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Abstract The main objective of the current study is to

apply a random forest (RF) data-driven model and priori-

tization of landslide conditioning factors according to this

method and its comparison to a multivariate adaptive

regression spline (MARS) model for landslide suscepti-

bility mapping in China. For this purpose, at first, landslide

locations were identified by earlier reports, aerial pho-

tographs, and field surveys and a total of 348 landslides

were mapped from various sources in GIS. Then, the

landslide inventory was randomly split into a training

dataset (70% = 244 landslides) and the remaining

(30% = 104 landslides) were used for validation. In this

study, 12 landslide conditioning factors were applied to

detect the most susceptible areas. These factors were slope

aspect, altitude, distance to faults, lithology, normalized

difference vegetation index, plan curvature, profile curva-

ture, distance to rivers, distance to roads, slope angle,

stream power index, and topographic wetness index. The

relationship between each conditioning factor and landslide

was finalized using a frequency ration (FR) model. Sub-

sequently, landslide-susceptible areas were mapped using

the MARS and RF models. The results revealed that the

most important conditioning factors according to the

accuracy measure (mean decrease) of the RF model are

lithology (23.47%), distance to faults (22.21%), and alti-

tude (19.58%). We also notice that altitude (19.04%),

distance to faults (18.83%), and distance to roads (15.29%)

have the highest importance according to the Gini measure.

Finally, the accuracy of the landslide susceptibility maps

produced from the two models was verified using a recei-

ver operating characteristics curve. The results showed that

the landslide susceptibility map produced using the MARS

model has a higher prediction rate than RF by area under

the curve values of 87.51 and 77.32%, respectively.

According to the validation results, the map produced by

the MARS model exhibits the better accuracy and could be

proposed for land-use planning in the study area.

Keywords Landslide susceptibility mapping �Multivariate

adaptive regression spline � Random forest � Geographic
information system (GIS) � China

Introduction

Landslides are one of the damaging natural hazards

occurring in many countries and lead to the loss of life and

property. According to Garcı́a-Rodrı́guez et al. (2008) and

Dou et al. (2014), the annual loss of property caused by

landslides is greater than other types of natural hazards,

such as earthquakes and floods. Throughout the world,

landslides cause hundreds of billions of dollars in damage

and thousands of casualties and fatalities each year; addi-

tionally, they cause large environmental damages each year

(Aleotti and Chowdhury 1999). In Shangnan County,

China, landslides are occurring frequently mainly due to

anthropogenic activities; thus, they have a great impact on

the local economic and environmental developments.
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Currently, thousands of people are still threatened by

landslides and live under the landslide-prone areas in the

study area. Thus, it is essential to prepare landslide sus-

ceptibility maps for mitigating of landslide hazards in such

areas.

Generally, landslide susceptibility mapping can be pre-

pared as qualitative or quantitative methods, and direct or

indirect techniques (Fell et al. 2008; Kayastha et al. 2013;

Nourani et al. 2014). The reliability of landslide suscepti-

bility maps depends on the quality and amount of available

data, the selection of methodology of modeling, and the

working scale (Baeza and Corominas 2001). The landslide

susceptibility modeling methodology could be categorized

into heuristic, deterministic, and statistical methods

(Guillard and Zezere 2012; Regmi et al. 2014a). The

heuristic method, which is established based on the

assumption that the relationships between landslide sus-

ceptibility and the preparatory variables are known and are

specified in the models, is a direct or semi-direct mapping

methodology (Regmi et al. 2014a). This method was used

in many landslide susceptibility researches (Ruff and

Czurda 2008; Jaiswal et al. 2013).

In deterministic or physically based analysis, according

to Regmi et al. (2014a), the landslide is determined

employing slope stability methods in the form of calcu-

lating safety factors. These methods need a large number of

detailed input factors to build the model; thus, these

methods could be appropriate for small watersheds (Regmi

et al. 2014b). Geotechnical and groundwater features are

two main bases of the deterministic methods. Mathematical

methods are employed to define the factor of safety of the

unstable slopes (Gökceoglu and Aksoy 1996) and slope

stability methods are employed for defining the landslide

hazard (Clerici et al. 2006). The most important weakness

of geotechnical and safety factor-based methods is that

these methods are feasible only for areas where landslide

types are simple and geomorphic and geologic features are

relatively similar (Van Westen and Terlien 1996). More-

over, the mentioned approaches are difficult to do in

regional landslide susceptibility investigations. These

models were also used by many researchers (Gökceoglu

and Aksoy 1996; Cervi et al. 2010; Jia et al. 2012; Armaş

et al. 2014; Akgun and Erkan 2016). Considering the

mentioned weak points of deterministic models, in this

study, we employed data mining models for landslide

susceptibility mapping.

Statistical models, which are the most commonly used

approaches worldwide, have also been employed in land-

slide susceptibility evaluation using GIS, such as the

logistic regression (Akgun 2012; Xu et al. 2012b; Devkota

et al. 2013; Ozdemir and Altural 2013; Park et al. 2013;

Grozavu et al. 2013; Talaei 2014; Chen et al.

2016a; Karimi Sangchini et al. 2016), frequency ratio

(Vijith and Madhu 2008; Poudyal et al. 2010; Pourghasemi

et al. 2014; Regmi et al. 2014a, b; Chen et al. 2015), cer-

tainty factor (Kanungo et al. 2011; Devkota et al. 2013;

Pourghasemi et al. 2013d), weights of evidence (Dahal

et al. 2008; Ozdemir and Altural 2013; Pourghasemi et al.

2013d; Regmi et al. 2014a), statistical index (Yilmaz et al.

2012; Regmi et al. 2014a), evidential belief function (Ding

et al. 2016; Pourghasemi and Kerle 2016), and index of

entropy models (Mihaela et al. 2011; Devkota et al. 2013;

Jaafari et al. 2014; Pourghasemi et al. 2012c).

In addition, some other widely accepted methods

including an artificial neural network (ANN; Pradhan and

Lee 2010; Yilmaz 2010a; Tsangaratos and Benardos 2014;

Nourani et al. 2014; Tien Bui et al. 2015; Gorsevski et al.

2016), an analytical hierarchy process (Pourghasemi et al.

2013b; Park et al. 2013; Mandal and Maiti 2015; Chen

et al. 2016b), fuzzy logic (Pourghasemi et al. 2012b;

Guettouche 2013; Zhu et al. 2014; Kumar and Anbalagan

2015), support vector machine (Yilmaz 2010b; Marjanović

et al. 2011; Xu et al. 2012a, b; Pradhan 2013; Peng et al.

2014; Tien Bui et al. 2015; Chen et al. 2016d), general

additive model (Park and Chi 2008; Petschko et al. 2012),

random forest (RF; Youssef et al. 2015b; Chen et al. 2017),

and neuro-fuzzy methods (Pradhan 2013; Lee et al. 2015)

have also been applied for landslide susceptibility

evaluation.

In summary, in order to mitigate landslide hazards, all

these models can be used to prepare landslide susceptibility

maps. On the other hand, consideration of literature review

on landslide susceptibility evaluation shows that there is no

paper comparing the performance of multivariate adaptive

regression spline (MARS) and RF models in landslide

susceptibility mapping so far. Therefore, the main differ-

ence between the present study and the methods described

in the aforementioned literature is that MARS and RF

models were applied for landslide susceptibility mapping

in the study area and their performances were compared

together. Also, we tried to determine weight of each con-

ditioning factor and its effect on landslide occurrence in the

study area by an RF data-driven method.

Study area

The study area is located in Shangnan County, China,

between latitudes 33�060–33�440N, and longitudes 110�240–
111�010E (Fig. 1). It covers roughly a surface area of

2307 km2. The altitude of the area ranges from 189 to

2050 m a.s.l. The landform can be classified into mountain,

hill, and plain. The slope angles of the area range from 0� to
65�. The rivers of the study area belong to the Yangtze River
basin. Themean annual rainfall according to a local station in

the past 40 years is around 829.8 mm. Also, based on the
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records from China’s meteorological department (C.H. of

China Meteorological Administration), the minimum and

maximum rainfall occurs in December and July, respec-

tively. The average mean annual temperature is 14.6 �C.
In terms of geological background, the geological

structure system of the study area is located at the boundary

of the North China and the Yangtze plates. Therefore, the

geological structure is complex and the tectonic deforma-

tion is intense. The faults of the study area have mainly a

NW–SE direction. These faults divide the study area into

several structural zones that affect the distribution of

landslides and geological formations in the study area.

There are many geological formations with different ages

in the study area, which vary from Archeozoic to Cenozoic.

The lithological units are mainly slate, phyllite, schist,

gneiss, limestone, dolomite, sandstone, and intrusive rocks.

According to Table 1, the softer metamorphic rocks and

hard carbonate rocks comprise the highest percentages of

the area (29.72 and 28.31%, respectively).

Methodology

As it was mentioned, the main objective of this study was

to prepare landslide susceptibility maps in Shangnan

County, China, using MARS and RF models. For this

purpose, a flowchart of the applied methodology including

the following steps is presented in Fig. 2, including land-

slide inventory mapping, gathering of the landslide con-

ditioning factors, preparation of thematic layers in the GIS,

determination of relationships between each conditioning

factor and landslide inventory maps using a frequency ratio

(FR), application of MARS and RF models in R statistical

packages and landslide susceptibility mapping, evaluation

of the prediction accuracy of the above models using

receiver operating characteristics (ROC) curves, and

selection of the best model.

Data production

Landslide inventory map

Landslide inventories include information related to topics

of the regional landslide locations, activity, types, and

physical properties that are usually mapped with an asso-

ciated database (Fell et al. 2008; Demir et al. 2015).

Accuracy of the data related to landslide occurrences is

very important for landslide susceptibility analysis, hazard,

and risk. So, the first step in these analyses is landslide

inventory mapping. In the landslide inventory, some

Fig. 1 Location map of the study area
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Table 1 Spatial relationship between landslide conditioning factors and landslide by frequency ratio model

Conditioning factors Classes Percentage of domain Percentage of landslide Frequency ratio

Slope aspect Flat 0.0064 0.0000 0.0000

North 11.5951 11.0656 0.9543

Northeast 12.2792 13.1148 1.0680

East 13.3268 18.0328 1.3531

Southeast 13.4759 9.0164 0.6691

South 12.0249 13.9344 1.1588

Southwest 12.8589 9.8361 0.7649

West 12.3422 12.7049 1.0294

Northwest 12.0906 12.2951 1.0169

Altitude (m) 189–500 13.2934 17.2131 1.2949

500–800 44.9653 65.9836 1.4674

800–1100 26.5281 13.1148 0.4944

1100–1400 13.4948 3.6885 0.2733

1400–1700 1.5007 0.0000 0.0000

1700–2050 0.2177 0.0000 0.0000

Distance to faults (m) 0–1000 52.1243 69.6721 1.3367

1000–2000 22.9780 22.5410 0.9810

2000–3000 8.4515 5.3279 0.6304

3000–4000 3.8329 0.8197 0.2138

[4000 12.6132 1.6393 0.1300

Lithology Harder metamorphic rocks 19.8345 11.8852 0.5992

Softer metamorphic rocks 29.7192 57.7869 1.9444

Hard carbonate rocks 28.3142 17.6230 0.6224

Hard intrusive rocks 20.1274 9.8361 0.4887

Soft gravelly soils 2.0047 2.8689 1.4311

NDVI -0.23 to 0.17 2.4846 3.2787 1.3196

0.17–0.33 8.9539 6.9672 0.7781

0.33–0.42 27.4997 27.0492 0.9836

0.42–0.51 37.1919 31.9672 0.8595

0.51–0.71 23.8699 30.7377 1.2877

Plan curvature (m)100 -9.57 to -1.09 10.2106 9.4262 0.9232

-1.09 to -0.11 33.5971 34.0164 1.0125

-0.11 to 0.88 40.3158 41.3934 1.0267

0.88–11.42 15.8765 15.1639 0.9551

Profile curvature (m) (100/m) -11.93 to -1.30 10.9870 8.6066 0.7833

-1.30 to -0.02 36.6113 36.0656 0.9851

-0.02 to 1.26 40.3569 42.2131 1.0460

1.26–11.43 12.0448 13.1148 1.0888

Distance to rivers (m) 0–200 42.3533 56.9672 1.3450

200–400 29.6864 29.5082 0.9940

400–600 15.6037 7.7869 0.4990

600–800 6.3106 2.4590 0.3897

[800 6.0460 3.2787 0.5423

Distance to roads (m) 0–500 26.8163 46.3115 1.7270

500–1000 21.1049 17.2131 0.8156

1000–1500 16.9144 15.9836 0.9450

1500–2000 12.8858 6.9672 0.5407

[2000 22.2787 13.5246 0.6071

614 W. Chen et al.

123



Table 1 continued

Conditioning factors Classes Percentage of domain Percentage of landslide Frequency ratio

Slope angle (�) 0–10 13.3904 16.3934 1.2243

10–20 29.9985 35.6557 1.1886

20–30 32.1013 27.4590 0.8554

30–40 18.8384 17.6230 0.9355

40–50 5.2014 2.4590 0.4728

50–65 0.4700 0.4098 0.8720

SPI 0–30 48.4231 52.4590 1.0833

30–60 19.2491 18.0328 0.9368

60–90 9.3641 9.4262 1.0066

[90 22.9637 20.0820 0.8745

TWI \5 42.2010 37.2951 0.8837

5–7 43.5944 47.9508 1.0999

7–9 9.9613 11.4754 1.1520

[9 4.2433 3.2787 0.7727

Fig. 2 Flowchart of the used methodology
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historic information about landslide occurrences including

the frequency, volumes, damage, and types of the landslide

phenomena is the backbone of landslide susceptibility

studies (van Westen et al. 2006; Youssef et al. 2014). In the

present study, landslides were collected from historical

reports, interpretation of aerial photographs, and extensive

field surveys using the global positioning system (GPS) to

locate the position of landslides. A total of 348 landslides

were identified and mapped (centroid) in Fig. 1. From

these 348 landslides, 244 (70%) locations (grid cells) were

randomly selected for training of the models, and 104

(30%) were used for validation of the built models (Maps).

348 non-landslide points (grid cells) were randomly

selected from the landslide-free areas, and were also ran-

domly divided into a ratio of 70/30 (244/104) to build

training and validation datasets. In the present study, the

presence of landslides was assigned a value of 1, while the

absence of landslide was assigned a value of 0. Finally, the

values of all the landslide conditioning factors were

extracted to landslide and non-landslide grid cells to build

training and validation datasets for running the mentioned

data mining techniques in R statistical packages.

The use of historical landslide inventories that summa-

rize past multiple landslide events may enable a robust

landslide susceptibility mapping because it reflects various

environmental conditions, and the number of available data

tends to be large (Malamud et al. 2004; Paudel et al. 2016).

In the present study, detailed landslide data for more than

10 rainfall events occurred in years of 1998, 2000, and

2003–2015 have been used, which crossed a time span of

more than 20 years. Besides, with highly developed remote

sensing technology, multi-temporal aerial photographs

have been used to map landslides after each rainfall event

which were verified by field surveys. All these data sources

ensure a reliable landslide susceptibility mapping for the

study area.

According to our analyses in a GIS environment, the

size of the smallest landslide is nearly 15 m2, whereas, the

largest is more than 30,000 m2, while the average is

9600 m2. For the volume of the landslides, more than 90%

of landslides are less than 100,000 m3, and more than 85%

of the landslides are shallow-seated landslides (\6 m). The

landslide area percentage (LAP), which is expressed as a

percentage of the area affected by landslide activity, is

LAP = (3.34 km2/2307 km2) 9 100% = 0.145% (Xu

et al. 2012b).

The quality of a landslide inventory is affected by its

accuracy; however, determining the accuracy of the

inventory does not have a specific standard (Galli et al.

2008). Some methods have been suggested in order to

increase the accuracy of spatial inventories such as: (1)

employing very high-resolution digital elevation models

(DEMs) for analyzing surface morphology, (2)

interpretation of satellite images, and (3) application of

new tools for facilitation of field mapping.

Landslide conditioning factors

The selection of landslide conditioning factors depends on

the characteristics of the study area, the landslide type, the

scale of the analysis, etc. (Tseng et al. 2015). However,

there is no agreement on the universal guidelines for

selecting landslide conditioning factors (Xu et al. 2013). In

the present study, the landslide conditioning factors were

selected from those most commonly used in the literature

to evaluate landslide susceptibility (Lee and Talib 2005;

Xu et al. 2012a, b; Pradhan 2013; Pourghasemi et al.

2013b; Tien Bui et al. 2015; Hong et al. 2015, 2016; Chen

et al. 2014, 2015, 2016c). Particularly, the results of

satellite image interpretation and field surveys suggest the

following 12 parameters: slope aspect, altitude, distance to

faults, lithology, normalized difference vegetation index

(NDVI), plan curvature, profile curvature, distance to riv-

ers, distance to roads, slope angle, stream power index

(SPI), and topographic wetness index (TWI). Therefore,

these 12 landslide conditioning factors were selected in the

present study and were standardized to the same size

(30 9 30 m) for further analyses.

Slope aspect was selected as a landslide condition-

ing factor which represents the direction of slope

(Ercanoglu et al. 2004; Pourghasemi et al. 2012a, b).

The slope aspect of the study area was classified into

nine directional classes as flat, north, northeast, east,

southeast, south, west, southwest, and northwest

(Fig. 3a). Altitude/elevation is another frequently used

conditioning factor for landslide susceptibility analysis.

Ercanoglu and Gokceoglu (2002) mentioned that alti-

tude influences earth surface and topographic attributes

which account for spatial variability of erosion, pre-

cipitation, soil thickness, and vegetation. In the present

study, the elevation of the study area ranges from 189

to 2050 m (Fig. 3b). The faults are responsible for

triggering a huge number of landslides due to the

tectonic breaks that usually decrease the rock strength.

In the study area, the distance to faults was prepared

using the geological map and ranges from 0 to

17,526 m (Fig. 3c). Lithology is one of the most

common influence factors in most landslide suscepti-

bility studies. Since different lithological units have

various landslide susceptibility values, they are very

important in the landslide occurrences. The lithology

map of the study area was extracted from existing

geological maps. The study area is covered with sev-

eral lithological units, and classified into five groups of

harder metamorphic rocks, softer metamorphic rocks,

hard carbonate rocks, hard intrusive rocks, and soft

616 W. Chen et al.
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gravelly soils (Fig. 3d). The NDVI, as a conditioning

factor, could be considered as a measure of surface

reflectance and gives a quantitative estimate of bio-

mass and the vegetation growth (Yilmaz 2009a, b;

Pourghasemi et al. 2013a). In this research, an NDVI

map was derived from the Landsat 7/ETM? images of

Nov 4, 2014. The NDVI values vary from -0.23 to

0.71 in the present study area (Fig. 3e). Plan curvature

is the curvature of a contour line which is formed by

intersecting a horizontal plane with the surface (Con-

forti et al. 2014). Plan curvature influences the diver-

gence or convergence of water during downhill flow

(Yilmaz et al. 2012). In this study, the plan curvature

was extracted from the DEM with a spatial resolution

of 30 m in ArcGIS 10.0. The values of plan curvature

range from -9.57 to 11.42 (Fig. 3f). Profile curvature

Fig. 3 Thematic maps of the

study area: a slope aspect;

b altitude; c distance to faults;

d lithology; e NDVI; f plan
curvature; g profile curvature;

h distance to rivers; i distance to
roads; j slope angle; k SPI;

l TWI

Prioritization of landslide conditioning factors and its spatial modeling in Shangnan… 617
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depicts the curvature in the vertical plane parallel to

the slope direction. This factor measures the rate of

change of slope (Kritikos and Davies 2014). Therefore,

it influences the flow velocity of water draining the

surface and thus erosion and the resulting down-slope

movement of sediment (Yilmaz et al. 2012). In this

study, the profile curvature values vary from -11.93 to

11.43 and were also derived from the DEM in ArcGIS

10.0 (Fig. 3g). Runoff plays an important role as a

triggering factor for landslides due to rivers being the

main mechanisms that contribute to the occurrence of

landslides in mountainous regions (Park et al. 2013).

For the current study, buffer zones were created to

determine the degree to which the streams affected the

slopes and range from 0 to 4401 m (Fig. 3h). The

distance to roads has been considered as one of the

Fig. 3 continued
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major anthropogenic factors influencing landslides

occurrences (Demir et al. 2015). The creation of cut

slopes during road construction disturbs the natural

topology and affects the stability of the slope. In the

study area, buffer zones were used to designate the

influence of the road on slope stability and range from

0 to 9281 m (Fig. 3i). Slope angle is an important

factor in assessment of slope instability, and it is

frequently used in landslide susceptibility mapping

(Lee and Min 2001; Saha et al. 2005; Althuwaynee

et al. 2014; Guo et al. 2015). The slope angle map of

the study area was prepared from the DEM and ranges

from 0� to 65� (Fig. 3j). The SPI, a measure of the

erosive power of water flow, assuming that discharge is

proportional to the specific catchment area, is a com-

pound topographic attribute (Conforti et al. 2011). The

Fig. 3 continued
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SPI values of the study area range from 0 to 28,323

(Fig. 3k). The TWI is another secondary topographic

factor in the runoff model (Beven and Kirkby 1979;

Moore et al. 1991). The TWI values were extracted

from the DEM and vary from 2.69 to 30.31 (Fig. 3l).

Models

Frequency ratio (FR)

FR is based on the observed relationships between the

distribution of the landslides and each landslide condi-

tioning factor (Tay et al. 2014). The frequency ratios for

the class or type of each conditioning factor were calcu-

lated by dividing the landslide occurrence ratio by the area

ratio (Demir et al. 2013). Each factor’s ratio value was

calculated using Eq. (1):

FR ¼ Percentage of landslide

Percentage of domain
: ð1Þ

In this study, frequency ratio model was used to show

the relationship between each factor’s subclasses and

landslide occurrences. A higher FR value shows that the

probability of landslide occurrence is higher in the class.

Multivariate adaptive regression splines (MARS)

MARS could be implemented in order to fit the relationship

between output and input variables (Friedman 1991;

Naghibi and Moradi Dashtpagerdi 2016). The MARS

model applies a non-parametric modeling approach that

does not need assumptions about the relationship’s form

between the independent and dependent factors (Friedman

1991; Balshi et al. 2009). A MARS algorithm operates by

splitting the ranges of the interpretive variables into regions

and by generating a linear regression equation for each of

the mentioned regions. Knots are the break values between

regions, while the term bases function (BF) represents each

distinct interval of the predictors. BFs are functions of the

following form:

max 0; x�kð Þ or max 0; k�xð Þ; ð2Þ

in which x is an independent variable and k shows a con-

stant corresponding to a knot. The general phrase of MARS

can be obtained as follows:

ŷ ¼ f̂ xð Þ ¼ bþ
XM

m¼1

amHmðxÞ; ð3Þ

where ŷ represents the dependent variable predicted by the

function f(x), b is a constant,M shows the number of terms,

and each of them formed by a coefficient am , and Hm(x) is

an individual basis function or a product of two or more

BFs (Conoscenti et al. 2015).

MARS models were developed in two steps. In the first

step, the forward algorithm and basis functions are intro-

duced to introduce Eq. 3. Many basis functions are incor-

porated in Eq. 3 to get better performance. The developed

MARS can indicate an over-fitting problem due to a large

number of basic functions. Then, in the next step, a

backward algorithm, for hindering over-fitting, redundant

basis functions are omitted from Eq. 3. MARS uses gen-

eralized cross-validation (GCV) to remove the redundant

basis functions (Craven and Wahba 1979). The expression

of GCV is calculated as Eq. 4:

GCV ¼
1
N

PN
i¼1 yi � f̂ ðxiÞ

� �2

1� CðHÞ
N

h i2 ; ð4Þ

where N is the number of data points and C(K) corresponds

to a complexity penalty that goes up with the number of

BFs in the model and which is introduced as:

C Hð Þ ¼ H þ 1ð Þ þ dH; ð5Þ

where d is a penalty for each BF covered in the model and

H corresponds to the number of BFs in Eq. 2 (Friedman

1991).

Random forest (RF)

Classification trees are a non-linear technique for predict-

ing a response by a set of binary decision rules that

establish class assignment based on the predictors (Brei-

man et al. 1984). The RF multivariate statistical technique

is a variation of the Bayesian tree or binary classification

tree, because it considers a group (forest) of n trees to

multiply the efficiency and predictive capability (Breiman

2001; Cutler et al. 2007; Trigila et al. 2015). The model

was performed with the R statistical package (ran-

domForest) which is suitable to cope with mixed variables,

both categorical and numerical. Bootstrapping is a way of

assessing the accuracy of a parameter estimate or a pre-

diction. The RF uses the bagging technique (bootstrap

aggregation) to choose, at each node of the tree, random

samples of variables and observations as the training

dataset for model training (Trigila et al. 2015). The random

selection of the training dataset in an RF model may have

effects on the results of the model; so, a set of numerous

trees are used to guarantee the stability of the model.

Unselected cases [out of the bag (OOB)] are used to

compute the error of the model (OOB error), equal to the

standard deviation error between predicted and observed

values, and to establish a ranking of importance of the

variables. Also, RF calculates two specific importance

measures including mean decrease accuracy and mean
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decrease Gini to show the importance and contribution of

different factors in the modeling process. Because of the

randomness of the RF technique at the extraction of inde-

pendent variables and observations in each node, it is

appropriate to preliminarily validate the effect of the

number of trees and the number of runs on the stability of

the model (Catani et al. 2013; Trigila et al. 2015).

Results

Application of the FR model

The results of spatial relationship between landslide loca-

tions and landslide conditioning factors using the FR model

are shown in Table 1. From the FR values, it is seen that

east-facing slopes followed by south-facing, northeast-

facing, west-facing, and northeast-facing slopes are more

susceptible to landsliding. In the case of altitude, results

showed that there was no trend between landslide occur-

rence and altitude increase. The class of 500–800 m had

the highest FR value of 1.46, followed by the classes of

189–500 m (1.29), and 800–1100 m (0.49). In the case of

distance to faults, it can be seen that there is a reverse

relationship between this factor and landslide occurrence.

The distance from faults of 0–1000 m and 1000–2000 m

had the highest FR values of 1.33 and 0.98, respectively.

For the lithology, it is seen that most landslides occurred in

lithological units of softer metamorphic rocks with an FR

value of 1.94, followed by the lithological unit of soft

gravelly soils with an FR value of 1.43. In the case of

NDVI, the class -0.23 to 0.17 had the highest FR value of

1.31, indicating that this class is the most susceptible to

landsliding. In the case of plan curvature, classes of -0.11

to 0.88 and -1.09 to -0.11 had the highest FR values of

1.02 and 1.01, respectively. For the profile curvature, the

classes of 1.26–11.43 had the highest FR value (1.08),

followed by the classes of -0.02 to 1.26 (1.04) and -1.30

to -0.02 (0.98). From the analysis of distance to rivers, it

can be seen that there is a reverse relationship between this

factor and landslide occurrence. In the case of distance to

roads, distance to roads of 0–500 had the highest FR value

of 1.72, indicating that the roads have a high influence on

landslide occurrence. In the case of slope angle, the classes

of 0–10 and 10–20 had the highest FR values of 1.22, and

1.18, respectively. While other slope classes have FR

values lower than 1. For the SPI, the results showed that the

class of 0–30 had the highest FR value (1.08), followed by

60–90 (1.00), 30–60 (0.93), and[90 (0.87). In the case of

TWI, the results showed that the class of 7–9 had the

highest FR value (1.15), followed by 5–7 (1.09),\5 (0.88),

and[9 (0.77), which indicates that there is no clear rela-

tionship between this factor and landslide occurrence.

Application of the MARS model

The optimal model presents 18 terms and includes 18 BF

(the terms created during the forward pass were 86), with a

GCV of 0.19. Only 12 of the 17 independent variables were

used in the optimal model (Table 2), because MARS only

uses the essential independent variables (Gutiérrez et al.

2009). Table 2 presents the nsubset is the index vector

specifying which cases to implement, i.e., which rows in x

to implement (default is NULL, meaning all), the GCV of

the model (summed over all responses; the GCV is cal-

culated using the penalty argument) and the residual sum-

of-squares (RSS) of the model (summed over all responses

if y has multiple columns). So, based on Table 2, regarding

the importance of independent variables to support the

model, the most significant are altitude and distance to

faults. Other important factors to describe the spatial dis-

tribution of landslides in the study area are lithology, SPI,

and NDVI. In this kind of model, the importance of the

independent variables should be perceived with caution

(Donati and Turrini 2002; Gutiérrez et al. 2009). Finally,

the landslide potential map produced by the MARS model

is presented in Fig. 6.

Application of the RF model

Aggregation of the OOB prediction is presented in Table 3

(confusion matrix). The OOB represents that when the

resulting model is applied to new data, the answer will be

in error 25% of the time. A 75% accuracy is indicated,

which is a reasonably good model. The overall measure of

Table 2 The distribution of the landslide values and areas with

respect to the landslide occurrence potential zones

Factor nsubset GCV RSS

Slope aspect 5 10 22.60 48.70

Slope aspect 7 11 28.30 52.60

Slope aspect 8 5 15.90 34.10

Altitude (m) 17 100.00 100.00

Distance to faults (m) 17 100.00 100.00

Lithology 2 16 72.40 81.80

Lithology 3 6 17.80 37.50

Lithology 5 9 18.20 45.30

NDVI 15 54.50 70.80

Plan curvature (100/m) 4 12.80 30.10

Profile curvature (100/m) 3 9.50 25.70

Distance to rivers (m) 14 46.60 65.40

Distance to roads (m) 14 46.60 65.40

Slope angle (degree) 12 32.90 56.20

SPI 16 72.4 81.80

TWI 8 21.30 43.70
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accuracy is then followed by a confusion matrix that

records the conflict between that final model’s predictions

and the present outcomes of the training observations. The

present observations are the rows of Table 3, whereas the

columns corresponded to what the model predicts for an

observations and the cell count the number of observations

in each variable (Williams 2011). The results of the con-

fusion matrix showed that the model predicted 143 non-

landslides as non-landslides and 101 non-landslides as

landslides. On the other hand, RF models predicted 177

landslides as landslide and 67 landslides as non-landslides.

Moreover, the OOB estimate of the error rate for this

model was 34.43% which indicates that the model is

65.57% accurate, which is a reasonably good model

(Fig. 4). Results from variable selection in the RF model

are represented in Table 4 and Fig. 5. The higher values

show that the variable is relatively more important (Wil-

liams 2011). The accuracy measure (mean decrease) then

lists lithology (23.47), distance to faults (22.21), altitude

(19.58) as next most important. We also notice that altitude

(19.04), distance to faults (18.83), and distance to roads

(15.29) have higher importance according to the Gini

measure than with the accuracy measure (Fig. 6).

Finally, landslide susceptibility mapping by the RF

model was prepared in ArcGIS 10.0 and grouped using a

natural break classification (Pourghasemi et al. 2013c; Zare

et al. 2013; Naghibi et al. 2015, 2016) into low, moderate,

high, and very high potential groups (Fig. 7).

Validation of the landslide susceptibility maps

A proper method is required to verify the landslide sus-

ceptibility maps. In the present study, the produced land-

slide susceptibility maps were validated using the ROC

curve. This method has been widely used in landslide

susceptibility mapping to compare the different models

(Guo et al. 2015; Youssef et al. 2015a). In the ROC curve,

the true positive rate of the model (the percentage of

existing landslides correctly predicted by the model) is

plotted against the false positive rate (the percentage of

predicted landslides out of the total actual negatives). The

area under the curve (AUC) reflects the predictive ability of

the models. The AUC values range from 0.5 to 1. The ideal

model has an AUC value close to 1.0 (perfect fit), while a

value close to 0.5 indicates a random fit.

Table 3 Confusion matrix

from the RF model (0 = no

landslide, 1 = landslide)

0 1 Class

error

0 143 101 0.41

1 67 177 0.27

Fig. 4 The error rate of the overall RF model [OOB: out of bag

(black line), 0: absent landslide (red line) and 1: present landslide

(green line)]

Table 4 Relative influence of

effective conditioning factors in

the RF model (0 = no landslide,

1 = landslide)

Factor 0 1 Mean decrease accuracy Mean decrease Gini

Slope aspect -1.76 -0.26 -1.47 11.50

Altitude (m) 10.07 18.54 19.58 19.04

Distance to faults (m) 11.85 19.37 22.21 18.83

Lithology 19.24 14.58 23.47 11.16

NDVI -3.44 -1.19 -3.35 10.24

Plan curvature (100/m) -3.85 1.55 -1.55 10.02

Profile curvature (100/m) -1.59 4.31 2.29 11.09

Distance to rivers (m) 5.06 7.06 8.77 13.67

Distance to roads (m) 16.52 -0.09 12.00 15.29

Slope angle (degree) 0.51 3.42 2.78 11.48

SPI 2.07 4.91 5.23 12.04

TWI -1.41 3.17 1.49 9.96
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Generally, there are two methods used for evaluating a

model, such as success rate and prediction rate curves.

Pourghasemi et al. (2012a, b) depicted that the success rate

method used the training landslide points that have been

used for building the landslide models, so it is not a proper

method for assessing the prediction capability of the

models. Thus, in the present study, the validation analysis

was performed using the remaining 104 landslide data

points (validation dataset). Figure 8 shows the ROC curves

of the MARS and RF models for the validation data set.

The ROC plot showed that in the landslide susceptibility

map prepared using the MARS method, the AUC value is

87.51%, while in the RF model, the AUC value is 77.31%.

So, the results indicate that the landslide susceptibility map

obtained by the MARS model has higher prediction capa-

bility than the RF model.

Discussion

In the current study, the results are represented and dis-

cussed in two important sections, including the perfor-

mance of the models and the importance of the

conditioning factors in landslide susceptibility mapping.

The performance of the models

Application and comparison of the MARS and RF models

is relatively new in landslide susceptibility mapping stud-

ies. The results of the current study showed that the MARS

model had a relatively higher prediction performance than

the RF model. According to the literature review, these

models had acceptable performance in different fields of

study, including landslide, gully, and groundwater studies.

Fig. 5 The error rate of the overall RF model (OOB: out of bag, 0:

absent landslide and 1: present landslide)

Fig. 6 Landslide potential map produced by multivariate adaptive

regression spline (MARS) model

Fig. 7 Landslide potential map produced by the random forest (RF)

model
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In research, Conoscenti et al. (2015) determined terrain

susceptibility to earth-flow using logistic regression and

MARS models. They found that the MARS model per-

formed better than logistic regression considering both the

goodness-of-fit and the predictive power according to ROC

values. They also indicated that MARS reproduces non-

linear relationships using several linear regressions, which

allows MARS to create models with a better fit to the

training data while maintaining high predictive power. In

other research, Adoko et al. (2013) concluded that MARS

can constitute a reliable alternative to an ANN in modeling

geo-engineering problems such as tunnel convergence.

Also, Gutiérrez et al. (2009) compared classification and

regression tree (CART) and MARS models, non-paramet-

ric models, to map the potential distribution of gullies.

They found that MARS exhibit a better performance for

predicting gullying with areas under the ROC curve values

of 0.98 and 0.97 for the validation datasets, while CART

presented values of 0.96 and 0.66. Trigila et al. (2015)

carried out a comparison study of shallow landslide sus-

ceptibility mapping using LR and RF models. They con-

cluded that the LR and RF methods are fully comparable in

terms of identification of the most significant variables and

predictive capabilities, and the RF technique is better for

the minimization of false positives. Youssef et al. (2015b)

produced landslide susceptibility maps using four data

mining models, namely RF, CART, a boosted regression

tree (BRT), and a general linear model (GLM). The success

and prediction rate curves showed that the RF model had

satisfactory performance. Goetz et al. (2015) applied

logistic regression, generalized additive models, weights-

of-evidence, support vector machine, RF, and bootstrap

aggregated classification trees with penalized discriminant

analysis in landslide susceptibility modeling for three areas

in the Province of Lower Austria, Austria. They concluded

that in terms of pure prediction performance, the RF and

bootstrap aggregated classification trees with penalized

discriminant analysis modeling techniques were the best.

Also, other researchers used RF in the field of ground-

water potential mapping and got acceptable results. Rah-

mati et al. (2016) applied maximum entropy (ME) and RF

models for groundwater potential mapping in the Mehran

Region, Iran. They found that the AUC for prediction

performance of the RF and ME methods was calculated as

83.1 and 87.7%, respectively. In other research, Naghibi

and Pourghasemi (2015) evaluated the capability of three

machine learning models such as BRT, CART, and RF, and

comparison of their performance by multivariate GLM, and

bivariate [evidential belief function (EBF)] statistical

methods in the groundwater potential mapping. They

concluded that CART, BRT, and RF machine learning

techniques showed acceptable performance in mapping

groundwater potential with the AUC values of 86.39,

86.12, and 86.05%, respectively. Rahmati et al. (2016)

applied RF and maximum entropy (ME) models for

groundwater potential mapping in the Mehran Region,

Iran. Their results depicted that RF and ME models had

AUC for success rates of 86.5 and 91%, respectively, while

the AUC for prediction rates of RF and ME methods were

83.1 and 87.7%, respectively. Comparing the results of this

study and other studies showed that RF and MARS with

AUC values of 77.32 and 87.51%, respectively, have

Fig. 8 Prediction rate curves for the landslide potential maps produced by a RF and b MARS models
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outperformed other models such as EBF (AUC = 0.73)

and FR (AUC = 0.77) models in Hong et al. (2016),

weights of evidence (AUC = 0.74) in Mohammady et al.

(2012), logistic regression in Chen et al. (2016c), naı̈ve

Bayes (AUC = 0.81 which is lower than RF in the current

study) in Tien Bui et al. (2012), and Dempster Shafer

(AUC = 0.72) in Pourghasemi et al. (2013a). In Naghibi

et al. (2016), RF (AUC = 0.71) showed weak performance

in the modeling process as well as the results of the current

study depicted. Although RF performed weaker than

MARS in this study, it can be concluded that RF and

MARS models could provide better landslide susceptibility

maps than the mentioned models.

In the case of landslide inventory accuracy, two methods

were considered to increase the accuracy of the inventory,

field work and using satellite images. It is mentioned by

Malamud et al. (2004) that determining the level of com-

pleteness of an inventory map is not a simple task.

Therefore, work on this subject could be suggested for

future works as inventory accuracy highly affects the

results of the models and landslide susceptibility maps.

The importance of the conditioning factors

in landslide susceptibility mapping

Determining the importance of conditioning factors in

landslide susceptibility mapping is important in landslide

studies. The study revealed that the most important con-

ditioning factors according to the accuracy measure (mean

decrease) of an RF model are lithology (23.47%), distance

to faults (22.21%), and altitude (19.58%). We also notice

that altitude (19.04%), distance to faults (18.83%), and

distance to roads (15.29%) have higher importance

according to the Gini measure than with the accuracy

measure. Also, Kawabata and Bandibas (2009) introduced

geology as the most important factor in landslide suscep-

tibility mapping. In other research, Youssef et al. (2015a)

concluded that slope angle, land use, and altitude have

higher importance in landslide occurrence, which is con-

sistent with the results of current study. In other research,

lithology and altitude were the most important factors in

landslide susceptibility mapping (Devkota et al. 2013).

Conclusions

Landslide spatial modeling with more advanced models

such as MARS and RF can give handy landslide suscep-

tibility maps, and consideration of these maps by different

organizations can lessen severe damages caused by land-

slides. This study was conducted to compare the spatial

capability of the MARS and RF models to produce land-

slide susceptibility maps and determine areas prone to

landslide occurrence in Shangnan County, Shangluo City,

China. For this purpose, 12 landslide effective factors were

selected to be used as model inputs: slope aspect, altitude,

distance to faults, lithology, NDVI, plan curvature, TWI,

SPI, profile curvature, distance to rivers, distance to roads,

and slope angle. The location of the landslides was

detected from historical reports, interpretation of aerial

photographs, and extensive field surveys by GPS. From

these locations, 70% (244) and 30% (104) of the landslides

were used for training and validation of the MARS and RF

models, respectively. Finally, the ROC curve was used to

validate these results. The AUC results showed that the

prediction rate of the MARS model is higher than the RF

model. Further, it was inferred that the most important

conditioning factors according to the accuracy measure

(mean decrease) of the RF model are lithology, distance to

faults, and altitude. We also noticed that altitude, distance

to faults, and distance to roads have higher importance

according to the Gini measure than with the accuracy

measure. The produced landslide susceptibility maps could

be appreciated as a useful tool for local authorities and

government agencies in choosing suitable locations for

future land-use planning. As a final conclusion, MARS was

applied successfully and its application in landslide-prone

areas could be proposed in other areas and regional scale.
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