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Abstract The deformation modulus of a rock mass is one

of the crucial parameters used in the design of surface and

underground rock engineering structures. Due to the

problems in determining the deformability of jointed rock

masses at the laboratory scale, various in-situ test methods

have been developed. Although these methods are cur-

rently the best techniques, they are expensive and time-

consuming, and present operational problems. To over-

come this difficulty, in this paper, based on the basic

concepts of a rock engineering systems (RES) approach, a

new model for the prediction of the deformation modulus

of a rock mass is presented. The newly proposed approach

involves seven effective parameters (depth, rock quality

designation, uniaxial compressive strength, the disconti-

nuity density, the condition of discontinuities, the

groundwater condition, and an adjustment for the orienta-

tion of discontinuities) pertinent to the deformation mod-

ulus of a rock mass, yet keeping simplicity as well. The

performance of the RES model is compared with multiple

regression models. The estimation abilities offered using

RES and multiple regression models were presented by

using field data obtained from road and railway construc-

tion sites in Korea. The results achieved indicate that the

RES-based model predictor with the least mean square

error and a higher coefficient of determination (R2) per-

forms better than the multiple regression models.

Keywords Deformation modulus � Rock mass � Rock
engineering systems � Regression modeling

Introduction

The deformation modulus of a rock mass is an important

parameter for the design and successful execution of rock

engineering structures, because the modulus of deforma-

tion is the best representative parameter of the pre-failure

mechanical behavior of the rock mass (Fattahi 2016;

Gholamnejad et al. 2013). There are several approaches to

determine the deformation modulus of rock mass directly,

by in-situ tests; plate loading test (PLT), like a pressure

meter (Chun et al. 2009), plate jacking, cable jack, flat jack,

radial jacking and geophysical methods. Although in-situ

techniques are the best methods to determine the

deformability modulus of rock masses, they are expensive,

time-consuming and can only be performed when the

exploration spaces are excavated (Gholamnejad et al.

2013). In recent years, the number of empirical approaches

used for estimating the deformation modulus of rock

masses has increased. The first empirical equation, which

considers only rock mass rating (RMR) as an input

parameter, was proposed by Bieniawski (1973). The main

limitation of Bieniawski’s approach is that it has to be used

for rock masses with RMR [50. Serafim and Pereira

(1983) proposed an equation for rock masses with RMR

\50 to overcome the limitation of Bieniawski’s equation.

Hoek and Brown (1997) proposed an empirical equation

based on the geology strength index (GSI) and uniaxial

compressive strength (UCS) of intact rock. Mitri et al.

(1995) and Nicholson and Bieniawski (1990) used two

empirical equations to estimate the deformation modulus of

a rock mass by reducing the elasticity modulus of the intact

rock (Ei) based on the RMR value. Barton (2002) obtained

a formula including tunneling quality index (Q) system and

UCS. Gokceoglu et al. (2003) introduced an empirical

equation based on UCS, rock quality designation (RQD)
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and weathering degree (WD) of rock. Kayabasi et al.

(2003) presented the relation based on WD, Ei and RQD.

Zhang and Einstein (2004) presented an empirical equation

based on Ei and RQD. Palmström and Singh (2001) pro-

posed relations based on the rock mass index (RMI) clas-

sification system. Hoek and Diederichs (2006) proposed

formulas based on GSI and D (factor of disturbance).

Sonmez et al. (2004) presented formulas based on Ei, GSI

and D.

Also, some research works were carried out using

computational intelligence methods to predict rock mass

deformation modulus. For example, Sonmez et al. (2006)

used artificial neural networks (ANN) for estimation of

rock modulus. Majdi and Beiki (2010) used hybrid ANN

and genetic algorithms for predicting the deformation

modulus of rock masses. Gokceoglu et al. (2004) presented

an adaptive network-based fuzzy inference system

(ANFIS) model for prediction of deformation modulus of

jointed rock masses.

The empirical and computational intelligence methods

that are based upon the survey data from various in-situ test

methods, in a certain range of rock types, cannot be gen-

eralized for various ground conditions. Furthermore, all of

above models do not simultaneously consider all the per-

tinent parameters in the modeling. Under such limitations

or constraints, the estimation of the rock mass deformation

modulus needs new innovative methods such as the rock

engineering systems (RES)-based model, capable of

accounting for unlimited parameters in the model. The

RES concept has been applied to a number of rock engi-

neering fields, for example, evaluation of the stability of

underground excavations (Ping and Hudson 1993), hazard

and risk assessment of rockfall (Cancelli and Crosta 1993),

evaluation and classification of the spontaneous coal

combustion potential (Saffari et al. 2013), development of

an assessment system for the blast ability of rock masses

(Lu and Latham 1994a), prediction of backbreak in bench

blasting (Faramarzi et al. 2013a), rock mass characteriza-

tion for indicating natural slope instability (Mazzoccola

and Hudson 1996), prediction of flyrock distance in surface

blasting (Faramarzi et al. 2014), prediction of out-of-seam

dilution in longwall mining (Bahri Najafi et al. 2014),

assessing geotechnical hazards for tunnel boring machine

(TBM) tunneling (Benardos and Kaliampakos 2004), pre-

diction of rock fragmentation by blasting (Faramarzi et al.

2013b), prediction of the advance rate in rock TBM tun-

neling (Moradi and Farsangi 2014) and quantitative hazard

assessment for tunnel collapses (Shin et al. 2009). It has

also been widely used for different engineering problems

such as forest ecosystems (Avila and Moberg 1999;

Velasco et al. 2006), environmental studies on the disposal

of spent fuel (Skagius et al. 1997), radioactive waste

management (Agüero et al. 2008; van Dorp et al. 1998),

river catchment pollution (Matthews and Lloyd 1998), risk

of reservoir pollution (Condor and Asghari 2009) and

traffic-induced air pollution (Mavroulidou et al. 2004).

In this paper, the RES-based model, capable of

accounting for many parameters in the model, was used to

estimate the rock mass deformation modulus. To validate

the performance of the model proposed, it is applied to

field data from road and railway construction sites in

Korea. Furthermore, the results obtained are compared

with multiple regression models, which are carried out for

the same data.

Properties of the database

To establish an RES-based method for prediction of rock

mass deformation modulus, providing a dataset which

includes a wide geographic distribution is the most

important requirement. To achieve this, datasets given in a

Table 1 Partial datasets used for constructing the models (Chun et al. 2009)

RQD (no

unit)

Discontinuity

density (no unit)

Discontinuity

condition (no unit)

Groundwater

condition (no unit)

Discontinuity orientation

adjustment (no unit)

UCS

(MPa)

Depth

(m)

Em

(GPa)

5 6 9 7 -10 28.4 5 3.92

3 6.4 10 7 -5 148.9 8.5 5.01

8 6.4 12 7 -5 12.1 9.5 4.76

17 8.6 24 10 -5 82.9 20.4 7.93

6.3 9.5 12 10 -5 109.9 8.5 5.32

17.2 8.5 20 7 -5 70 17.5 11.08

19.2 13 27 7 -5 119.9 31 17.65

16.4 10.8 17 10 -10 213.9 8.5 19.81

20 16.9 27 7 -10 219.9 17 27.26

20 12.2 25 7 -15 159.9 24 19.81
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Histogram of RQD
normal (Mean=15.5183; Std.Dev=4.6595)
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(a) Histogram of discontinuity density

normal (Mean=10.8433; Std.Dev= 3.9903)
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(b) 

Histogram of discontinuity condition
normal (Mean=22.8833; Std.Dev= 5.3965)
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(c) Histogram of groundwater condition
normal (Mean=9.2667; Std.Dev= 2.4486)
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(d)

Histogram of discontinuity orientation adjustment
normal (Mean=7.1333; Std.Dev=  5.5433)
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(e) Histogram of UCS
normal (Mean=138.0917; Std.Dev=  58.6117)
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Fig. 1 The histograms and statistical evaluations of the data used in this research
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previous paper are borrowed (Chun et al. 2009). The col-

lected datasets used to construct the database are from road

and railway construction sites in Korea. A total of 60

datasets were collected. Each dataset contains the param-

eters of the RMR system (Bienniawski 1989) [rock quality

designation (RQD), the discontinuity density (Dd), the

condition of discontinuities (Dc), the groundwater condi-

tion (DW), an adjustment for the orientation of disconti-

nuities (Do)], the measured uniaxial compressive strength

(UCS; MPa), the measured deformation modulus (Em;

GPa) and the depth (m) of the measurement (Table 1). The

Em values were measured using pressure meter tests in

most cases and performed at eight field sites which inclu-

ded six rock types such as granite, gneiss, andesite, tuff,

sandstone and shale. The primary advantage of the pressure

meter test is a relatively low cost compared to other types

of tests (Chun et al. 2009). All data were randomly divided

into two subsets: 80% of the total data (60 data points) was

allotted to training data of RES model construction and

20% of the total data (12 data points) was allocated for test

data used to assess the reliability of the developed RES

model. For comparisons between RES and regression

models, the same training and testing datasets were then

used in regression models. the partial datasets used in this

study are presented in Table 1. Also, the histograms and

statistical evaluations of the data used in this research are

shown in Fig. 1.

Statistical modeling

In reviewing the literatures published (Barton 2002;

Bieniawski 1973; Gokceoglu et al. 2003; Hoek and Brown

1997; Hoek and Diederichs 2006; Kayabasi et al. 2003;

Lagina Serafim and Pereira 1983; Mitri et al. 1995;

Nicholson and Bieniawski 1990; Palmström and Singh

2001; Sonmez et al. 2004; Zhang and Einstein 2004), it is

clear that many parameters can influence the deformation

modulus. However, the most important parameters (Dd,

RQD, Dc, GW, Do, UCS, D), which are easily obtainable,

are shown in Table 2.

At the first stage of analysis, the significance of

parameters in the modeling was investigated based upon

correlations between the individual independent variables

and the actual measured rock mass deformation modulus.

Coefficient of determination (R2) was used as an indicator

of correlation strength. R2 values for independent variables

versus rock mass deformation modulus are presented in

Table 3. It can be concluded that RQD, Dd, Dc, UCS and

D have negligible effects on rock mass deformation mod-

ulus and should be excluded in the regression modeling.

Therefore, for further statistical analysis and development

of a prediction model, five independent variables were

selected (RQD, Dd, Dc, UCS and D).

Multiple linear regression analysis

A multiple linear regression analysis was carried out

between RQD, Dd, Dc, UCS and D as independent vari-

ables and rock mass deformation modulus as a dependent

variable, using the commercial software packages for

standard statistical analysis (SPSS). Based on the statistical

analysis, the predictive model is as follows:

EmðGPaÞ ¼ �6:6787� 0:2758RQDþ 1:0347Dd

� 0:2749Dc þ 0:0592UCSðMPaÞ
þ 0:08938DðmÞ ð1Þ

A multicollinearity analysis was carried out to check

whether two or more independent variables are highly

Histogram of Depth
normal (Mean=35.11; Std.Dev=37.0057)
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Fig. 1 continued
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correlated. In the case of multicollinearity occurring,

redundancy of the independent variables could be expec-

ted, which can lead to erroneous results. One of the most

common tools for finding the degree of multicollinearity is

the variance inflation factor (VIF). It has a range of 1 to

infinity. Generally, if the calculated VIF is greater than 10,

Table 2 Statistical description

of the dataset utilized for

construction of the models

Parameter Symbol Min. Max. Mean Std. deviation

Rock quality designation (no unit) RQD 3 20 15.52 4.65

Discontinuity density (no unit) Dd 5 20 10.84 3.99

Discontinuities condition (no unit) Dc 9 30 22.88 5.39

Groundwater condition (no unit) GW 4 15 9.27 2.44

Discontinuity orientation adjustment (no unit) Do -25 0 -7.13 5.54

Uniaxial compressive strength (MPa) UCS 12.1 254.8 138.09 58.61

Depth (m) D 4 166 35.11 37.00

Rock mass deformation modulus (GPa) Em 3.92 45.62 14.59 9.11

Table 3 Relations between

individual independent

variables and Em (GPa)

Independent variables Regression models R2 N

RQD (no unit) Em = 1.1969 RQD - 3.9888 0.3745 60

Em = 12.444 ln(RQD) - 18.727 0.3084 60

Em = 2.8676 e0.0935RQD 0.5377 60

Em = 0.0851 RQD2 - 1.0795 RQD ? 9.022 0.4155 60

Em = 0.8031 RQD1.0177 0.4848 60

Dd (no unit) Em = 1.6614 Dd - 3.4294 0.5291 60

Em = 17.511 ln(Dd) - 26.037 0.4763 60

Em = 3.8981 e0.1056Dd 0.5021 60

Em = 0.0614 Dd
2 ? 0.1403 Dd ? 4.8872 0.5434 60

Em = 0.8403 Dd
1.1549 0.487 60

Dc (no unit) Em = 0.9379 Dc - 6.8755 0.3084 60

Em = 17.221 ln(Dc) - 38.739 0.2787 60

Em = 2.3714 e0.0717Dc 0.4242 60

Em = 0.038 Dc
2 - 0.6482 Dc ? 8.4488 0.3274 60

Em = 0.1764 Dc
1.3693 0.4142 60

GW (no unit) Em = 0.13 GW ? 13.381 0.0012 60

Em = 1.6091 ln(GW) ? 11.06 0.0023 60

y = 9.6574 e0.0256GW 0.0111 60

Em = -0.0322 GW2 ? 0.769 GW ? 10.417 0.0022 60

Em = 7.1145 GW0.2477 0.0128 60

Do (no unit) Em = -0.2789 Do ? 12.596 0.0288 60

Em = 10.292e-0.024Do 0.0515 60

Em = 0.0399 Do
2 ? 0.6457 Do ? 15.958 0.0726 60

UCS (MPa) Em = 0.1114 UCS - 0.7981 0.5133 60

Em = 9.3531 ln(UCS) - 30.28 0.3692 60

Em = 4.1895 e0.0078UCS 0.5865 60

Em = 0.0005 UCS2 - 0.0231 UCS ? 6.4795 0.5619 60

Em = 0.4141 UCS0.706 0.4945 60

D (m) Em = 0.1322 D ? 9.9433 0.2882 60

Em = 4.5737 ln(D) ? 0.1561 0.2001 60

Em = 9.4572 e0.0074D 0.2097 60

Em = 0.0009 D2 - 0.0074 D ? 12.429 0.3162 60

Em = 4.8962 D0.2905 0.1898 60
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there may be a problem with multicollinearity (Jammala-

madaka 2003). The VIF values of the independent vari-

ables in Eq. (1) were calculated, as shown in Table 4.

Also, the regression statistics, analysis of variance

(ANOVA), for Eq. (1) are shown in Table 5. The model

statistic value F and significance (Sig.) are used to provide

enough evidence to reject the hypothesis of ‘‘no effect’’.

From Table 5, an F of 32.238 and a Sig. of 0.000 (less than

0.05) were obtained, which show that the null hypothesis

can be rejected.

Multiple non-linear regression analysis

Power, logarithmic, polynomial and exponential models

with the same independent variables and rock mass

deformation modulus as a dependent variable and also the

same sets of data were used to carry out non-linear

regression modeling. The mathematical equation obtained

for the power model with R2 = 0.8878 is

Em ¼
10ð0:34122þ0:014836RQDþ0:023019Dd�0:0025Dcþ0:00184UCS ðMPaÞþ0:001515D ðmÞÞ

ð2Þ

For logarithmic regression modeling, R2 = 0.6397 is

obtained and the relation is

Em ðGPaÞ ¼ �33:4265þ 3:8028 lnðRQDÞ
þ 13:9788 lnðDdÞ � 8:5885 lnðDcÞ
þ 4:2875 lnðUCS ðMPaÞÞ þ 3:3874 lnðD ðmÞÞ

ð3Þ

Furthermore, for the polynomial model relation with

R2 = 0.8824 is

EmðGPaÞ ¼ 1:9131þ 0:2011RQDþ 0:03858D2
d

þ 0:00005D3
c þ 0:0000002UCS4ðMPaÞ

þ 0:0000003D5ðmÞ ð4Þ

Finally, the exponential relation for regression modeling

with R2 = 0.8878 is

EmðGPaÞ ¼ expð0:7857þ 0:03416RQDþ 0:053002Dd

� 0:005746Dc þ 0:004227UCS ðMPaÞ
þ 0:003488D ðmÞÞ ð5Þ

Rock engineering systems (RES)

The RES was introduced by Hudson (1992). It is a method

which has the capability of simultaneous analysis of rela-

tions among effective parameters of a rock mass, site or

structure, and discusses their interactions. For rock

mechanics modeling and rock engineering design for a

specific project, it is needed to be able to identify the rel-

evant physical variables and the linking mechanisms, and

then consider their combined operation. It is important to

ensure that all the relevant factors and their interactions

will be taken into account (Hudson 1992).

In the RES application, the interaction matrix device is

the basic analytical tool and presentational technique for

Table 4 Multiple linear regression coefficients and collinearity statistics for Eq. (1)

Independent

variables

Unstandardized

coefficients

Standardized

coefficients

95.0% Confidence

interval for B

Collinearity

statistics

t values Determination

coefficient (R2)

Standard error

of estimate

B Std.

error

b Lower

bound

Upper

bound

Tolerance VIF

(Constant) -6.679 3.170 -13.077 -0.281 -2.107 0.793 4.42

RQD (no

unit)

0.276 0.276 0.128 -0.281 0.833 0.299 3.341 1.000

Dd (no unit) 1.035 0.224 0.459 0.582 1.488 0.498 2.010 4.612

Dc (no unit) -0.275 0.210 -0.153 -0.700 0.150 0.359 2.787 -1.307

UCS (MPa) 0.059 0.015 0.362 0.029 0.089 0.601 1.664 3.998

D (m) 0.089 0.020 0.354 0.049 0.130 0.789 1.268 4.485

Table 5 Analysis of variance (ANOVA) for Eq. (1)

Sum of squares df Mean square F Sig.

Regression 3158.842 5 631.768 32.238 0.00

Residual 823.082 42 19.597

Total 3981.924 47

Table 6 Expert semi-quantitative (ESQ) method for interaction

matrix coding (Hudson 1992)

Code number Concept

0 No interaction

1 Weak interaction

2 Medium interaction

3 Strong interaction

4 Critical interaction

368 H. Fattahi, A. Moradi

123



characterizing the important parameters and the interaction

mechanisms in an RES. In the interaction matrix for a

given RES, all parameters influencing the system are

arranged along the leading diagonal of the matrix, called

the diagonal terms. The influence of each individual factor

on any other factors is accounted for at the corresponding

off-diagonal position, named the off-diagonal terms. The

off-diagonal terms are assigned numerical values which

describe the influence degree of one factor on the other

factors. Assigning these values is called coding the matrix.

Several coding methods have been developed for this

purpose, such as the 0–1 binary method, the expert semi-

quantitative (ESQ) method (Hudson 1992), the explicit

method, continuous quantitative coding (CQC; Lu and

Latham 1994b) and the probabilistic expert semi-quanti-

tative (PESQ) method were proposed for numerically

coding the interaction matrix. The most common coding

method is the ‘‘expert semi-quantitative’’ (ESQ) method.

ESQ coding has been used in nearly all previous works

cited above. In this method, one unique code is determin-

istically assigned to each interaction, thereby expressing

the effect of a parameter on another in the matrix. Typi-

cally, coding values vary between 0 and 4, with 0 indi-

cating no interaction and 4 indicating the hyper level of

interaction or ‘‘critical interaction’’ (Table 6). The general

concept of the influences in a system is described by the

interaction matrix, which is shown in Fig. 2. Here, the

influence of ‘‘A’’ on ‘‘B’’ is not the same as that of ‘‘B’’

on ‘‘A’’, which means the matrix is asymmetric. Thus, it is

important to put the parameter interactions in clockwise

direction in the matrix.

In the interaction matrix, the sum of a row is called the

‘‘cause’’ value and the sum of a column is the ‘‘effect’’

value, denoted as coordinates (C,E, respectively) for a

particular parameter. The coordinate values for each

parameter can be plotted in cause and effect space, forming

the so-called C–E plot. The interactive intensity value of

each parameter is denoted as the sum of the C and E values

(C ? E) and it can be used as an indicator of parameters’

significance in the system. That is, the weight for parameter

i, indicated by ai, is given by its ‘‘parameter interaction

intensity’’ (Ci ? Ei) divided by the (total) sum of inter-

action intensities of all parameters in the system (Hudson

1992).

ai ¼
ðCi þ EiÞ

Pn
i¼1 Ci þ

Pn
i¼1 Ei

� �� 100 ð6Þ

An RES-based model to predict rock mass deformation

modulus

The principles of RES were used in the vulnerability index

(VI) methodology concept, first introduced by Benardos

and Kaliampakos (2004), to identify the vulnerable areas

that may pose a threat to the TBM tunneling operation. As

there is an obvious relation between advance rate and the

associated risk encountered, this concept was also used to

predict the advance rate in TBM tunneling.

In this research, a similar methodology, inspired by

previous works carried out (Faramarzi et al. 2013a, b;

Benardos and Kaliampakos 2004) is adopted to define a

model and predict the rock mass deformation modulus. In

defining the new model, three main steps must be taken

into account. The first steps are to identify the parameters

that are responsible for the occurrence of risk, analyze their

behavior and evaluate their significance (weight) in the

overall risk conditions. In this step, the RES principles can

be used to assess the weighting of the parameters involved.

Fig. 2 Illustration of the interaction matrix: a interaction matrix of two factors, b general illustration of the coding of interaction matrix and the

set-up of the cause and effect coordinates )modified after Hudson 1992)

Table 7 Classification of the VI (Benardos and Kaliampakos 2004)

Risk description Low–medium Medium–high High–very high

Category I II III

VI 0–33 33–66 66–100
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In the second step, the VI can be determined (Benardos

and Kaliampakos 2004):

VI ¼ 100�
X

i¼1

ai
Qi

Qmax

; ð7Þ

where ai is the weighting of the ith parameter, Qi is the

value (rating) of the ith parameter, and Qmax is the maxi-

mum value assigned for ith parameter (normalization

factor).

Based upon the estimated VI and the classification of the

VI, which is divided into three main categories with dif-

ferent severity of the normalized scale of 0–100 (Table 7;

Benardos and Kaliampakos 2004). In category I, small-

scale problems are expected that cannot significantly affect

the results. In category II, which must be taken into

account. In category III, which might cause several diffi-

culties during the loading and unloading must be

considered.

In the third step, a relation between rock mass defor-

mation modulus and VI can be determined. Based upon this

new relation, the rock mass deformation modulus for every

in-situ test can be obtained having VI.

The most important parameters in the RES-based model

Parameters in Table 8 as well as three descriptive

parameters, discontinuity condition, rock properties and

groundwater condition, were used to define the RES-

based model.

Interaction matrix and rating of parameters

Interaction matrix

The seven principal parameters affecting on the rock mass

deformation modulus are located along the leading diag-

onal of the matrix and the effects of each individual

parameter on any other parameter (interactions) are

placed on the off-diagonal cells. The assigning of values

to off-diagonal cells and coding the matrix were carried

out using the ESQ coding method as proposed by Hudson

(1992). Based upon the views of three experts, working in

the field of rock engineering for many years, the inter-

action matrix for the parameters affecting the rock mass

deformation modulus is established as presented in

Table 9. As it can be seen in Tables 3 and 9, the views of

three experts (Table 9) have good compliance with indi-

vidual relations in Table 3.

Table 10 gives cause (C), effect (E), interactive intensity

(C ? E), dominance (C–E) and weight of each parameter

(ai). As it can be seen in Table 10, burden has the highest

weight in the system, and highly controls other elements.

The E–C histogram and C ? E for each parameter are

illustrated in Figs. 3 and 4, respectively. The points below

the C = E line are called dominant and the points above

the C = E line are called subordinate.

Rating of parameters

The rating of the parameter’s values was carried out based

upon their effect on the rock mass deformation modulus. In

total, five classes of rating, from 0 to 4, were considered,

where 0 denotes the worst case (most unfavorable condi-

tion) and 4 the best (most favorable condition). The rating

of each parameter is presented in Table 11. The ranges of

parameters in Table 11 were proposed based on the judg-

ments of three experienced experts in the field of rock

engineering.

Risk analysis and rock mass deformation modulus

prediction

A dataset that includes 60 data points was employed in the

current study, while 48 data points (80%) were applied to

determine the associated VI for each data point using

Eq. (7) and the remaining data points (12 data points) were

utilized for assessing the degree of accuracy and

robustness.

To make the methodology more understandable, an

example of determining VI for data point no. 1 is shown in

Table 12. Variations in the VI for the 48 data points are

shown in Fig. 5. As it can be seen, the mean of VI is close
Table 8 The most important parameters used to define the RES-

based model

Parameter Symbol

P1 RQD (no unit) RQD

P2 Discontinuity density (no unit) Dd

P3 Discontinuity condition (no unit) Dc

P4 Groundwater condition (no unit) GW

P5 Discontinuity orientation adjustment (no unit) Do

P6 UCS (MPa) UCS

P7 Depth (m) D

Table 9 Interaction matrix for

the parameters affecting the

rock mass deformation modulus

P1 2 2 0 0 2 0

3 P2 3 3 0 3 0

1 2 P3 1 0 1 0

1 2 1 P4 1 2 0

1 0 0 0 P5 1 0

2 4 2 0 0 P6 0

2 4 1 1 2 2 P7
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to 40, showing that the level of risk is in the second cat-

egory (medium–high).

Based on the calculated VI and measured rock mass

deformation modulus for 48 data points, a logarithmic

regression analysis was carried out [Fig. 6 and Eq. (8)]

with a coefficient of determination (R2) of 0.81 being

obtained. This relation can be used as a predictive model to

predict the rock mass deformation modulus based on VI.

EmðGPaÞ ¼ �17:9 lnðVIÞ þ 79:326 ð8Þ

Evaluation of models performance

12 data points (out of 60 data points) were used and the

results obtained are shown in Table 13. Also, for 12 data

points, a comparison was made between the predicted and

the measured rock mass deformation modulus for different

models as shown in Fig. 7.

To verify the performance of the models, two statistical

criteria viz. mean squared error (MSE) and squared cor-

relation coefficient (R2) were chosen to be the measures of

accuracy. Let tk be the actual value and t̂k be the predicted

value of the kth observation and n be the number of

Table 10 Weighting of the

principal parameters in the rock

mass deformation modulus

Main factor C E C –E C ? E ai (%)

RQD 6 10 -4 16 15.38

Discontinuity density 12 14 -2 26 25

Discontinuity condition 5 9 -4 14 13.46

Groundwater condition 7 5 2 12 11.54

Discontinuity orientation adjustment 2 3 -1 5 4.81

UCS 8 11 -3 19 18.27

Depth 12 0 12 12 11.54

Total 52 52 0 104 100
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Fig. 3 C–E plot for principal parameters of the rock mass deforma-

tion modulus
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Fig. 4 The C ? E values for principal parameters of the rock mass

deformation modulus

Table 11 Proposed ranges for the parameters impacting the rock

mass deformation modulus

Parameters Values and ratings

1 RQD (no unit)

Value \5 5–8 8–13 13–17 17–20

Rating 0 1 2 3 4

2 Discontinuity density (no unit)

Value \3 3–6 6–12 12–15 [15

Rating 0 1 2 3 4

3 Discontinuity condition (no unit)

Value 0–15 15–20 20–25 25–30 [30

Rating 0 1 2 3 4

4 Groundwater condition (no unit)

Value 12–15 9–12 6–9 3–6 0–3

Rating 0 1 2 3 4

5 Discontinuity orientation adjustment (no unit)

Value -18 to

-25

-10 to

-18

-4 to

-10

-2 to

-4

-2 to

0

Rating 0 1 2 3 4

6 UCS (MPa)

Value \25 25–50 50–150 150–170 [170

Rating 0 1 2 3 4

7 Depth (m)

Value \10 10–25 25–50 50–75 [75

Rating 0 1 2 3 4

A new approach for estimation of the rock mass deformation modulus: a rock engineering… 371

123



observations; then, MSE and R2 could be defined, respec-

tively, as follows:

MSE ¼ 1

n

Xn

k¼1

ðtk � t̂kÞ2 ð9Þ

R2 ¼ 1�
Pn

k¼1 ðtk � t̂kÞ2
Pn

k¼1 t
2
k �

Pn

i¼1
t̂2

n

ð10Þ

The results of performance analysis of different models

are shown in Table 14.

As it can be seen from the performance indices

(Table 14), the RES-based model with R2 = 0.9245 and

MSE = 0.0175 shows the best agreement with the mea-

sured rock mass deformation modulus and works better in

comparison with other models.

Table 12 Parameter values and the corresponding VI for data point no. 1

Parameter RQD

(no unit)

Discontinuity

density (no unit)

Discontinuity

condition (no unit)

Groundwater

condition (no unit)

Discontinuity orientation

adjustment (no unit)

UCS

(MPa)

Depth

(m)

Value or description 5 6 9 7 -10 28.4 5

Value rating (Qi) 1 2 0 2 2 1 0

Weighting (% ai) 15.384 25 13.461 11.538 4.807 18.269 11.538

VI 70.913
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Fig. 5 VI for 48 data points

Em = -17.9ln(VI) + 79.326
R² = 0.8129 
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Fig. 6 Em–VI predictive model

Table 13 Rock mass

deformation modulus predicted

by different models for 12 data

points

VI Measured Em (GPa) Predicted Em (GPa)

Linear Polynomial Power Logarithmic Exponential RES

70.913 3.920 0.563 4.346 3.897 -1.331 3.897 3.046

68.029 4.340 0.781 4.849 4.243 0.237 4.243 3.789

35.096 25.690 17.081 16.982 16.639 14.733 16.639 15.636

55.769 6.550 10.356 9.910 9.608 12.798 9.609 7.346

52.163 7.760 9.929 11.323 10.220 8.823 10.220 8.543

53.365 8.620 4.545 6.009 6.034 5.478 6.034 8.135

37.500 23.930 15.798 10.935 11.329 14.423 11.329 14.450

40.385 23.730 16.292 12.504 12.576 14.399 12.576 13.124

39.904 21.120 13.098 10.817 11.600 14.370 11.600 13.338

60.096 5.200 1.796 5.572 4.754 2.355 4.754 6.009

53.846 8.660 2.964 5.805 5.135 3.812 5.135 7.974

56.250 5.940 7.763 6.871 7.033 10.675 7.033 7.192
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Conclusions

In this paper, a new approach, namely anRES-basedmodel, is

proposed for predicting the rock mass deformation modulus.

The RES-based model is an expert-based model, which can

deal with the inherent uncertainties in the geological systems.

Also, it has the advantage of considering unlimited input

parameters, whichmay effect the system.Moreover, it has the

merit of considering descriptive input parameters which are

not applicable in statistical modeling.

It is concluded that the RES-based model with perfor-

mance indices R2 = 0.9245 and MSE = 0.0175 performs

better than linear, polynomial, power, logarithmic and

exponential models. This study shows that the RES-based

model can be used as a powerful tool for modeling of some

problems involved in rock engineering.
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