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Abstract In this study, a new ensemble method was de-
veloped to assess landslide hazard models in Mt.
Umyeon, South Korea, using the results of a physically
based model as a conditioning factor (CF). Hydrological
conditions were obtained from the national-scale rainfall
threshold. To incorporate rainfall threshold in landslide
initiation, national landslide inventory data were used to
prepare I-D and C-D thresholds. A series of factor of
safety (FS) distribution maps were prepared using a phys-
ically based model with a 12-h cumulative rainfall thresh-
old. We created an ensemble model to overcome limita-
tions in the physically based model, which could not in-
corporate important environmental variables such as hy-
drology, forest, soil, and geology. To determine the effect
of CFs on landslide distribution, spatial data layers of
elevation, drainage proximity, soil drainage characters,
stream power index, sediment transport index, topograph-
ic wetness index, forest type, forest density, tree diameter,
soil type geology, and the FS distribution map were ana-
lyzed in a maximum entropy-based machine learning al-
gorithm. Validation was performed with a receiver oper-
ating characteristic curve (ROC). The ROC showed
65.9% accuracy in the physically based model, whereas
the ensemble model had higher accuracy (79.6%) and a
prediction rate of 89.7%. The ensemble landslide hazard
model is a new approach, incorporating the FS distribu-
tion map into the available independent environmental
variables.
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Introduction

Rainfall is widely recognized as a major landslide-triggering
factor in mountainous landscapes (Iverson 2000). Landslides
are dangerous phenomena and it is important to interpret the
conditions under which they most frequently occur.
Landslides are recurrent and cause damage and casualties;
therefore, great efforts are made to set up early warning sys-
tems (EWS) that can forecast their occurrence (Rosi et al.
2012). In recent decades, numerous studies have identified
rainfall as the top predictive factor for landslide occurrence
and have, therefore, endeavored to use rainfall characteristics
to construct early warning and evacuation systems (Guzzetti
et al. 2007; Wu et al. 2011; Brunetti et al. 2010; Martelloni
et al. 2012; Turkington et al. 2014, Melillo et al. 2015, 2016;
Petschko et al. 2014).Many researchers have also investigated
landslide susceptibility models based on heuristic reasoning or
statistical methods (Carrara et al. 1995; Guzzetti et al. 1999;
van Westen et al. 2003; Lee and Pradhan 2006; Safaei et al.
2010). Some studies have used fuzzy logic and artificial neural
networks for landslide susceptibility mapping (Ermini et al.
2005; Catani et al. 2005; Sezer et al. 2011; Akgün et al. 2012),
and several researchers have proposed different physically
based approaches based on infinite slope stability models,
which are generally coupled with hydrological models
(Montgomery and Dietrich 1994; Dietrich et al. 1995;
Iverson 2000; Baum and Godt 2010). These methods are ei-
ther probability- or scenario-based approaches. Although
physically based models are easy to understand and have high
predictive capabilities, they depend on the spatial distribution
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of various geotechnical data, which are very difficult to obtain.
Statistical probability-based methods can include condition-
ing factors (CFs) that influence slope stability, such as forest,
soil, and geology, which are unsuitable for physically based
models. Statistical models rely on good landslide inventories
of the site.

Shallow landslides are very common in the mountains of
South Korea. Since the Korean Peninsula is part of the East
Asian monsoon region, more than 60% of the annual precip-
itation is in the form of heavy rainfall influenced by typhoons
and the rainy season (June–September). Consequently, inten-
sive landslides occur during this period. Most historical ty-
phoon events in South Korea have clearly shown that the
spatial distribution of shallow regional landslides is focused
in areas with high rainfall concentration (Pradhan and Kim
2014; Pradhan et al. 2016). However, despite the importance
of rainfall as a factor triggering shallow landslides, few studies
have addressed the rainfall threshold in South Korea. Previous
studies determined that the rainfall threshold for shallow land-
slide initiation has been treated as a separate group in landslide
susceptibility modeling, and warning models have mainly
been based on rainfall return periods.

Against this background, the main objective of this study is
to prepare a landslide hazard map incorporating rainfall
thresholds. We used a physically based model coupled with
a hydrological model to assess safety factors (FSs) in hilly
terrain for various rainfall conditions on Mt. Umyeon, south
of Seoul. The main difference between the present study and
previous approaches is that rainfall threshold values are incor-
porated into the physically based model to assess four differ-
ent warning levels. We used an ensemble approach to evaluate
the output of a physically basedmodel for a statistical machine
learning model in varying hydrological conditions. The pro-
posed ensemble model is an integrated process resulting from
two different model approaches: physically based and statisti-
cal, and then synthesizing the results into a single score to
improve the accuracy of predictive analytics.

Study area

The study area, located in the Seocho district and the southern
part of Seoul (37.45°–37.48° N, 126.9°–127.04° E), covers
approximately 6.8 km2 (Fig. 1). The maximum elevation of
the mountain is 312 m above mean sea level. The study area
mainly comprises biotite gneiss, although the central part of
the mountain is primarily granitic gneiss. In some areas of
granitic gneiss formations, faults are reported by of Korean
Geotechnical Society (2011) as depicted in Fig. 2. The soil at
the site is principally weathered residual soil, covered by poor-
ly sorted sand and gravel with a silty matrix. A significant area
in the soil maps contained no data because some parts of the

study area contain a military camp, to which access is restrict-
ed for civilians.

The mountain is in the center of a dense residential area,
such that landslide hazards have a great societal impact com-
pared with landslides that occur in rural areas. According to
Yune et al. (2013), the main cause of landslides in the Mt.
Umyeon area is rainfall; the cumulative rainfall for 2 months
before the landslide event was 1498.5 mm at Namhyeon and
1105 mm at Seocho station. Antecedent rainfall led to soil
saturation on Mt. Umyeon, and several sites had already be-
come vulnerable to slope failure. Additional torrential rainfall
produced surface runoff continuously and weakened the
ground, eventually resulting landslides which began at 9
A.M. (KST), July 27, and transformed rapidly into fast debris
flows, which killed 16 people and damaged ten buildings,
leading to economic losses of about USD 15 million. Some
glimpses during landslide event are presented in Fig. 3.

On Mt. Umyeon, 163 landside initiation locations were
mapped using 1:5000-scale topographic maps (Fig. 1). A
landslide inventory map was prepared by consulting satellite
images and web-based digital aerial photographs with 50-cm
resolution provided by Naver (www.map.naver.com) along
with Global Positioning System (GPS) field surveys. A ran-
dom partitioning algorithm was used to separate training land-
slides from validation landslides (Pradhan and Kim 2016a, b).
There is no exact mathematical rule to determine the required
minimum size of training data sets (Nefeslioglu et al. 2008;
Caniani et al. 2008); however, there is a requirement that the
training data include all CFs for the study area. Among the
163 landslide locations, 146 (approximately 90%)were select-
ed for the training data set and the remaining 17 (about 10%)
were used as validation data.

Methodology

This study was performed in three steps (Fig. 4): (1) rainfall
thresholds of different warning level for shallow landslide
initiation in South Korea were identified from landslide inven-
tories and rainfall data; (2) factor of safety (FS) distribution
maps were calculated based on warning levels obtained in the
first step; and (3) an ensemble model was designed by incor-
porating the CFs responsible for landslide initiation. For the
ensemble model, 11 CFs were collected from different sources
and the FS distribution map obtained in the second step was
considered as one of the CF.

Rainfall threshold

A threshold curve in the form of I = α D−β, where α
(the intercept) and β (slope of power law curve) are
constants; I is intensity and D is duration, following
the works of various researchers (Caine 1980; Aleotti
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2003; Glade et al. 2000; Jakob and Weatherly 2003;
Chen et al. 2005; Hong et al. 2005; Guzzetti et al.
2007; Dahal et al. 2008), were used to determine rain-
fall thresholds. A frequentist approach was adopted to
determine the slope and intercept of the power law
curve selected to represent the rainfall threshold. The
rainfall data are plotted in a single graph, and the dis-
tribution of the rainfall conditions, log(I) vs. log(D),
that have resulted in landslides is fitted with a linear
equation of the type log(I) = log(α) – βlog(D). For each

rainfall event (D,I), the difference δ(D) between the log-
arithm of the event intensity log[I (D)] and the corre-
sponding intensity value of the fit log[If(D)] was calcu-
lated as δ(D) = log[I (D)]-log[If(D)]. Then, the proba-
bility density function (pdf) of the distribution of δ(D)
is determined through Kernel Density Estimation
(Venables and Ripley 2002). This method is based on
a frequency analysis of the empirical rainfall conditions
that have resulted in known landslides (Brunetti et al.
2010), where the probability density function of the
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Fig. 1 Location of Mt. Umyeon and landslide distribution

Fig. 2 a Landslide initiation area in biotite gneiss; b fault observed in biotite gneiss; c exposure of biotite gneiss; and d fault gouge



distribution is determined by fitting the result (via the
least squares method) with a Gaussian function, as
shown in Eq. 1.

f δð Þ ¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp −
δ−μð Þ2
2σ2

 !
ð1Þ

where μ is the mean of the distribution that determines
the position of the center of the peak, and σ is the
standard deviation, which adjusts the scale of the curve.
Based on the modeled distribution of δ, multiple thresh-
olds can be defined, corresponding to different probabil-
ities of exceeding thresholds (Brunetti et al. 2010). If
the tested models are coupled with meteorological fore-
casts, they can be part of early warning systems (EWS)
for managing landslide risk (Keefer et al. 1987). In or-
der to achieve this, Safeland Deliverable D1.5 (2012)
proposed three thresholds, i.e., four warning stages.
Three thresholds encompass the 5th, 20th, and 50th ex-
ceedance probabilities of the landslide data set, and the
warning levels refer to an increasing probability of the
occurrence of landslides when precipitation overcomes

the given threshold. These thresholds can be used for
EWS based on a real-time comparison between warning
levels and hourly rainfall data recorded from a nearby
network of rainfall stations.

Physically based model

The safety factor of infinite slopes can be calculated through
the relationship between driving shear stress and resisting
shear strength (Iverson 2000). To couple a hydrological model
with the infinite slope model, FS was calculated (Brunsden
and Prior 1984) as

FS ¼ C
0

γsHsinθcosθ
þ tanϕ

0

tanθ
−
γwhcos

2θtanϕ
0

γsHsinθcosθ
; ð2Þ

whereC′ is cohesion (kN/m2), ϕ’ is the internal frictional angle
(degree), γs is the unit weight of soil (kN/m3), H is the soil
depth (m), h is the depth to the water table (m), θ is the local
slope, and γw is the unit weight of water (kN/m3). Figure 5
shows a schematic of an infinite slope-stability model.
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Fig. 3 Photographs show the
landslide and its damages
(Photographs: Korean
Geotechnical Society)



Proper infiltration models are necessary to perform reason-
able estimation of the depth of saturation or infiltration depth,
which reduces the shear strength of the soil cover. The amount

of saturated depth through flow can be determined by consid-
ering various rainfall intensities. We applied the steady-state
hydrological model proposed by Iida (1984) to estimate the
saturated depth (h) based on rainfall intensity (R). He assumed
that the saturated through flow in the soil layer moves down
along a flow line as per Darcy’s law, and introduced a hori-
zontal component of flow velocity. The flow depth can be
calculated as

h ¼ R
μ

t þ ε
2

� �
Vst2

h i
; ð3Þ

where t is the time (d), VS is the horizontal velocity compo-
nent (m/d), ɛ is the curvature of a particular terrain cell (m−1),
and μ is the effective porosity. Vs can be calculated expressed
it in terms of saturated hydraulic conductivity and effective
porosity as follows:

Vs ¼ ks
μ
sinθcosθ ð4Þ

where ks is the saturated hydraulic conductivity (m/d).
The probability-based rainfall threshold for a 12-h duration

(5th, 20th, and 50th exceedance probabilities) was used as the
rainfall factor and saturation depth was considered for 12-h in
Eq. (3) because the effective contributing area over a 12-h
drainage time was strongly correlated with landslide occur-
rence on Mt. Umyeon (Pradhan and Kim 2017). Equations
(2)–(4) were used to determine the FS for the slope of the
terrain. All analyses were performed in a GIS environment
(ArcGIS 10.2 and ILWIS 3.8, with the spatial analyst pack-
age). The benefit of a physically based model using GIS is the
ability to express a wide range of recalculations of FS with
varying rainfall intensities.

Ensemble model with maximum entropy

The ensemble model creates and combines multiple models to
improve model results. To create a machine learning model,
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Fig. 4 Flow chart of the study

Fig. 5 Schematic of the infinite-
stability model



we used a maximum entropy model (MaxEnt), which is in-
creasingly employed in various earth science studies (Dyke
and Kleidon 2010; Phillips et al. 2006) and has proven to be a
very powerful statistical prediction tool (Convertino et al.
2013). MaxEnt represents the conditional density function of
covariates π as presence, a random site x from the set X in the
study area, and records 1 if the landslide is present at x, and 0 if
it is absent. We then incorporated total rainfall using national-
scale rainfall threshold levels into a physically based infinite-
slope model. The result of the physically based model was
then used as an input in MaxEnt to subsume conditional fac-
tors that were inapplicable in the physically based model.

Spatial database

A digital elevation model (DEM) is an important component
in physically based and statistical landslide susceptibility
mapping (Kawabata and Bandibas 2009; Fressard et al.
2014) because it generates attributes such as slope, aspect,
and curvature (Shahabi et al. 2015; Tsangaratos and Ilia
2016). For this study, a 10 × 10 m DEM was prepared from
LIDAR data. The LIDAR data was obtained from National
Geographic Information Institute (NGII). The terrain slope
calculates the slope at any pixel on the surface, i.e., the mag-
nitude of the gradient at any point. From the definition of
gradient, slope was derived from the first derivative function
of the DEM. In the study area, the slope ranges from 0 to 47°
(Fig. 6a). Generally, steeper slopes have a higher probability
of experiencing landslides. The second derivative, curvature,
corresponds to the convergence or divergence of water during
overland flow (Oh and Pradhan 2011). Plan curvature reflects
the rate of change of the terrain aspect angle measured in the
horizontal plane. Negative values indicate divergent water
flow over the surface, and positive values indicate convergent

flow. A value of ±1.5 indicates that the surface is linear. Plan
curvature distribution is presented in Fig. 6b. The slope and
curvature rasters were created using the spatial analysis tool
and were applied to the infinite-slope model but slope and
curvature (suitable for a physically based model) were exclud-
ed in final ensemble model to avoid duplication of input
parameters.

In general, the occurrence of landslides in an area was
governed by various CFs, such as topography, hydrology, for-
est, soil, and geology (Pradhan et al. 2016). Eleven CFs were
considered for the ensemble model, which could not incorpo-
rate into the physically based model. The source and signifi-
cance of these CFs are presented in Table 1. DEM have been
used as a CF in several studies (Yalcin 2008; van Westen
2004). Although there is no direct relationship between eleva-
tion and landslide occurrence, research has shown an increase
in landslide occurrence at higher elevations (Ercanoglu and
Gokceoglu 2004). Elevation in our DEM ranged from 20 to
312 m above mean sea level (Fig. 7a).

Hydrologic factors may adversely affect hillslope stability
through erosion or saturation (Gökceoglu and Aksoy 1996).
The proximity of a slope to a drainage site is important in
determining instability because most landslides occur near
streams. The Euclidean distance function in ArcGIS was used
to find drainage proximity (Fig. 7b). Soil drainage characters
(SDC) describe the frequency and duration of soil saturation.
SDC determines whether water moves slowly, rapidly, or not
at all. The study area contained the SDC classifications very
poor, poor, moderate, and well (Fig. 7c). Stream power index
(SPI) is a measure of the erosive power of water. As the spe-
cific catchment area and slope gradient increase, the amount
of water contributed by upslope areas and water flow velocity
increase (Moore et al. 1991). Figure 7d shows the spatial dis-
tribution of SPI in the study area. Sediment transport index
(STI) characterizes the erosion and deposition processes
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Fig. 6 a Slope distribution and b curvature distribution



(Pradhan and Kim 2016b). A dimensionless STI (Fig. 7e) was
calculated by combining the slope factors of length and steep-
ness. The topographic wetness index (TWI) describes the ef-
fect of topography on the locations and sizes of saturated
source (Fig. 7f) and is indicative of the spatial distribution of
soil moisture (Beven and Kirkby 1979).

Vegetation helps to stabilize forested slopes by providing
root strength and bymodifying the saturated soil water regime
(Ziemer 1981). Plant roots can penetrate the soil mass to an-
chor into bedrock fractures, cross zones of weakness to more
stable soil, and provide interlocking long fibrous binders

within a weak soil mass. Forest factors for the present study
were adapted from the Korean Forest Institute (KFI). The
forest in the study area consists mainly of coniferous, broad-
leaf, and mixed-forest types (Fig. 8a). High tree density means
more roots and greater capacity to maintain water and soil
pore pressure in heavy rain (Lee et al. 2004). KFI has classi-
fied the forest density into loose, moderate, and high (Fig. 8b),
assuming that large-diameter trees have more roots and thus
greater capacity to maintain soil strength (Lee et al. 2004).
Tree stem diameter is subjective; KFI has classified the trees
in the study site as small- and moderate-diameter ones

Table 1 Eleven conditioning factors considered for ensemble model, their source and significance

Conditioning
factors

Source Significance

Elevation National Geographic Information
Institute (NGII), ArcGIS 10.2

Variation in climate, vegetation, potential energy

Drainage proximity (NGII), ArcGIS 10.2 Influence of fluvial processes, saturation and erosion

SDC Korea Forest Service Frequency and duration of the period when soil is saturated with water.

SPI (NGII), ArcGIS 10.2 Measures erosive power of flowing water

STI Net erosion and deposition rates; provides an estimate of transportation capacity and erosion

TWI Soil moisture conditions, source areas of runoff generation

Forest type Korea Forest Service Root strength, root penetration, water holding capacity

Forest density Interlocking long fibrous binders, maintain soil pore water pressure

Tree diameter Large diameter more roots

Soil type Influence the rate of water movement, water holding capacity

Geology Korea Institute of Geoscience
and Mineral Resources
(KIGAM)

Lithological properties of a hillslope
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Fig. 7 a Elevation, b drainage proximity, c soil drain characteristics, d stream power index, e sediment transport index, and f topographic wetness index



(Fig. 8c). Forest density and tree diameter were extracted from
the forest map. The soil type also reveals the properties that
influence the rate of water movement and the capacity of the
soil to hold water (Sidle et al. 1985); related properties such as
particle size and distribution of the soil matrix affect slope
stability. The study area mainly comprises sandy loam and
silty loam (Fig. 8d).

Different lithological units have different landslide suscep-
tibility values (Carrara et al. 1995; Pachauri et al. 1998). As
mentioned in our description of the study site, most of the
mountain consists of biotite gneiss, with granitic gneiss at
the center of Mt. Umyeon (Fig. 8e).

Results and discussion

Rainfall threshold

For this study, a national landslide inventory was compiled
using data from NDMI (National Disaster Management
Institute), various reports, and newspapers. Rainfall data were
collected from the nearest meteorological observatories from
the location of landslides. The search was limited to the period
between May 1999 and August 2012. A total of 255 landslide
events occurred in 1999–2012; among them, only 198 events
were identified as rainfall-triggered landslides in weathered
soil in South Korea. In this study, a critical rainfall concept
was used as defined by Aleotti (2003). Critical precipitation
indicates the amount of rainfall from the time (Bzero point^) in

which a sharp increase in rainfall intensity is observed to the
triggering time of the (first) landslide.

The critical intensity (I) and duration (D) for each event
were plotted on a log-log diagram (Fig. 9a) to define rainfall
events with durations between 2 and 77 h. The data were fitted
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Fig. 8 a Forest type, b forest density, c tree diameter, d soil type, and e) geology

Fig. 9 198 rainfall events that resulted in landslides in South Korea and
line of best fit



with the least squares method, yielding an equation of best fit
of I = 57.17D−0.61. Figure 9b shows the Gaussian fit of the
probability density function for the 198 data points (I-D)
shown in Fig. 9a. The proposed thresholds were used to pro-
pose a prototype EWS, and the limits of these intervals were
used to set up four warning levels, namely, the regression lines
of the 5th percentile, 20th percentile, and 50th percentile
(Fig. 10a). The designated 5% percentile rainfall threshold
shows that rainfall intensity greater than 18.56 mm/h is nec-
essary to trigger shallow landslides for rainfall durations
shorter than 2 h. For continuous rainfall of longer than 77 h,
landslides may be triggered by 2 mm/h rainfall intensity. For
validation purposes, the data characterizing 35 landslide
events in Busan (in the south of South Korea) during 1999–
2014 were superimposed on the I-D plot (Fig. 10a). All land-
slide events occurring in Busan during that period were above
5% exceedance probability (Fig. 10a). Conversion from I-D
thresholds to C-D thresholds may easily be accomplished at
each time step (Fig. 10b). The rainfall path observed in theMt.
Umyeon landslide event is also shown in Fig. 10. Warning
levels were selected on the basis of the 5th percentile, 20th
percentile, and 50th percentile (Table 2). They were classified
as Bnull^ (below the 5th percentile), Bwatch^ (5th–20th per-
centile), Battention^ (20th–50th percentile), and Balarm^
(above the 50th percentile) warning levels.

The obtained rainfall thresholds were used to compute the
FS of the terrain through spatial analysis. Using the slope,

effective porosity, and saturated hydraulic conductivity, the
subsurface flow velocity (Eq. 4) rasters were computed.
Using this as an input, along with the curvature of the terrain,
the saturated flow depth (Eq. 3) raster layers were computed
for the given hydrological conditions. In this study, a 12-h
cumulative rainfall threshold was used for the saturation depth
calculation for different warning levels. The 12-h cumulative
rainfall was reconstructed using the equations given in
Table 2. Soil properties were obtained from geological engi-
neering investigations for landslide hazard restoration works
conducted by the Korean Society of Civil Engineering (2012)
and Korean Geotechnical Society (2011) and National
Forestry Cooperative Federation (2011). The sampling site is
presented in Fig. 11. The geotechnical parameters for the
study area are listed in Table 3, including cohesion, angle of
internal friction, and unit weight of soil, which were rasterized
for compatibility in spatial analysis. Soil depth is an important
factor in an assessment of hillslope instability (Lanni et al.
2011). Park et al. (2013) stated that the thickness of the

Table 2 Rainfall thresholds and corresponding cumulative rainfall

Classification Criteria Equation Cumulative
rainfall (mm)
12 h

Null < 5% rainfall
(0–5%)

– –

Watch 5% < rainfall
threshold

< 20%

C5% = 28.3D0.39 73.7

Attention 20% < rainfall
threshold

< 50%

C20% = 40.6D0.39 105.7

Alarm > 50% rainfall
threshold

C50% = 59.2D0.39 154.1
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Fig. 10 Rainfall thresholds for different warning levels and rainfall path
of Mt. Umyeon landslide: a) I-D conditions, yellow circles are Busan
validation data and b) C-D shallow landslide conditions in South Korea Fig. 11 Location of sampling sites by different agencies



colluvium is generally less than 2 m in Seoul because of the
relatively shallow depth of the bedrock, and hence shallow
landslides are frequent. In this study, soil depth of the main
scarp of the shallow landslides were used; i.e., the soil depth
was estimated through field observations of the 50 landslide
scarps. The value adopted for the entire mountain was consid-
ered to be equal to the soil depth at which the slope failure
occurred, and the average soil depth was estimated as 2 m.

The next step was to estimate FS values using the saturated
flow depth raster layers corresponding to different hydrologi-
cal conditions (Eq. 2). The FSmaps were classified as FS < 1,
1–1.2, 1.2–1.5, and >1.5. Dry conditions yielded no unstable
pixels (Fig. 12a). Using 12-h cumulative rainfall and 5% ex-
ceedance probability, the unstable area increased to 0.58%.
Under this particular condition, the area with FS < 1 can be
considered a Bwatch^ warning level (Fig. 12b). With 20%
exceedance probability, the unstable area increased to
2.76%, and these unstable areas can be assigned to the
Battention^ warning level (Fig. 12c). Similarly, at a rainfall
threshold of 50%, the unstable area was 7.52% (Fig. 12d); this
area is assigned the Balarm^ warning level.

The relationship between landslide occurrence and CFs

Figure 13 shows the results of frequency analysis that explore
the relationship between CFs and landslide occurrence. It is

Table 3 Geotechnical parameters of the study area

Properties Value

Unit weight of soil (kN/m3) 18.1

Cohesion C′ (kPa) 7.7

Friction angle ϕ’ (°) 28.5

Saturated hydraulic conductivity ks (ms
−1) 3.37 × 10−6

Effective porosity μ 0.45

Average soil depth H (m) 2
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Fig. 12 Distribution of factor of safety (FS) in different rainfall scenarios (red area is unstable): a) dry conditions (∼ null), b) watch, c) attention, and d)
alarm



seen that most of the landslides occurs in confined to an ele-
vation range of 60 to 250 m (Fig. 13a). At this intermediate
elevation, slopes may be prone to slide due to the cover by thin
colluvium. The correlation analysis between drainage proxim-
ity and landslide occurrence is shown in Fig. 13b. The maxi-
mum distance from the centerline of drainage is about 500 m.
The landslide frequencies are high up to a drainage proximity
of 120 m, but beyond that landslide frequencies become low.
In case of SDC, landslides are concentrated in very poor and
poor drainage conditions (Fig. 13c). Drainage problems often
arise from lack of large-sized pores. In small-sized pores, wa-
ter is slow to move and soils easily become waterlogged. For
SPI, high SPI values are highly correlated to landslide occur-
rence (Fig. 13d) because a high SPI value is indicative of
water contribution from upslope area and highwater velocities
(Pradhan et al. 2016). In case of STI, landslide frequency
mostly occurred at high value of STI (Fig. 13e), a high STI
accounts for the effect of topography on erosion. Regarding to
TWI, landslide occurrence is highly correlate with low value
of TWI (Fig. 13f). A low TWI values indicates high moisture
accumulation. The correlation between landslide and forest
type shows that most of the landslide concentrated in the
broad leaf tree forest as shown in Fig. 13g. In case of forest
density, landslide occurrence is highly correlated with low

forest density as shown in Fig. 13h. The small-diameter trees
shows high correlation with landslide occurrence (Fig. 13i).
The landslide frequency is high in the slopes covered by sandy

Table 4 Multi-collinearity diagnosis indexes for CFs used in ensemble
model

CFs Multi-collinearity indexes

Tolerance VIF

Elevation 0.7999 1.2501

Drainage proximity 0.8710 1.1481

SDC 0.9164 1.0913

SPI 0.0324 30.9007

STI 0.0888 11.2604

TWI 0.0815 12.2685

Forest type 0.4755 2.1030

Forest density 0.5657 1.7678

Tree diameter 0.3910 2.5575

Soil type 0.8716 1.1473

Geology 0.9336 1.0712

FS 0.6272 1.5943

Bold values are failed during collinearity test
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Fig. 13 Correlation between landslide frequency and the CFs



loam as shown in Fig. 13j. In case of geology, most of the
existing landslides are concentrated in PCEbngn lithological
formation as shown in Fig. 13k.

Ensemble warning model

To create the ensemble model, the result of the physically
based model for the ‘alarm’ warning level was used as one
of several CFs because the I-D and C-D thresholds observed
in the landslide event of Mt. Umyeon were flagged as Balarm^
(Fig. 10a, b).

A multi-collinearity test was done on the set of 12 CFs to
reduce the dimension of CFs. The variance inflation (VIF) and
tolerance (TOL) are widely used indexes of the degree of
multi-collinearity (Dou et al. 2015, Kavzoglu et al. 2014). A

VIF value greater than or equal to 5 and a TOL value less than
0.2 indicates a serious multi-collinearity problem (O’Brien
2007, Menard 1995). In this study, both these indexes were
calculated which is summarized in Table 4. There is multi-
collinearity between TWI, SPI, and STI; therefore, the remain-
ing nine CFs were selected to generate the ensemble using
MaxEnt. The probability distribution of the CFs was created
using a Gibbs distribution, an exponential distribution param-
eterized by a vector of feature weights because Gibbs distri-
bution minimizes the relative entropy in the variable space
(Dudík et al. 2007). The final map shows the probability dis-
tribution of landslide hazard ranges from 0 to 1 (Fig. 14a). To
improve visualization, the landslide hazard map used <5%, 5–
20%, 20–50%, 50–70%, and >70% classes (Fig. 14b).
However, this final map does not predict when or exactly
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Fig. 14 a Probability distribution of landslide hazard and b classified probability of landslide hazard

Fig. 15 Logistic output response
curves of the model



where landslides will occur during a specific triggering event.
Those classified hazard zones simply represent differences in
the chance of landslide occurrence that can be expected over
the long-term. The zoning shown on hazard map (Fig. 14b) is
determined by analysis of landslide distribution in relation to
the perceived CFs controlling those landslides on a regional
scale, so it is only applicable to regional planning.

The conditional probabilities of the landslide suscep-
tibility model are shown in the resulting response curves
(Fig. 15). Response curves show how each CF affects
the prediction. In the response curves, the y-axis is pre-
dicted probability, as given by the logistic output. As
elevation increases, the probability of landslide occur-
rence also increases. The hillslope that is nearest to
the drainage (20–200 m) shows a high probability of
failure. This study considered main scarp to be relative-
ly far from the mainstream line. Thus, the hillslope that
is very close (i.e., < 20 m) to the mainstream line
showed a lower probability of landslide occurrence. In
present study, the SDC classes with very poor, poor,
and moderate are more susceptible for presence of oc-
currence of landslide.

Broadleaf and conifer trees provided poor root reinforce-
ment and anchoring, and the root system of broadleaf trees
was less extensive in the study area. Broadleaf and conifer
trees show a higher probability of landslide occurrence.

Lower tree density resulted in poor root reinforcement and
anchoring, such that the probability of landslide occurrence
was high for both low and moderate tree densities. Small- to
medium-diameter trees resulted in greater probability of land-
slide occurrence.

The silty loam soil type, followed by sandy loam, showed
the highest probability of landslide occurrence. In the silty
loam and sandy loam areas with shallow soil depth, water
could easily percolate through and create a perched aquifer
in the boundary between soil and rock.

The area occupied by gneiss was prone to landslides.
The granitic gneiss (PCEggn) and biotite banded gneiss
(PCEbngn) lithological formations showed a higher
probability of landslides. The PCEggn lithological unit
has a small areal extent, but the landslide density of this
unit was the highest among the lithological classes.

According to response curve, the FS distribution for
the Balarm^ warning level shows that areas with low FS
values (< 1) are more susceptible to landslide occur-
rence. As the FS value increases, the probability of
landslide decreases, indicating stable conditions for
FS > 1.

The complexity of landslides just as other natural processes
requires a broad based philosophy in understanding it since
the behavior of most intrinsic factors affecting these processes
is not well known.
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Fig. 16 Receiver operator curve
(ROC) for model validation



Accuracy assessment

Model performance was assessed using a receiver oper-
ating characteristic curve (ROC), which is applied in
many fields to test model performance. The ROC is
an effective tool to represent the character of a forecast
system (Swets 1988), and area under curve (AUC) is a
useful indicator to validate the prediction performance
of the model. Chung and Fabbri (2003) distinguished
between success- and prediction-rate curves. The
success-rate curve is based on a comparison of the haz-
ard map with the landslides used in modeling (i.e., the
training data), and the prediction-rate measurement is
carried out with the validation landslide inventory.
Figure 16 shows that the AUC value of the success-
rate curve (77%) using eight CFs (i.e., elevation, SDC,
forest type, forest density, tree diameter, soil type, and
geology) is higher than for the Balarm^ level FS distri-
bution map (65.9%), whereas, the ensemble model (i.e.,
using nine CFs, including Balarm^ FS distribution as 9th
CF) using the training data showed a 79.6% success
rate, which is slightly higher than that excluding
Balarm^ FS distribution map as one of the CFs.
Pradhan and Kim (2016a) also reported that the combi-
nation of a statistical model and a physically based
model can increase model performance. In this study,
model performance was not greatly improved, but the
result indicates that the ensemble model approach is
sound. Additionally, the prediction-rate of the ensemble
model was calculated using the validation data, with a
result of 89.7%, indicated that the result is excellent.

Conclusion

An ensemble landslide hazard model was proposed and
applied at Mt. Umyeon, south of Seoul, in which an FS
distribution map obtained from a physically based mod-
el was integrated into an ensemble model. The physi-
cally based model was prepared using rainfall threshold
values from national inventory data. The resulting phys-
ically based model can incorporate rainfall, steady-state
infiltration depth, and FS distribution. However, it can-
not include certain types of environmental data, such as
topography, hydrology, forest type, soil type, and geo-
logic CFs. The ensemble model could integrate several
CFs that cannot be included in a physically based mod-
el alone. Thus, the obtained FS distribution for the
Balarm^ warning level was used as a CF in the ensem-
ble model. The proposed ensemble model had high
landslide prediction accuracy according to ROC valida-
tion, much higher than that of the physically based
model alone. The accuracy of the physically based

model was 65.9%, whereas the ensemble model had a
79.6% success rate with a prediction rate of 89.7%. The
ensemble landslide susceptibility model can be used as
an EWS to encourage local authorities and the popula-
tion to monitor rainfall variation, such that the local
population may be alerted to avoid or evacuate threat-
ened areas.
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