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Abstract The drilling rate index (DRI) is an important

parameter that influences the drillability of rocks. It can

easily be used when estimating the economics of any

excavation operation. Therefore, in the current study, an

attempt was made to investigate the rock properties that

govern the DRI. The relationships between the DRI and

some physicomechanical rock properties were investigated

based on data obtained from experimental work and in situ

studies performed in different tunnels. Regression analysis

was employed to develop models for estimating the DRI

based on physicomechanical rock properties. The derived

models were verified based on the behavior of the deter-

mination coefficient, the t test, and the F test. The study

showed that the DRI decreases with increasing uniaxial

compressive strength, point load strength, Brazilian tensile

strength, and Schmidt rebound hardness. It was also con-

cluded that the DRI increases with increasing apparent

porosity and void ratio. Additionally, modeling results

revealed that the proposed models can be successfully used

as tools to forecast the DRI.

Keywords Drilling rate index � Physicomechanical rock

properties � Regression analysis � Modeling

Introduction

Drillability is an important factor that affects the drilling rate

and tool wear. Therefore, various rock properties should be

taken into account when determining the drillability (Thuro

1997). Understanding the individual effects of rock proper-

ties on the drillability is essential if we are to improve the

planning of underground excavations (Dahl et al. 2012). The

drilling rate index (DRI) is by far the most important rock

drillability parameter; it is commonly used to predict per-

formance in drill and blast tunneling (Dahl et al. 2010; Zare

and Bruland 2013; Yasar et al. 2015). The DRI is also a

classification parameter in several models for estimating

TBM performance. The Norwegian University of Science

and Technology (NTNU) model is among the most com-

monly used models for estimating TBM performance based

on the DRI (Dahl et al. 2007, 2012; Zare and Bruland 2013).

Although many studies (Lien 1961; Howarth and

Rowland 1987; Bruland et al. 1995; Ersoy and Waller

1995; Thuro and Spaun 1996; Thuro 1996, 1997; Kahra-

man et al. 2000; Bilgin and Kahraman 2003; Akun and

Karpuz 2005; Singh et al. 2006; Hoseinie et al. 2008;

Yaralı 2008; Dahl et al. 2010; Yaralı and Kahraman 2011;

Dahl et al. 2012; Yarali and Soyer 2013; Saeidi et al. 2013;

Capik et al. 2013; Demirdag et al. 2014) have focused on

rock drillability, only a few attempts have been made to

determine the relationships between the DRI and rock

properties. Recently, Yaralı and Soyer (2013) presented an

excellent study of the relationships between the DRI and

some mechanical properties. However, in the study

described in the present paper, we determined the rela-

tionships between the DRI and some physical properties,

including the apparent porosity and void ratio. We also

obtained new regression models for estimating the DRI

from physicomechanical rock properties. These modeling
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results should prove helpful for the rapid estimation of rock

drillability.

Studies

Field studies

This study was carried out in the Cankurtaran and Sal-

mankas tunnels in Turkey. The Cankurtaran Tunnel is a

highway tunnel that is being constructed in the Artvin

province of Turkey. It will be one of the longest highway

tunnels in Turkey (5228.00 m long) when the construction

is finished. The tunnel consists of two tubes, with each tube

containing two lanes of traffic (one in each direction). The

Salmankas Tunnel is another highway tunnel that is cur-

rently being constructed; it is located on the border of the

Gumushane and Bayburt provinces of Turkey. This tunnel

again consists of two tubes, each 4150.00 m in length. The

locations of these tunnels are shown in Fig. 1.

Schmidt rebound hardness measurements were taken at

the tunnel faces using two test devices (yielding N-type and

Fig. 1 Locations of the Cankurtaran and Salmankas tunnels

Cankurtaran Tunnel

a b

Main measurement area

Fig. 2 a L- and N-type Schmidt rebound hammers (digital Proceq, Silver Schmidt) and calibration anvil; b tunnel area in which the

measurements were taken
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L-type impact energies of 2.207 and 0.735 Nm, respec-

tively). The tests were performed in accordance with ISRM

(1981) and ASTM (2005) suggested methods. The types of

Schmidt rebound hammer used in the study and the tunnel

area in which the measurements were taken are shown in

Fig. 2a and b, respectively.

Table 1 Types and locations of rock samples

Tunnel and tube (m) Serial no. Geology/rock type Distance (m) of the sampling

point from the start of the tunnel

Cankurtaran Tunnel (right tube) CR1 Sandstone 2158.00

CR2 Porphyritic gabbro/gabbro-porphyry 2312.00

CR3 Fossiliferous sandstone 2397.00

CR4 Volcanogenic sandstone 2657.00

CR5 Biomicritic limestone 2872.00

CR6 Fossiliferous sandstone 3170.00

CR7 Marl/micritic limestone 3554.50

CR8 Diabase 4172.08

CR9 Marl 4409.00

CR10 Biomicritic limestone 4803.50

CR11 Marl/limestone 4951.90

CR12 Marl 5120.90

CR13 Marl 5184.70

CR14 Marl/limestone 5257.50

CR15 Marl/limestone 5298.50

CR16 Porphyritic basalt 5615.50

CR17 Porphyritic basalt 5677.00

Cankurtaran Tunnel (left tube) CL1 Marl 2094.50

CL2 Clastic sandstone 2249.40

CL3 Fossiliferous sandstone 2351.00

CL4 Volcaniclastic sandstone 2628.00

CL5 Fossiliferous micritic limestone/marl 2819.00

CL6 Fine-grained sandstone 3120.00

CL7 Micritic limestone 3518.90

CL8 Diabase 4188.53

CL9 Marl 4395.75

CL10 Biomicritic limestone 4781.50

CL11 Siltstone-marl 4939.50

CL12 Clastic sandstone 5121.00

CL13 Marl/limestone 5176.80

CL14 Diabase 5229.00

CL15 Porphyritic basalt 5586.00

CL16 Basaltic crystal lithic tuff 5646.00

Salmankas Tunnel B1 Andesitic crystal lithic tuff 36,760.00

B2 Andesitic lapilli tuff 36,811.20

B3 Andesitic crystal tuff 36,920.00

B4 Basaltic crystal lithic tuff 37,172.00

B5 Dolerite 37,223.80

B6 Basaltic tuff 37,392.00

B7 Marl 37,452.50

B8 Agglomerated 37,605.00

B9 Pebble stone 38,100.50

B10 Andesite 38,897.00

Relationships between the drilling rate index and physicomechanical rock properties 255

123



Rock samples from 43 different areas of the tunnels

were obtained for laboratory tests. Detailed information on

the rock samples are provided in Table 1.

Laboratory studies

Drillability tests

The DRI was assessed on the basis of two laboratory tests,

the Sievers J-miniature drill test and the brittleness test

(Bruland 1998; Dahl et al. 2007). A diagram of the DRI

assessment is shown in Fig. 3. The classification

scheme used for the DRI values of rocks is shown in

Table 2.

The Sievers J-miniature drill test was originally devel-

oped by Sievers in the 1950s. The Sievers J-value is a mea-

sure of rock surface hardness or resistance to indentation. It is

defined as the mean value of the drill hole depth (in units of

0.1 mm) after 200 revolutions of a 8.5-mmminiature drill bit

under aweight of 20 kg. The SJ test is normally performed as

4–8 drillings. The number and placement of the drill holes is

determined by the heterogeneity and the variations in the

texture of the rock sample. The standard procedure is to use a

pre-cut surface of the sample which is perpendicular to the

foliation of the rock. The Sievers J-value is hence measured

parallel to the foliation (Dahl 2003; Dahl et al. 2012). An

outline of the Sievers J-value test and the test equipment used

is shown in Fig. 4.

The brittleness (S20) testmethodwas originally developed

in Sweden by Matern and Hjelmer in 1943. The original test

was initially intended as a means to determine strength

properties of aggregates, but several modified versions of the

test have since been developed for various purposes. The

Fig. 3 Diagram showing the DRI assessment (Dahl 2003)

Table 2 Classification

scheme used for the DRI (Dahl

2003)

Category DRI

Extremely low B25

Very low 26–32

Low 33–42

Medium 43–57

High 58–69

Very high 70–82

Extremely high C83

Fig. 4 a Outline of the Sievers J-value (SJ) miniature drill test (Dahl 2003); b Sievers J-value test equipment
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version of the S20 test developed for the determination of

rock drillability has been used since the end of the 1950s. The

test is normally performed on three equal extracts from the

11.2–16.0 mm fraction. For a measured specimen density of

2.65 g/cm3, each extract should have a mass of 500 g. An

outline of the equipment used in the brittleness test is shown

in Fig. 5 (Dahl 2003; Dahl et al. 2012).

Physicomechanical properties

Uniaxial compressive strength (UCS)

The UCS tests were performed on prepared core samples

with length-to-diameter ratios of 2–2.5. The applied stress

rate was 0.5–1.0 MPa/s, and five core samples from each

rock were subjected to the UCS test. The tests were carried

out using an electro-hydraulic servo-controlled stiff press

testing machine. The tests were carried out according to

ISRM (1979) and ASTM (2010a) suggested methods.

Brazilian tensile strength

The Brazilian tensile strength test method consists of

loading a disc of the rock until failure occurs across the

diametric axis. The disc was prepared from 54-mm diam-

eter (NX) core samples with a length-to-diameter ratio of

1:2. A loading rate of 200 N/s was applied. The tests were

carried out using an electro-hydraulic servo-controlled stiff

press testing machine. The test was conducted on ten

samples of each rock type and the results were averaged.

The tests were performed in accordance with ISRM (1981)

and ASTM (2010a) suggested methods.

Point load strength

The point load strength test is intended as an index test for

the strength classification of rock materials. The test was

performed on core samples with a length-to-diameter ratio

of 1:2. The load was steadily increased such that failure

occurred within 10–60 s. The test was invalidated if the

fracture surface passed through only one loading point. The

point load strength test was repeated at least ten times for

each rock type, and the average value was recorded as the

point load strength. The tests were carried out according to

ISRM (1985) suggested methods.

Physical properties

The physical properties of the rock, such as its apparent

porosity and void ratio, were determined in accordance

with ASTM (2010b). The apparent porosity and void ratio

were evaluated for core samples with a diameter of 54 mm

and a length-to-diameter ratio of 1:2 (Franklin et al. 2007).

Results and discussion

Linear relationships between the DRI and physicome-

chanical rock properties are depicted in Fig. 6. The fig-

ure shows that there are high correlations between the

DRI and the UCS, point load strength, and Brazilian

tensile strength. The DRI decreased with increasing UCS,

point load strength, Brazilian tensile strength, and L-type

and N-type Schmidt rebound hardness. The DRI also

increased with the increasing apparent porosity and void

ratio. It should also be noted that the correlation coeffi-

cients for the DRI with RLASTM(2005) and RNASTM(2005)

were greater than those for the DRI with RLISRM(1981) and

RNISRM(1981).

Using the relationships between the DRI and the

physicomechanical rock properties, the following models

(Eqs. 1–9) were developed for estimating the DRI. The

determination coefficients (R2) of the models ranged from

0.67 to 0.84. The models based on point load strength and

Fig. 5 a Outline of the brittleness (S20) test (Dahl 2003), b brittleness test equipment
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Fig. 6 Relationships between the DRI and physicomechanical properties of rock
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UCS showed better forecasting performance than the other

models.

DRI ¼ �0:3089rc þ 72:515 ðR2 ¼ 0:83Þ ð1Þ

DRI ¼ �4:1505Is50 þ 71:005 R2 ¼ 0:84
� �

ð2Þ

DRI ¼ �2:5623rt þ 75:514 R2 ¼ 0:76
� �

ð3Þ

DRI ¼ �1:4934RLISRMð1981Þ þ 136:32 ðR2 ¼ 0:70Þ
ð4Þ

DRI ¼ �1:2556RLASTMð2005Þ þ 111:62 ðR2 ¼ 0:73Þ
ð5Þ

DRI ¼ �1:4148RNISRMð1981Þ þ 30:93 R2 ¼ 0:67
� �

ð6Þ

DRI ¼ �1:2571RNASTMð2005Þ þ 111:25 R2 ¼ 0:73
� �

ð7Þ

DRI ¼ 9:2942nþ 28:302 R2 ¼ 0:72
� �

ð8Þ

DRI ¼ 8:6937eþ 29:111 R2 ¼ 0:69
� �

; ð9Þ

where rc is the uniaxial compressive strength (MPa), Is50 is

the point load strength (MPa), rt is the Brazilian tensile

strength (MPa), n is the apparent porosity (%), e is the void

ratio (%), RLISRM(1981) and RLASTM(2005) are the L-type

Schmidt rebound hardness according to the ISRM (1981)

and ASTM (2005) suggested methods, and RNISRM(1981)

and RNASTM(2005) are the N-type Schmidt rebound hardness

according to the ISRM (1981) and ASTM (2005) suggested

methods.

The study results were compared with the results of

Yarali and Soyer (2013), who tested 32 sedimentary,

igneous, and metamorphic rocks and suggested that there

were linear correlations between the DRI and mechanical

rock properties. Similar trends were observed between the

DRI and rock properties in both studies, as depicted in

Fig. 7. However, the higher determination coefficients of

the models proposed in the current study indicate that they

give better prediction performance for the DRI.

The proposed models were validated using the F and t

tests in SSPS 20.0. The F and t tests were carried out to

check the validity of the whole model and the independent

variable involved in the model, respectively (Aydin et al.

2013a). If the t value calculated in SPSS is greater than the

tabulated t value (obtained from a t distribution table), the

independent variable in the model is considered to be

significant. If the F calculated by SPSS is greater than the

tabulated F value (obtained from a F distribution table), the

model is accepted as valid (Berman and Wang 2011; Aydin

et al. 2013b; Aydin 2014). As can be seen from Table 3, at

the 95% confidence level, the computed t values are greater

than the tabulated t values, suggesting that the developed

models are statistically valid. Also, at the 95% confidence

level, the computed F values are greater than the tabulated

F values, indicating the correctness of the models.

Fig. 7 Comparison of the results of this study with the results of Yarali and Soyer (2013)
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Conclusions

The DRI is a reliable measure of rock surface hardness. The

following conclusions can be drawn from the present study:

• The DRI decreases with increasing UCS, point load

strength, Brazilian tensile strength, and Schmidt

rebound hardness. It was also found to increase with

increasing apparent porosity and void ratio.

• The modeling results showed that the models that

included point load strength and UCS give the best

DRI-forecasting performance.

• The derived models can be successfully used to predict

the DRI.

Further studies could focus on the mineralogical prop-

erties of rocks such as granite in order to determine their

effects on the DRI. The mineralogical properties that most

strongly influence the DRI could be determined, and the

DRI could be modeled as a function of these properties.

The estimation of the DRI could also be investigated with

multiple regression analysis, neural networks, or another

metaheuristic search. The results of the different methods

could be compared with simple regression analysis to

gauge the performance of the proposed models.
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