shear strength parameters for reliability analysis
(e.g., Duncan 2000). Further research may allow similar pro-
cedures to be developed for selecting the PDF of R or, at least,
the COVs of R in different situations.

Another challenge that often arises in slope reliability is the
question of spatial variability of shear strength parameters
(Jiang et al. 2014; Jiang and Huang 2016; Metya and
Bhattacharya 2016a b; Metya 2017). Consideration of spatial
variability of peak and residual shear strength parameters,
while also including the residual factor, would be a major
extension which clearly is outside the scope of the paper.
That extension is, however, desirable so that clear guidelines
can be developed for different types of projects.

Additional comments on probability distribution for R

Good reasons have already been advanced for choosing a beta
distribution system for the residual factor R. It has been shown
that choosing a normal distribution is inconsistent with the
boundary values of 0 and 1, and that restriction to symmetrical
distribution implies a mean of 0.5 while the mean R actually
can vary from 0 to 1. Then the question arises about how to
arrive at the specific beta distribution. That is not as difficult as
it may seem at first consideration. The Kettleman Hills study
(Gilbert et al. 1998) already points the way in which a consis-
tent approach may be used to derive the probability distribu-
tion of R based on observational data. More generally, deter-
ministic back analysis already allows estimation of average
shear strength at failure and hence the mean residual factor.
The choice may then bemade, based on engineering judgment
and any other evidence, about the COVof R for a particular
study or project. With a set of mean and COVof R, the par-
ticular beta distribution can be found from the basic equations
adiscussed in earlier sections of this paper. Space does not
permit a discussion of the other approaches that may be used
for choosing a specific probability distribution of R; in partic-
ular, one can extend the Monte-Carlo simulation technique for
adopting or fine tuning the probability distribution of R.

Further research including consideration of progressive
failure

Several areas of research and extension can be pursued for
reliability studies for slopes and landslides which include the
residual factor as a random variable. The following would
seem to be the most important areas:
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(a) The proposed approach can be used to develop
methods and procedures for reliability of slopes with slip
surfaces of curved or arbitrary shape. In fact initial work on
2-D reliability analysis including residual factor R as a
random variable has been carried out successfully by the
authors (Metya et al. 2016a, b; Metya 2017). The limit
equilibrium framework preceding the reliability procedure
has been developed on the basis of Bishop simplified
method as well as the Spencer method. The search or a

critical slip surfaces is part of the reliability solution. The
procedures need further development and more attention
must be devoted to slopes with slip surfaces of general
shape. Moreover, as mentioned in the previous paragraphs,
consideration of spatial variability for shear strength pa-
rameters will require an intensive research effort.

(b) Strategies and methods must be developed for research
investigation of the residual factor as a variable in slopes and
landslides. Such research would include the discovery of data
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from past investigations which could be assembled and ana-
lyzed to obtain evidence about the probability distribution of
R in real cases.

(c) Numerical models and computer simulation may be
developed in order to understand the probability distribution
of the residual factor for specific slopes under given condi-
tions in order to investigate correlations between variables.
Insight may also be gained for any correlation between ran-
dom variables.

(d) Most importantly, selected case studies must be analyzed
in detail in order to validate the methods and procedures. For
example a large number of case studies have been investigated
by Mesri and Shahien (2003) from a deterministic perspective.
Some of these may be particularly appropriate for study from a
probabilistic perspective and also including the residual factor
as a random variable. Moreover, fresh insights may be gained
by careful reconsideration, within a probabilistic framework, of
classical case studies such as those considered by Skempton
(1964, 1966) and his co-researchers in later years.

(e) The inclusion of residual factor as a random variable is a
recognition of progressive failure processes having reached a
certain stage which may or may not be close to the critical.
Therefore, it is pertinent to consider the probability for con-
tinuation of the progressive failure process. It might also be
feasible to formulate procedures to study the probability of
successive failures where R is one of the random variables.
Conditional probabilities of failure that are required in such
extensions may be estimated based on procedures such as
those proposed by Chowdhury et al. (1987) and Chowdhury
and Zhang (1993). The procedures would have to be updated
to include R as a random variable.

Conclusions

The paper concerns reliability analysis of a natural slope in a
homogeneous strain-softening c′-ϕ′ soil modeled as an ‘infi-
nite slope’ subjected to seepage parallel to the ground surface.
A systematic approach for the reliability analysis of a natural
slope in a homogeneous strain-softening soil by including the
average residual factor R as one of the random variables has
been outlined. Reliability analyses have been carried out
based on the first order reliability method and validated
against direct Monte-Carlo simulation. To include the residual
factor R as a random variable altogether seven forms of beta
distributions, both symmetrical and skewed, have been tried.
For each trial probability distribution of R, two sets of reliabil-
ity analyses have been carried out, one set considering R as
deterministic and the other set considering R as random. The
results of these analyses have clearly shown that including R
as one of the random variables has significant influence on
reliability index, and, therefore, on probability of failure. The
influence of R as a random variable is, however, highly

dependent on the assumption made regarding its probability
distribution. The range of assumptions made in this investiga-
tion results in the variation of the probability of failure by
several order of magnitude. For the particular illustrative ex-
amples studied in this paper, it is revealed that the residual
factor with left-skewed triangular distribution [R-shape (2)]
with mean of 0.667 and standard deviation of 0.236 (COV
of 0.354) has the most significant influence on the reliability
index and, therefore, on the probability of failure of a natural
slope. For the particular situation in which the COVs of the
other (five) random variables are at the base values in their
ranges and a mean pore pressure ratio of 0.2, the probability of
failure is found to vary from nearly 10-5 to nearly 10-1 as the
assumption regarding the probability distribution of R is var-
ied [R-shape (1) to R-shape (7)].

Moreover, sensitivity studies based on the FORM indicate
that R can be the dominating random variable relative to the
other five random variables. For most of the distribution as-
sumptions R was the single most significant and for others the
joint most significant among the six random variables, except
for a situation in which the other random variables considered
in the analysis have, simultaneously, high to very high level of
uncertainty (COVs).

Appendix 1

Overall or average residual factor for a slip surface
of arbitrary shape — general case

In general, shear strength, being proportional to the normal
effective stress, would vary from point to point along a poten-
tial slip surface, and hence, the local residual factor, would
also vary. Therefore, it is very useful to consider an expression
for average residual factor, R, which represents the whole of a
potential slip surface, as follows:

R ¼ sp − sav
sp − sr

ðA:1Þ

in which

sp Average peak strength
sr Average residual strength, and
sav Average current shear strength

Let us consider an arbitrary slip surface of total length L
being subdivided into n infinitesimally small segments of
lengthsΔli (i = 1, 2,…, n) such that the corresponding values
of residual factor Ri (i = 1, 2, …, n) do not vary within a
segment of length Δli. For a slope in perfectly brittle soils,
the most general case would be when strain-softening to re-
siduals have taken place at m nos. of segments (m<n) whose
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total length is Lr, while the remaining (n –m) segments of total
length (L – Lr) are still at their peak shear strengths. This
means, at the current state, si = sri for i = 1 to m, while, si =
spi for i = (m+1) to n. In such a situation, the three average
strengths in Eq. (A.1), namely, sr, sp, and sav are obtained as
follows:

sr ¼
∑
m

i¼1
sri Δli

∑
m

i¼1
Δli

¼
∑
m

i¼1
sri Δli

Lr
¼ SUM1

Lr
sayð Þ ðA:2Þ

sp ¼
∑
n

i¼mþ1
spi Δli

∑
m

i¼1
Δli

¼
∑
n

i¼mþ1
spi Δli

L−Lr

¼ SUM2

L−Lr
sayð Þ ðA:3Þ

sav ¼
∑
n

i¼1
si Δli

∑
n

i¼1
Δli

¼
∑
n

i¼1
si Δli

L

¼
∑
m

i¼1
si Δli þ ∑

n

i¼mþ1
si Δli

L
¼ SUM 1 þ SUM 2

L
ðA:4Þ

Substituting the above in Eq. (A.1),

Rav ¼ sp − sav
sp − sr

¼
SUM2

.
L−Lrð Þ− SUM1þ SUM2ð Þ

.
L

SUM2
.

L−Lrð Þ−SUM1
.
Lr

¼ Lr
L

ðA:5Þ

which agrees with Skempton’s definition.
Appendix 2

Factor of safety for a curved slip surface — modified
Bishop simplified method

The expression for the factor of safety, F, associated with a
curved slip surface of circular shape for a simple slope, based
on the Bishop simplified method, has been modified for a
strain-softening soil, by including the residual factor R. The
modified expression is as follows:

F ¼
∑ c

0
rf bþW 1−ruð Þ � tanφ

0
rf

n o.
mαrf

h i
∑Wsinα

ðB:1Þ

where, b is the slice width, W is the slice weight, ru is the non-
dimensional pore water pressure ratio at slice base, and α is
the inclination of slice base. Further,

c
0
rf ¼ Rc

0
r þ 1−Rð Þc0

p ðB:2Þ

tanφ
0
rf ¼ Rtanφ

0
r þ 1−Rð Þtanφ0

p ðB:3Þ

where, R is the overall or average residual factor for the entire
length of the curved slip surface (assumed to be an arc of a
circle in this case).

The factor mαrf is given by:

mαrf ¼ 1þ tanαtanφ
0
rf

F

 !
cosα ðB:4Þ

The commonly used expression for factor of safety based
on the Bishop simplified method (no strain-softening) is given
by:

F ¼
∑ c

0
bþW 1−ruð Þ � tanφ

0	 
.
mα

h i
∑Wsinα

ðB:5aÞ

where, mα ¼ 1þ tanαtanφ
0

F

� �
cosα .(B.5b)

It may be noted that Eq. (B.1) is analogous to Eq. (B.5a)

except that c′ is replaced by c
0
rf given by Eq. (B.2), tan ϕ′ is

replaced by tan φ
0
rf given by Eq. (B.3), and mα is replaced by

mαrf given by Eq. (B.4).
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