
ORIGINAL PAPER

Development of new models for the estimation of deformation
moduli in rock masses based on in situ measurements

Slobodan Radovanović1,2
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•

Dejan Divac1,2
• Nikola Milivojević2
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Abstract Knowledge of the deformation properties of the

rock mass is essential for the stress–strain analysis of

structures such as dams, tunnels, slopes, and other under-

ground structures and the most important parameter of the

deformability of the rock mass is the deformation modulus.

This paper describes statistical models based on multiple

linear regression and artificial neural networks. The models

are developed using the test results of the deformation

modulus obtained during the construction of the Iron Gate

1 dam on the Danube River and correlate these with

measurements of the velocities of longitudinal waves and

pressures in the rock mass. The parameters used for

defining the models were obtained by in situ testing during

dam construction, meaning that scale effects were also

taken into account. For the analysis, 47 experimental

results from in situ testing of the rock mass were obtained;

38 of these were used for modelling and nine were used for

testing of the models. The model based on the artificial

neural networks showed better performance in comparison

to the model based on multiple linear regression.

Keywords Deformation modulus of rock masses �
Velocities of longitudinal waves � Rock mass pressures � In

situ testing � Multiple linear regression � Artificial neural

networks

Introduction

For the design of structures that are built into rock masses

(tunnels, dams, underground structures, etc.), it is neces-

sary to know the mechanical and deformation properties of

the rock mass. One of the most significant deformation

properties is the deformation modulus of the rock mass.

The best methods for determining the deformation modulus

are in situ experiments: the plate load test and flat jack test

(Hoek and Diederichs 2006) and dilatometer test (Wittke

2014). Also, the Institute for the Development of Water

Resources Jaroslav Černi developed two more in situ tests

for determining deformation modulus within the rock

masses: a hydraulic jack method (Kujundzic 1970, 1977)

and radial press method (Kujundzic 1970). These in situ

tests are expensive, difficult to conduct, and time con-

suming (Aksoy et al. 2012). Therefore, in recent years

many researchers have developed indirect methods and

models for the estimation of deformation modulus. Some

authors (Bieniawski 1978; Serafim and Pereira 1983;

Nicholson and Bieniawski 1990; Hoek and Brown 1997;

Kayabasi et al. 2003; Gokceoglu et al. 2003; Chun et al.

2009; Alemdag et al. 2015b; Ajalloeian and Mohammadi

2014; Nejati et al. 2014; Shen et al. 2012) established

indirect equations for determining modulus of deformation.

These equations are based on statistical linear regression,

using the relation between deformation modulus and

geotechnical parameters (such as RMR, GSI, UCS, Ei).

These correlations are useful for practical application.

Geotechnical parameters (i.e. RMR, GSI, UCS, Ei) are

usually determined during field investigations in rock

masses and are, therefore, available for the estimation of

deformation modulus. However, the classification param-

eters are subjective indicators of the rock mass, as they are
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sradovanovic@grf.bg.ac.rs

1 University of Belgrade Faculty of Civil Engineering, Bulevar

kralja Aleksandra 73, 11000 Belgrade, Serbia

2 Institute for the Development of Water Resources ‘‘Jaroslav
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obtained on the basis of geological description and not on

exact measurements.

With development of soft computing methods such as

fuzzy inference system, artificial neural networks (ANNs)

and adaptive neuro–fuzzy inference systems further pro-

gress of models for estimation of deformation modulus and

other geotechnical parameters was made possible. ANNs

have shown to be robust technique for predicting many

geotechnical engineering problems (Sonmez et al. 2006;

Monjezi and Dehghani 2008; Majdi and Beiki 2010;

Banimahd et al. 2005; Nejati et al. 2014; Alemdag et al.

2015a). Available literature suggests that soft computing

techniques are superior in establishing predictive models in

the area of rock mechanics.

Furthermore, some authors (Pappalardo 2015; Brotons

et al. 2014; Khandelwal 2013; Azimian and Ajalloeian

2014) have noticed correlations between the velocity of

P-waves and other geotechnical parameters (such as UCS,

Ei, density, porosity) based on laboratory tests. These

relations are not easily applicable due to scale effects in

rock masses. For example, deformation modulus of rock

samples can be more than two times higher than defor-

mation modulus of the rock mass (Chun et al. 2009). The

velocity of P-waves in rock masses can also be smaller than

the ones obtained in tested samples (Shen et al. 2016).

Authors (Kujundzic and Grujic 1966; Song et al. 2011;

Shen et al. 2016) have noticed the dependence between

deformation modulus and velocity of elastic waves based

on in situ measurements. Models suggested by these

authors have an advantage over the models based on lab-

oratory performed tests due to the scale effect. Some of the

correlations mentioned in the works above are given in

Table 1.

The aim of the research presented in this paper is to

establish new models for the estimation of deformation

modulus of rock masses based on correlations between

modulus of deformation (D) and velocity of longitudinal

waves (Vp) and the pressure in the rock mass (p)

obtained from in situ measurements. The input parame-

ters used in this study were measured during the con-

struction of the dam Iron Gate 1 HPP. In order to

determine more precise method, this study applied two

different methods for estimation of deformation modu-

lus: multiple linear regression (MLR) and artificial

neural networks (ANNs).

Dataset

The results used for the estimation of deformation modulus

in this paper were obtained from the construction of dam

Iron Gate 1 HPP. For the analysis, 47 measurements of

deformation modulus, velocity of waves, and pressures in

the rock mass were obtained. For the modelling, 38 values

were used, and for the testing, nine values of measured

parameters were used.

This dam is located on the Danube River at the chainage

943 km of the Danube river flow. The dam construction began

in 1964, and the first generator units were commissioned in

1970. The dam was built in accordance with the agreement

between the former SFR of Yugoslavia and Romania. Both

sides, Yugoslav and Romanian, have six generator units each

of the individual installed power 1200 MW.

The dam at the Iron Gate 1 HPP is mainly located in

metamorphic rocks, such as: biotite gneiss, chlorite gneiss,

granogneiss, and chlorite-sericite schists. For defining the

Table 1 Correlations between

deformation modulus and other

geotechnical parameters of rock

masses

Equation References

D ¼ 2RMR � 100 Bieniawski (1978)

D ¼ Ei 0:0028RMR2 þ 0:9eð
RMR

22:921
Þ

h i
Nicholson and Bieniawski (1990)

D ¼
ffiffiffiffiffiffiffi
UCS
100

q
10

GSI�10
40

Hoek and Brown (1997)

D ¼ 4:32 � 3:42WD þ 0:19Eið1 þ ðRQD=100ÞÞ½ � Kayabasi et al. (2003)

D ¼ 0:02386V4:3266
p

Song et al. (2011)

D ¼ 0:295V2:387
p ðXiangjiaba damÞ

D ¼ 0:100V3:267
p ðBaihetan damÞ

Shen et al. (2012)

Edyn

E
¼ 5:3 � Edyn

200000
E

D
¼ 1550

645 þ
ffiffiffiffi
D

p

Kujundzic and Grujic (1966)

D is deformation modulus of rock mass [GPa], E is modulus of elasticity of rock mass [GPa], Ei is modulus

of elasticity of intact rock [GPa], UCS is uniaxial compressive strength of intact rock [MPa], WD is the

degree of weathering, RQD is rock quality designation, Edyn is dynamic modulus of elasticity of rock mass,

Vp is velocity of longitudinal elastic waves
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deformation properties of the rock masses, in situ tests

were conducted using hydraulic jack test (Kujundzic

1970, 1977) which is used for determining the deformation

modulus and elasticity modulus of the rock masses. Fig-

ure 1 shows the scheme of test site for hydraulic jack with

all the elements. Since there is no photo of hydraulic jack

test on dam Iron Gate 1, Fig. 2 displays a photo of a sheet

metal jack located at the Komarnica Dam, Montenegro.

Figure 3 is a photo of a slot in the rock mass where

hydraulic jack and a concrete fill were installed, also

located at the Komarnica dam. Hydraulic jack tests (Ku-

jundzic 1970, 1977) were conducted in adits on both

riverbanks of the Danube.

By applying the pressure in hydraulic jack the defor-

mation in the rock mass is obtained. Mean deformation in

rock mass (Kujundzic 1970, 1977) is calculated according

to Eq. (1).

us ¼
aDh
2A

� pd

2Ec

; ð1Þ

where us is mean deformation of the rock mass a is a

cross sectional area of hydraulic reservoir tube, A is area

of sheet metal jack and Dh is difference in levels in the

hydraulic reservoir tube, p is the applied pressure in the

hydraulic jack, d is the thickness of the concrete infill,

Fig. 1 Hydraulic jack method: 1 slot in the rock mass; 2 flexible flat jack ø 2 m; 3 concrete fill; 4 hydraulic reservoir tube and indicator tube for

measurement of average deformations; 5 hydraulic pump; 6 deflection gages for measurement of boundary deformations

Fig. 2 Sheet metal jack (example from the investigation works at the

Komarnica Dam, Montenegro)
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Ec is modulus of elasticity of the concrete. The first

member in the Eq. 1 represents the deformation resulting

from the change in volume of the jack and the second

member represents a correction due to deformation of

the concrete.

The test was repeated with several cycles of loading and

unloading, and the typical pressure-deformation diagram in

rock masses was obtained and is shown in Fig. 4.

Based on the pressure-deformation diagram, the values

of the deformation modulus can be determined in the rock

mass for each cycle of loading. The deformation modulus

value is calculated according to Eq. (2) (Kujundzic 1970).

Di ¼ 0:54
Að1 � m2Þ

r

pi � p0

ui � u0

; ð2Þ

where Di is deformation modulus of the ith cycle, pi is

pressure at the end of the ith cycle, p0 is initial pressure, u0

is initial deformation, ui is the mean deformation in the

rock mass at the end of the ith cycle, A is area of sheet

metal jack, r is radius of sheet metal jack and m is Poisson’s

ratio of rock mass.

The diagram given in Fig. 5 is the result of measuring of

deformations at the measuring point EGD-2 on the right

riverbank of Danube.

Loading of the hydraulic jack started with the initial

pressure of 0 MPa and it was increased to the determined

level, when unloading began down to the pressure

p0(0.2 MPa in this case). Then, the next cycle of loading

began at other pressure level and unloaded to the pressure

p0. This procedure was repeated through several cycles of

loading and unloading until the required maximum stress

was reached or until hydraulic jack had cracked.

Measurement of velocity of longitudinal seismic waves

can be conducted at the same place where hydraulic jack

test is performed by applying a polar method (Kujundzic

and Grujic 1966; Kujundzic 1970). Figure 6 displays a

diagram of a hydraulic jack and the principle of mea-

suring P-wave velocities around the hydraulic jack. In the

borehole located at a distance of 4 m from the slot the

explosion caused seismic waves. The waves were mea-

sured using geophones placed in the slot where the jack

was located. Thus, the polar diagram of velocities around

the hydraulic jack was obtained. For the analysis of data,

a mean value of spreading velocities of seismic longitu-

dinal waves was used. This method is suitable because it

is cost effective, easy to perform and does not require

special technical support, and most importantly it is

applied in the undisturbed rock mass (Kujundzic and

Grujic 1966).

Gneisses and schists, the most common rock masses

at the site of the dam, can have a very pronounced

Fig. 3 The slot in the rock mass where a hydraulic jack was installed

and concrete fill placed (example from the investigation works at the

Komarnica Dam, Montenegro)

Fig. 4 Typical diagram of pressure-deformation in rock masses

Fig. 5 Diagram pressure-deformation at the measuring point EGD-2
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anisotropy; therefore, the level of deformation charac-

teristics of the rock mass will depend on the direction of

loading, normal or parallel to schistosity. Pinto da Cunha

and Muralha (1990) presented the research results of the

deformation modulus obtained using the flat jack test

perpendicular to the schistosity and parallel to the

direction of schistosity. Pinto da Cunha and Muralha

1990 also gave the results of dynamic modulus in the

rock mass, which were calculated based on the mea-

surements of velocity of longitudinal waves around the

flat jack. Based on these results it can be concluded that

the average deformation modulus parallel to schistosity

is about 20% higher than the modulus perpendicular to

schistosity and that the mean dynamic modulus parallel

to schistosity is 100% higher than the dynamic modulus

perpendicular to schistosity.

As far as dam Iron Gate 1 is concerned, tests of the

velocity of propagation of longitudinal waves parallel

and perpendicular to the schistosity showed that there is

no significant difference in the results (velocities parallel

to the schistosity are 6–7% higher than the velocities

perpendicular to the schistosity) which indicates that

anisotropy at the site of the dam is not significantly

present.

In this research, values of deformation moduli and

velocity of longitudinal seismic waves were determined

from eight measuring points: five measuring points were at

the exploratory adits on the right bank of the Danube, and

three measuring points were at the exploratory adits on the

left bank.

Development of a model for prediction
of deformation modulus

Multiple regression analysis

Modelling implies making correlations between the

deformation modulus and pressure and wave velocity. The

analysis showed that Eq. (3) best describes the dependence

between the deformation modulus and velocity of elastic

waves under various pressures.

D ¼ a lnðVpÞ þ b: ð3Þ

Figure 7 displays the results of the dependence of the

deformation modulus from velocity under various pres-

sures applied during the test. There is a good correlation

between the deformation modulus and velocity of longi-

tudinal waves. The coefficient of determination is in most

cases over 0.75. For the purpose of introducing the influ-

ence of pressure during testing into the regression model,

variables a ¼ f ðpÞ and b ¼ f ðpÞ were proposed, where a

and b are the unknown coefficients in Eq. (3). Equa-

tions (4) and (5) are assumed for calculation of the a and b

variables:

a ¼ a1pþ a2 ð4Þ

b ¼ b1p
2 þ b2pþ b3: ð5Þ

When Eq. (4) and Eq. (5) are inserted into Eq. (3),

Eq. (6) is obtained.

D ¼ a
1
p lnðVpÞ þ a

2
lnðVpÞ þ b

1
p

2 þ b
2
pþ b

3
: ð6Þ

Fig. 6 Microseismic method

with polar procedure: 1 slot for

hydraulic jack, 2 sheet-metal

jack, 3 hole, 4 aftershock, 5

geophones, 6 polar velocity

graph
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Fig. 7 Relations between the velocity of P-wave and deformation modulus under various pressures in the rock mass
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The given equation can be transformed into Eq. (7):

D ¼ ao þ a1x1 þ a2x2 þ a3x3 þ a4x4: ð7Þ

The regressive functions are: x1 ¼ p lnðVpÞ, x2 ¼ lnðVpÞ,
x3 ¼ p2 and x4 ¼ p, and the Eq. (7) is a multiple linear

regression model (MLR).

The main part of defining the model for prediction of the

deformation modulus is determination of the coeffi-

cients:a0, a1, a2, a3, a4 using regression functions. Deter-

mining the coefficients using regressors was conducted in

MATLAB software.

The prediction performance of each model is evaluated by

calculating the root mean square error (RMSE), mean absolute

error (MAE) and the Pearson correlation coefficient (r):

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðymi � yiÞ2

vuut ð8Þ

MAE ¼ 1

N

XN
k¼1

ymi � yij j ð9Þ

r ¼
PN

i¼1 ðymi � �ymÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðymi � �ymÞ2PN

k¼4 ðyi � �yÞ2
q ; ð10Þ

where ymi and yi denote the measured value and the multi

linear regression output, respectively; �ym and �y denote their

average values respectively, and N represents the number

of available samples.

Based on the Eq. (7) using the MATLAB software

package multiple linear regression analysis was conducted

and the coefficients were obtained using predictive func-

tions. The Eq. (11) is a prediction model.

D ¼ �40194 þ 700p lnðVpÞ þ 5168 lnðVpÞ � 30p2

� 5765p: ð11Þ

The Eq. (11) is valid in cases where the velocity of

longitudinal waves is greater than 2500 m/s. The velocity

in Eq. (11) is in units of m/s and pressure is in units of

MPa. Deformation modulus is obtained in MPa.

Using the regression model given in the Eq. (11), the

values for deformation modulus were calculated for the

values of pressure and velocities. The Fig. 8 shows the val-

ues of the deformation modulus calculated from the pro-

posed model (Eq. 11) and the values of deformation modulus

obtained experimentally which were used for modeling.

The Fig. 9 is a scatter diagram of the calculated values

of the deformation modulus from the proposed model

(Eq. 11) and experimental values of deformation modulus

for the dataset which was used for testing.

The Table 2 contains the values of RMSE, MAE, and r

for the case of training and testing of multiple linear

regression model.

Artificial neural network modelling

Neural network used in this study is feedforward neural

network (FNN), which is widely used as a soft computing

method in statistical models because of its good ability of

nonlinear mapping and generalization of the func-

tional relationships between input and output variables.
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Fig. 8 Comparison of calculated values of deformation modulus on

the basis of regression model (Eq. 11) and experimental values of

deformation modulus for the dataset which was used for modeling
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Fig. 9 Comparison of values of deformation modulus calculated on

the basis of regression model (Eq. 11) and the values of deformation

modulus obtained experimentally for the dataset which was used for

testing

Table 2 Values of RMSE, MAE, and r

RMSE MAE r

Training 549.102 443.241 0.929

Testing 720.415 547.637 0.828
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FNN has been implemented and designed using Neural

Network Toolbox of MATLAB.

An example of a FNN with R input variables, a single

hidden layer with n neurons and one output variable is

shown in Fig. 10.

The output of the hidden neurons of the FNN can be

expressed by Eq. (12).

vi hð Þ ¼ fh
XR
j¼1

xijðhÞpj þ biðhÞ

 !
; j ¼ 1; 2; . . .; n; ð12Þ

where vi hð Þ is the output of the ith neuron of the hidden

layer, fh is the activation function of the hidden neurons,

xij hð Þ is the weight value between the ith neuron in the

hidden layer and jth input variable in a neural net-

work model, pj is the jth input variable, bi hð Þ is the bias

value of the ith neurons in the hidden layer, n is the number

of the neurons in the hidden layer.

The most commonly used activation functions of the

hidden neurons in the neural networks are logistic sigmoid

function and hyperbolic tangent sigmoid function, which

can be expressed by Eq. (13).

fhðxÞ ¼
1

1 þ e�x
: ð13Þ

and Eq. (14).

fhðxÞ ¼
2

1 þ e�2x
� 1: ð14Þ

The output of the neural network when the activation

function for the output layer is linear can be obtained

according to the Eq. (15).

y ¼
Xn
j¼1

x1jðoÞvjðhÞ þ bðoÞ ð15Þ

where x1j oð Þ is the weight of the jth neuron in the hidden

layer to the output neuron, bðoÞ is the bias of the output

layer.

The most widely used steepest descent algorithm, also

known as the backpropagation algorithm (Rumelhart et al.

1986) and the different versions of it can be used to find the

optimal values of the network weights and biases (i.e. train the

network) in order to minimize an error criterion. Also, the

Gauss–Newton algorithm (Osborne 1992) and the Levenberg–

Marquardt algorithm (Hagan and Menhaj 1994) are often used.

The Levenberg–Marquardt (LM) algorithm essentially com-

bines the steepest descent method and the Gauss–Newton

algorithm and is suitable for training small- and medium-sized

data modelling problems (Yu and Wilamowski 2011).

There is no general rule for determining the optimum

number of neurons in hidden layer and usually it is deter-

mined through the trial-and-error method. Different net-

work architectures were developed by varying the number

of neurons in the hidden layer and using the logistic sig-

moid (logsig) and the hyperbolic tangent sigmoid (tansig)

activation functions in the hidden layer.

Fig. 10 Feedforward Neural

Network with one hidden layer

and one neuron in the output

layer
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To select the optimal number of neurons in the hidden

layer, networks were trained with 4, 6, 7, and 8 hidden

neurons. Also, the efficiency of the models developed

using the logistic sigmoid (logsig) function and the

hyperbolic tangent sigmoid (tansig) activation function has

been analysed based on the performance parameters

(RMSE, MAE, r), Table 3.

The neural network with the highest r and the lowest

MAE and RMSE was chosen (FNN 5 from Table 3). It can

be observed that the best FNN contains 7 neurons in the

hidden layers.

The weights and biases necessary to implement the

adopted optimal FNN are presented in Table 4.

Adopted ANN model has 2 neurons in input layer, 7

neurons u hidden layer and 1 neuron in output layer.

The Fig. 11 is a comparison of values of deformation

moduli calculated with selected neural network and

experimental values of deformation modulus for the data

set which was used for modeling.

The Fig. 12 is a scatter diagram of the calculated values

of the deformation modulus with selected neural network

and experimental values of deformation modulus for the

dataset, which was used for testing.

Prediction of deformation modulus using feedforward

neural networks (FNN) shows better results than the mul-

tiple linear regression models. The Pearson’s ratio is

greater when calculated using FNN than using MLR. For

the values of RMSE, MAE are smaller for the model based

on the FNN than for the one based on MLR. These

observations are given in the Tables 2 and 3. Better

performance of the dataset for training and testing can also

be noticed in the case of FNN based model.

Results and discussion

The results obtained in this study were compared with the

results obtained by other authors shown in Table 5 since all

empirical models depend on the quality and quantity of

data.

The values of correlation coefficients in the previously

described studies in Table 5 are close to the values

obtained from the models described in this paper for both

ANN and MLR. In all mentioned research, RMSE values

are greater than the value of RMSE in this study. The

correlation coefficients between the estimated and

Table 3 Comparison of different FNN network structure performances

Model Network topology Activation function

in the hidden layer

Data set RMSE MAE r

FNN 1 2–4–1 Logsig Training 356.6285 246.3434 0.8896

Test 569.3589 444.7467 0.8693

FNN 2 2–4–1 Tansig Training 467.5789 256.6729 0.8867

Test 574.3748 498.5398 0.8678

FNN 3 2–6–1 Logsig Training 271.4834 179.3074 0.9334

Test 464.7465 353.5683 0.9224

FNN 4 2–6–1 Tansig Training 279.7936 187.435 0.9112

Test 475.1156 454.7579 0.8913

FNN 5 2–7–1 Logsig Training 257.7681 170.231 0.9855

Test 393.9559 355.6572 0.9662

FNN 6 2–7–1 Tansig Training 269.1745 177.1946 0.9553

Test 407.2001 365.4291 0.9335

FNN 7 2–8–1 Logsig Training 274.8943 180.4584 0.9467

Test 423.9559 371.6572 0.9325

FNN 8 2–8–1 Tansig Training 303.5639 189.5643 0.9398

Test 456.7606 374.4201 0.9213

Table 4 The weights and biases necessary to implement the adopted

FNN

i xi1ðhÞ xi2ðhÞ x1iðoÞ biðhÞ

1 -4.6589 -1.7713 -2.1367 8.6484

2 -0.2504 -7.9181 -0.8071 3.4288

3 3.7159 -8.4543 -1.6976 6.4826

4 -2.9832 -3.2914 -0.6924 4.187

5 0.69593 -17.5616 5.1944 -3.698

6 -0.0332 11.0947 5.5637 2.4977

7 -2.8405 7.8661 -1.5596 -6.4008

bðoÞ ¼ �0:70796

Development of new models for the estimation of deformation moduli in rock masses based… 1199

123



measured deformation modulus for MLR were 0.93 for

training and 0.83 for testing. The correlation coefficients

for ANN models were 0.99 for training and 0.97 for testing.

The values of RMSE for training and testing for the MLR

model were 0.549 and 0.72, respectively. The values of

RMSE for training and testing for the ANN model were

0.258 and 0.394, respectively. Presented results prove that

the accuracy of the model established in this study is within

the range of accuracy of the models published by other

authors. Also, it is noted that there is an intensive use of

ANN models for deformation modulus estimation and for

the estimation of other geotechnical parameters. Applica-

tion of ANN model shows greater accuracy than the

application of MLR model, which is also the case in this

study. Number of datasets used for modelling in this study

corresponds well to the number of datasets used by other

authors.

As for the number of input variables researchers (Ni-

cholson and Bieniawski 1990; Hoek and Brown 1997) had

two input variables in the models, (Pappalardo 2015;

Azimian and Ajalloeian 2014; Kujundzic and Grujic 1966)

used one input variable for estimation of the modulus,

while Kayabasi et al. (2003) used 3 input variables and

Gokceoglu et al. (2003) used 4 input variables. Number of

variables can affect the accuracy of the model. For example

Nejati et al. (2014) analysed the correlation between the

deformation modulus and RMR, as well as the correlation

between the deformation modulus and parameters: UCS

ratings, RQD rating, JSR, JCR, GWR. The correlation

coefficient in the first case was 0.67 and in the second case

was 0.84. Obviously, the reason for deviation is the number

of variables.

In this paper, the authors adopted two input variables:

velocity of longitudinal waves and the pressure in rock

mass. Compared to the works of Kujundzic and Grujic

(1966) and Shen et al. (2016) that dealt with similar issues

to this study, another input variable was introduced—the

pressure in the rock mass. The pressure is important for the

estimation of deformation modulus, because the modulus

depends on the level of loading in the rock mass. In relation

to the works of Kujundzic and Grujic (1966) and Shen et al.

(2016) who used only MLR, the authors of this paper

performed analysis using ANNs and MLR.

Suggested models have the disadvantage that they can-

not be applied for the estimation of deformation modulus

for every rock type. The model from this paper can be

upgraded in two ways. The first way is expansion of the

input data to different types of rock masses and the second

way is increasing the number of different input parameters.

In this study, the input parameters were P-wave velocity

and pressure; other input parameters that can be introduced

for example are UCS or degree of cracks in the rock and

the effect of anisotropy where applicable. The authors of

this paper did not take into account the effect of anisotropy

because it is not significantly demonstrated at the site of the

dam as described in Sect. 2.

Conclusions

In this paper the models for estimating the modulus of

deformation in the rock mass at the site of the Iron Gate 1

HPP are presented. The estimation was based on the
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123



measurements of velocity of longitudinal waves in the

same places where hydraulic jack tests were performed. In

addition to wave velocities, the values of pressure at which

the hydraulic jack tests were executed, were also used.

Models described in this study have an acceptable accuracy

within the range obtained by other authors in models of a

similar type. Models based on the FNN gave better accu-

racy than the model based on the MLR.

The advantage of the proposed model is primarily that it

used in situ measurements of moduli of deformation,

velocity of waves and pressures during the experiment. In

this way, the effect of scale that exists in the rock masses is

taken into account.

Modelling in this study was conducted on a limited

number of data. Therefore, this research cannot be gener-

alized for all rock masses, but solely for the area around the

dam and the rock masses present in that area.

Measuring deformation modulus in the rock mass is an

expensive process, but determining the velocity of waves in

boreholes is cheaper, and it is common in geological sur-

veys for construction of dams, tunnels, and other structures.

This means that if the speed of longitudinal waves in the

relevant cross sections in the rock mass (obtained by

geophysical methods) is available, deformation modulus

can be estimated based on the developed models for the

expected level of stresses in the rock mass.

The polar method used for determining the velocity of

elastic waves can be applied with some modifications at

measuring points using plate loading test. The plate loading

test is a cheaper and simpler test in comparison to the

hydraulic jack and it has wider application than hydraulic

jack. Hence, using the same principle, the results obtained

by plate loading test can be also modelled using relevant

measuring of velocity of waves.

The proposed models can be improved and applied on a

number of rock masses and they can be used for more

general purposes when defining deformation properties of

rocks for different structures both during design and con-

struction and during exploitation of structures. Authors

have the intention to further the research by adapting the

model for application in other rock masses and eventually

increasing the number of input parameters.
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