
ORIGINAL PAPER

Intelligent modelling of sandstone deformation behaviour using
fuzzy logic and neural network systems

Behnam Yazdani Bejarbaneh1 • Elham Yazdani Bejarbaneh2 • Mohd For Mohd Amin1 •

Ahmad Fahimifar3 • Danial Jahed Armaghani3 • Muhd Zaimi Abd Majid4

Received: 8 May 2016 / Accepted: 16 November 2016 / Published online: 29 November 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract A realistic analysis of rock deformation in

response to any change in stresses is heavily dependent on

the reliable determination of the rock properties as analysis

inputs. Young’s modulus (E) provides great insight into the

magnitude and characteristics of the rock mass/material

deformation, but direct determination of Young’s modulus

in the laboratory is time-consuming and costly. Therefore,

basic rock properties such as point load strength index,

P-wave velocity and Schmidt hammer rebound number

have been used to estimate Young’s modulus. These rock

properties can be easily measured in the laboratory. The

main aim of this study was to develop two intelligent

models based upon fuzzy logic and biological nervous

systems in order to estimate Young’s modulus of sandstone

for a set of known index properties drawn from laboratory

tests. The database required to construct these models

comprised a series of drill cores (96 samples of sandstone)

from site investigation operations for a hydroelectric roller-

compacted concrete (RCC) dam located in the Malaysian

state of Sarawak. In the final stage of the present study,

using the same data sets, multiple regression (MR) analysis

was also proposed for comparison with the prediction

results of both the fuzzy inference system (FIS) and arti-

ficial neural network (ANN) models. The ANN model was

found to be far superior to FIS and MR in terms of several

performance indices including root-mean-square error and

ranking. Thus, from the results of this study, it was con-

cluded that the models proposed herein could be utilised to

estimate the E of similar rock types in practice.

Keywords Modulus of elasticity � Sandstone � Basic rock

properties � Fuzzy inference system � Artificial neural

network � Multiple regression

Introduction

In general, providing a reliable estimate of rock mass

characteristics (i.e. strength and deformation) is of primary

importance in analysing and designing rock engineering

applications such as slope, foundation and underground

excavation. In particular, the elasticity constants of a rock

mass (E, t) are considered as two main inputs for analysing

rock deformation behaviour. Typically, rock mass

deformability parameters such as Young’s modulus are

measured directly by field tests as in situ modulus (denoted
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by Erm) and indirectly by laboratory tests as intact modulus

(denoted by E). Moreover, since true deformation analysis

of rock must be carried out according to site conditions, it

is important to calculate the rock deformation parameters

by taking both lab and field circumstances into considera-

tion. For this purpose, the intact material modulus derived

from lab experiments should be correlated with the rock

mass modulus using an appropriate classification scheme.

The most widely used methods for determining Young’s

modulus include plate loading (equipped with a multi-point

extensometer in the rock mass) and flat jack testing for

measurements in the field (Hoek and Diederichs 2006) and

uniaxial compressive strength (UCS) testing in the labora-

tory. However, the results of these tests may be susceptible to

uncertainty due to the discontinuity and anisotropic beha-

viour of rock mass subjected to diverse field stresses (Yaz-

dani Bejarbaneh et al. 2015; Armaghani et al. 2015, 2016a).

For example, rock samples extracted from the failure zone

around a tunnel free face might be exposed to grain-scale

damage (micro-cracking) as a result of either stress relax-

ation or blasting (Martin and Stimpson 1994). On the other

hand, both testing methods are time-consuming and require

costly equipment, particularly for field tests (Mishra and

Basu 2013; Armaghani et al. 2016b).

Several polynomial regression models using field and

lab test data have been proposed to overcome these limi-

tations. Table 1 lists a series of regressions that utilise

correlations between field data and rock mass classification

systems, including rock mass rating (RMR; Bieniawski

1973), tunnelling quality index (Q-system; Barton et al.

1974) and geological strength index (GSI; Hoek and Brown

1997), in order to predict deformation modulus values, Erm,

for an isotropic rock mass. Findings from most of these

correlations show a relatively good fit to the field data,

despite the fact that the exponential relationships and

modulus-based equations, as suggested by Mitri et al.

(1994) and Sonmez et al. (2004), deliver poor performance

in predicting rock mass deformation moduli.

Additionally, Table 2 provides a number of typical

simple regression equations based on the data from lab

measurements. In fact, these regressions were developed by

relating a range of data from simple index tests, including

Schmidt hammer (Yilmaz and Sendir 2002; Dincer et al.

2004), ultrasonic velocity (Yasar and Erdogan 2004;

Armaghani et al. 2014), point load strength (Yilmaz and

Yuksek 2008, 2009) and porosity (Lashkaripour 2002;

Beiki et al. 2013), to Young’s modulus E. However, these

statistical models suffer from low generalisability, such

that they are not able to be generalised to a wide range of

data from different engineering applications (e.g. Beiki

et al. 2013; Rezaei et al. 2012).

Over the last 20 years, there has been a marked increase

in the successful application of intelligent methodologies

such as artificial neural networks (ANNs), fuzzy inference

system (FIS) and evolutionary computation for the pre-

liminary stage of rock engineering design and rock

mechanics modelling (Feng and Hudson 2004, 2010;

Hudson and Feng 2007; Mishra and Basu 2013; Mishra

et al. 2015). Gokceoglu and Zorlu (2004) validated the

results of a FIS model in predicting the E and UCS of

greywacke samples. The proposed fuzzy model benefited

from 54 fuzzy rules to map four input variables (rock index

properties) to two output variables (E and UCS). The

authors analysed the performance of the fuzzy model using

multiple regression, and concluded that the predicted

results were in good agreement with the lab test results

compared with a statistical model. Kahraman et al. (2009)

trained an ANN model to predict the levels of UCS and

E for Misis fault breccia, and their prediction results

revealed the highest accuracy when compared with the

regression models. Yagiz et al. (2012) examined the effect

of slake durability cycles on the UCS and elasticity con-

stant of carbonate rocks by developing ANN and multi-

variate regression models based upon 54 carbonate rock

cores. They reported more reliable prediction of ANN than

that with multivariate regression. An ANN model together

Table 1 Empirical

relationships for estimating rock

mass deformation modulus

References Fitted relationship

Bieniawski (1978) Erm = 2RMR - 100

Mitri et al. (1994) Erm = E (0.5(1 - cos (pRMR/100)))

Read et al. (1999) Erm = 0.1(RMR/10)3

Nicholson and Bieniawski (1990) Erm = E/100(0.0028 RMR2 ? 0.9 exp(RMR/22.82)), E = 50 GPa

Serafim and Pereira (1983) Erm = 10 RMR�10=40ð Þð Þ

Diederichs and Kaiser (1999) Erm = 7(±3)
ffiffiffiffiffi

Q0p
, Q0 = 10((RMR - 44)/21)

Sonmez et al. (2004) Erm = E (sa)0.4, E = 50 GPa, s = exp ((GSI - 100)/9)

a = 1/2 ? 1/6(exp(-GSI/15) - exp(-20/3)), GSI = RMR

Barton (2002)
Erm = 10 Q

1=3
c where Qc = Q rci/100, rci = 100 MPa

Erm rock mass modulus of deformation, E rock modulus of elasticity, RMR rock mass rating, GSI geological

strength index
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with a multiple regression using several intact rock prop-

erties of gypsum were developed by Yilmaz and Yuksek

(2008) to predict Young’ modulus of gypsum, with results

demonstrating that the proposed ANN model was able to

predict the proposed rock modulus with reasonable accu-

racy. Yilmaz and Yuksek (2009) undertook another study

of gypsum rock samples obtained from the Sivas basin in

Turkey in order to assess the predictability of two engi-

neering properties of gypsum; UCS and E. For this pur-

pose, they constructed ANN and hybrid neuro-fuzzy

systems from the basic and index properties of the samples

(input data), including water content, porosity, sonic

velocity, Schmidt hammer rebound number and point load

index, to predict both E and UCS (output data). They

reported successful prediction for both models compared

with multiple regression. Tonnizam Mohamad et al. (2015)

and Momeni et al. (2015) showed the successful applica-

tion of hybrid particle swarm optimization (PSO) and ANN

in predicting the UCS of rocks. Several recently developed

models for predicting the rock modulus, E, using soft

computation techniques are shown in Table 3.

This study attempts to estimate Young’s modulus for a

series of known index properties for sandstone samples. To

this end, two soft computing techniques, FIS and ANN,

were designed such that the three index properties act as

inputs to the systems, with Young’s modulus as the target.

More specifically, this fitting problem involves matching a

set of numeric lab measurement inputs, including Schmidt

hammer, rebound number (Rn), P-wave velocity (Vp), and

point load index (Is(50)) to an associated set of numeric

targets E. In the final stage of this study, a multiple

regression (MR) model using the same data set is

constructed for the sake of comparison. This statistical

model is employed to provide a measure of how well both

systems (FIS and ANN) fit the data in terms of their per-

formance indices.

Methods

Fuzzy inference system

Zadeh (1965) established the fundamental mechanism of

fuzzy logic theory on which mapping the input space onto

the output space is based. The concept of fuzzy logic is

principally founded on a fuzzy set. In such a set, there are

a number of components with partial membership in that

set, as opposed to crisp or well-defined boundaries for a

classical or ordinary set. In the case of fuzzy logic, the

truth of a conditional expression is measured by degrees

(between 0 and 1) resulting from an appropriate mem-

bership function (MF). In other words, characterisation of

a fuzzy set is carried out by the specific MF which con-

veys a sense of ambiguity (Zadeh 1973). In fact, the MF

implies how each of the crisp values from the input

dimension is connected to a membership grade (values

within the interval from 0 to 1). The mathematical rela-

tionships are capable of constructing any form of MF in a

succinct and straightforward way. In addition, each of the

various classes of MF is denoted by a specific designation

which is directly dependent on the shape and formula of

that function, with triangular, trapezoidal, Gaussian,

generalised bell and sigmoidal MFs as the most common

types (Jang et al. 1997).

Table 2 A number of correlations between Young’s modulus and other rock index tests

References Predictor Correlation R2 Description

Leite and Ferland (2001) n E = 10.10 - 0.109 n 0.74 Different rocks

Lashkaripour (2002) n E = 37.9 e-0.863n 0.68 Claystone, clay shale, mudstone, mud shale

Yilmaz and Yuksek (2009) n E = -39.1 Ln (n) ? 110.31 0.83 121 samples of gypsum

Beiki et al. (2013) n E = e0.10n ? 3.6 0.23 72 different carbonate rock types

Yasar and Erdogan (2004) Vp Vp = 0.0937 E ? 1.7528 0.86 13 samples of various carbonate rock types

Moradian and Behnia (2009) Vp E = 2.06 Vp
2.78 0.92 64 samples of limestone, sandstone and marlstone

Beiki et al. (2013) Vp E = 2.16 Vp
2.08 0.39 72 different carbonate rock types

Nefeslioglu (2013) Vp E = 0.0155 e2.1356 Vp 0.66 66 core samples of sedimentary rocks including

claystones and mudstones

Yilmaz and Yuksek (2008) Is(50) E = 10.943 Is(50) ? 0.8527 0.56 39 gypsum sample sets

Yilmaz and Yuksek (2009) Is(50) E = 14.122 Is(50) - 2.745 0.56 121 samples of gypsum

Sachpazis (1990) Rn E = 1.94 Rn - 33.92 0.78 Marble, limestone, dolomite

Yilmaz and Sendir (2002) Rn E = exp (1.146 ? 0.054 Rn) 0.83 Some gypsum samples

Dincer et al. (2004) Rn E = 0.47 Rn - 6.25 0.85 Andesite, tuff, basalt

Is(50) point load index, Rn Schmidt hammer rebound number, Vp P-wave velocity
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Fuzzy conditional statements

Fundamentally, in a fuzzy system, the input–output map-

ping can make some inferences based upon a set of rule

statements using parallel evaluation. Overall, an if–then

rule structure is divided into two differentiable parts, the

‘‘if’’ part and the ‘‘then’’ part, which are referred to as the

antecedent or premise and the consequent or conclusion,

respectively (Sivanandam et al. 2007). With regard to the

configuration of the fuzzy rule, there are various primary

elements in defining the rules which involve input and

output variables in conjunction with descriptive adjectives

pertaining to those variables. For instance, a statement for

the if–then rule is represented as follows:

If x is A then y is B;

where two variables x and y are the universes of discourse

for fuzzy sets describing linguistic labels or values A and B,

respectively.

Fuzzy reasoning (or approximate reasoning)

In general, fuzzy reasoning attempts to specify conclusions

by applying various inference operations to a certain

number of fuzzy statements (Bai et al. 2007). More

specifically, the fuzzy reasoning (or approximate reason-

ing) mechanism comprises five steps:

1. The first step (fuzzification of inputs) consists in

interpreting the input values through the specific input

membership functions.

2. The second step (application of fuzzy operators)

involves the application of a fuzzy logic operator to

the membership values from the ‘‘if–then’’ parts of a

rule in order to yield a single firing strength per rule.

3. The third step (implication method), in which a fuzzy

set is assigned to the output variable, refers to an

implication method that involves truncating that fuzzy

set to a degree derived from the preceding stage.

4. The fourth step (aggregation) involves aggregating all

the truncated fuzzy sets for each rule in order to obtain

an overall consequent membership function.

5. The fifth step (defuzzification) consists in converting the

resultant fuzzy set (i.e. overall consequent membership

function) into a single crisp output using a competent

method selected from a list of defuzzification tech-

niques, e.g. centroid, bisector, mean of maximum.

Fuzzy rule-based models

The combination of fuzzy sets, fuzzy logic operators (fuzzy

reasoning) and fuzzy statement constitutes the backbone of

the FIS, also referred to as a fuzzy model or rule-based

model. FIS applications cover a broad scope of research

areas including pattern recognition, data and image clas-

sification, management, economics, automatic control,

robotics, signal processing, computer vision, decision-

making, expert systems and prediction of chaotic time

series (Zadeh 1965; Rutkowski 2004).

Overall, the most frequently used FIS models for various

applications can be categorised under two headings: the

Mamdani fuzzy model (Mamdani and Assilian 1975) and

the Sugeno fuzzy model (Takagi and Sugeno 1985). These

systems differ based on the type of function being used in

the consequent part of their fuzzy statements, as demon-

strated in Fig. 1. As a result, the operations employed in

the consequent part of fuzzy rules (i.e. aggregation and

defuzzification) vary in accordance with this distinction

(Jang et al. 1997).

Sugeno-type fuzzy model

Takagi and Sugeno (1985) developed a systematic

approach for generating fuzzy statements, commonly

referred to as the Sugeno fuzzy inference method (other

designations include the Takagi–Sugeno method or TSK

method, hereinafter called the Sugeno method). In the

Table 3 Recent works on the

prediction of E using soft

computation techniques

References Technique Input R2

Gokceoglu and Zorlu (2004) FIS Is(50), BPI, Vp, BTS 0.79

Yilmaz and Yuksek (2008) ANN ne, Is(50), Rn, Id 0.91

Yilmaz and Yuksek (2009) ANFIS Vp, Is(50), Rn, WC 0.95

Dehghan et al. (2010) ANN Vp, Is(50), Rn, n 0.77

Majdi and Beiki (2010) GA-ANN q, RQD, n, NJ, GSI 0.89

Singh et al. (2012) ANFIS q, Is(50), WA 0.66

Beiki et al. (2013) GA q, n, Vp 0.67

BPI block punch index, Id slake durability index, ne effective porosity, RQD rock quality designation, NJ

number of joints per meter, GSI geological strength index, GA genetic algorithm, WC water content, WA

water absorption, FIS fuzzy inference system, ANFIS adaptive neuro-fuzzy inference system, n porosity, q
density
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Sugeno fuzzy model, the consequent function is expres-

sed mainly in polynomial form (defined by the input

variables) rather than any of the MFs previously men-

tioned. For this reason, the fuzzy operations are applied

only to the antecedent part of the if–then rule. In other

words, unlike the Mamdani type, the fuzzy reasoning

process in the Sugeno model cannot be rigorously exe-

cuted in both parts of the fuzzy rule statement. Since the

resulting outputs inferred from each rule are crisp values,

the total single-value output for each target variable is

equal to a weighted average of outcomes from all the

rules. These two versions of the fuzzy model are

graphically illustrated in Fig. 1.

The Sugeno model substitutes the weighted average

method for the defuzzification techniques employed in the

Mamdani model. In fact, the defuzzification of the resulting

output MF into a single crisp value suffers from two major

drawbacks, the failure to reach an exact result mathemat-

ically and the time-consuming nature of the computations

(Shams et al. 2015). Therefore, the Sugeno-type fuzzy

inference is far and away the preferred choice for mod-

elling a fuzzy system from any given input–output data set.

Data clustering

Data clustering is a quick, one-pass approach for devel-

oping a FIS from any given number of data sets. In most

cases, it is advisable to apply a clustering algorithm to the

data-based fuzzy model, particularly when there is little to

no prior information as to the underlying behaviour of the

data being analysed (Jain and Dubes 1988; Jain et al.

1999). Most fuzzy systems generated without clustering

suffer from an excessive number of rules, especially those

systems with relatively large input variables. In contrast,

the rules produced by data clustering are extremely well

suited to the input data points such that the number of rules

is optimised according to the number of identified clusters.

The extraction of fuzzy rules from a set of data is usu-

ally undertaken by either subtractive or mountain cluster-

ing analysis. However, the mountain clustering approach

involves high computational expense in comparison to the

subtractive method. Therefore, in this research, all fuzzy

rules were propagated based on subtractive clustering in

order to avoid the extra computational cost. Further

information on these clustering paradigms can be found in

the authors’ publications (Chiu 1994; Yager and Filev

1994a, b).

Artificial neural network

In general, an artificial computational system, or ANN, is

designed by simulating various organisational principles

upon which a nervous system functions are based. Unlike

traditional expert systems, ANN is inherently capable of

learning from any given training pattern to find the

underlying relationship between input and output data for a

mapping problem (Zurada 1992). Artificial neurons are

regarded as the constitutive units of an ANN computing

system and enable the parallel processing of information in

the same way as a biological brain.

Fig. 1 Approximate reasoning

procedures for the most

commonly used FIS models

(Jang et al. 1997)
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Pioneering work in neural network modelling by

McCulloch and Pitts (1943) led to the development of a

binary threshold logic unit (binary decision unit) for

modelling artificial neuron behaviour. Every artificial node

of the network captures a weighted sum of incoming sig-

nals, and then passes the signals through a specific acti-

vation function to produce a more useful output.

Structurally, ANNs can be viewed as highly parallel sys-

tems in which a network of interconnected computational

units, called neurons or nodes, are organised into succes-

sive layers. Each pattern of connection between neurons

affects network behaviour and also defines the network

class (Kanellopoulas and Wilkinson 1997).

As mentioned previously, it is possible to train the

network so that network performance can be effectively

improved. More precisely, in the course of network train-

ing, both the architecture and connection weights are iter-

atively modified to minimise the error from the output layer

node. In fact, the produced output error is computed by a

squared error function, given as

E ¼ 1

2

X

p

i¼1

ðtðiÞ � yðiÞÞ2; ð1Þ

where the parameters t and y represent the target value and

actual produced value, respectively. The parameter P de-

notes the number of training patterns.

Network learning tasks are commonly undertaken

through a gradient-based learning procedure, referred to as

a back-propagation (BP) learning algorithm, especially for

multilayer feedforward networks. Basically, each training

period in BP learning is a twofold procedure comprising a

forward stage and a backward stage. During the forward

stage, input signals move forward through the network,

sending out error signals for each output-layer node. Sub-

sequently, in the next stage, the resulting error rates will be

passed backward along the network to modify the network

weights and biases.

Depending on the network architecture, ANNs are

classified into two functional groups: feedforward and

feedback. One of the most commonly used variants of

multilayer feedforward networks is the multilayer percep-

tron (MLP), in which successive layers of processing units

(neurons) exchange and process information (signals)

through weighted links and activation functions, respec-

tively (Haykin 1999). In general, hidden and output neu-

rons can perform certain specific activation functions of net

input in order to produce neuron outputs. Note that each

neuron output is regarded as input to the next layer of

neurons. Generally speaking, the type of activation func-

tion should be selected according to the complexity of the

problem to be solved. In the case of nonlinear problems,

therefore, it is advisable to employ the sigmoid transfer

functions, e.g. log-sigmoid and tangent sigmoid. Each of

the hidden neurons is fed with the total net input in which

each incoming signal (xi) from the previous layer is mul-

tiplied by an associated adaptive weight coefficient (wij) to

yield weighted input signals. A summation function is then

applied to these weighted signals, and finally a small

amount of bias is added to the aggregate signal. This

process is repeated for each layer until the system’s overall

output is produced. Mathematically, the total net input to

every hidden or output neuron is expressed as:

nethj =
X

n

i ¼ 1

wij � xi þ bj ð2Þ

For each neuron output, the resulting total net input is

squashed into the activation function (e.g. sigmoid). Thus

the output for every hidden or output neuron is derived as:

yj ¼ 1
�

1 þ exp �nethj
� �� �

ð3Þ

Figure 2 briefly demonstrates data processing operations

for a typical artificial neuron.

Case study and experimental work

The data set employed in the present study relates to a

hydroelectric power project which includes the construc-

tion of a roller-compacted concrete (RCC) dam, located in

the Malaysian state of Sarawak (see Fig. 3). The state of

Sarawak benefits from an abundant supply of water, thanks

to average annual precipitation of up to 4000 mm. In

addition to the high annual rainfall levels, the presence of

appropriate geographical and geological conditions in the

state provides the foundation for the development of

hydroelectric power (HEP) dams. Given these two attri-

butes, Sarawak is ideally positioned as a sustainable source

of renewable energy.

The Lawas RCC dam is designed with output capacity

of about 100 MW to meet a portion of the current state

demand for electrical power. As part of exploration and

subsurface investigations at the proposed site, a total of 20

boreholes were drilled to a depth of 150 m by means of a

wash boring machine. This subsurface survey revealed that

Fig. 2 Schematic for an artificial node j (Jang et al. 1997)
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the substrata profiles situated below the RCC dam foun-

dation consisted primarily of a range of sedimentary rocks

with degrees of weathering ranging from fresh to moder-

ately weathered zones. These sedimentary rocks comprise

sandstone, shale, and mudstone at the foundation level,

which indicates an RMR number of 40.

The data set analysed herein was developed based on the

core samples of a sandstone layer at depths varying from

approximately 13.50 to 81.50 m. A sufficient number of

core specimens of sandstone were collected from the

boreholes of ZKB1, ZKB2, ZKB3, ZKB4 and ZKB7 using

the NX core barrel (54-mm core diameter). Next, the

extracted core samples were packed out and then trans-

ported to the laboratory, where the geotechnical properties

of the rock would be characterised numerically using

several laboratory tests, including Schmidt hammer, point

load, P-wave velocity and UCS.

Specimen preparation

Each core sample employed in this study was trimmed by a

diamond disc cutter in order to obtain a standard cylindrical

shape with a 54-mm diameter, which allows for

height/diameter (H/D) ratios within an acceptable range of

2.5–3 such that troublesome size effects are eliminated.

After the core samples were cut, a grinding machine was

used to grind the end planes of the specimen to provide

parallelism and flatness, facilitating the axial loading con-

dition. Some typical core samples prepared for laboratory

tests are shown in Fig. 4. In the present study, the drill core

preparation and all testing procedures fully conformed to

the guidelines of the International Society for Rock

Mechanics (ISRM 2007). It is also worth pointing out that

all laboratory tests were performed on air-dried core

samples.

Point load index test (PLT)

A group of diametral tests were conducted to classify the

strength of the core samples investigated in this study. The

testing machine is equipped with a loading system of

100 kN capacity, two measuring systems (load and dis-

placement records) and a controller unit. A loading frame,

pump, ram and a pair of conical platens constitute a loading

system in which the load is applied incrementally to the

core specimen such that a sudden rupture occurs within

10–60 s. During the load application, the corresponding

records for both failure load and distance (between core

Fig. 3 The location of the Lawas site
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sample and platen contacts points) were monitored through

a hydraulic pressure gauge and a displacement transducer,

respectively, and these records were also simultaneously

transferred to the controller unit, a data logger, for pro-

ducing the data as an indication of the strength of the

sample being tested.

Schmidt/rebound hammer test

An L-type Schmidt hammer with an impact energy of

0.74 Nm was employed to assess the surface hardness of

NX core samples. In order to avoid movement and vibra-

tion during the test, the core specimens were securely

clamped to a semi-cylindrical slot embedded in a steel

base. The test was performed by employing a spring-driven

steel hammer with vertical downward axis orientation.

When a steel plunger rod is pushed against the prepared

core surface, an internal spring-controlled mass with a

predetermined amount of energy impacts the plunger and

rebounds a certain distance. The rebound distance travelled

by the mass is measured on a graduated scale as the

rebound number. Based on ISRM guidelines (2007), 20

representative points with even spacing equal to at least the

diameter of the plunger were determined on the surface of

the core sample. Accordingly, an average of 20 valid

readings for each specimen was calculated and used.

Ultrasonic velocity test

In this study, a high-frequency ultrasonic pulse technique

using transducers with a frequency range of 100 kHz to

2 MHz was adopted to measure the compressional wave

velocity (denoted by Vp). In order to meet the full coupling

condition, the end planes of specimens were uniformly

covered with a thin film of a specific gel. In accordance

with ISRM (2007), the transducers are first pressed against

the core samples with a small stress up to 10 N/cm2

(seating force), and a pulse generator subsequently sends

out an input signal of compression waves along the core

axis. A direct pulse transmission method was utilised to

calculate P-wave velocities by recording the time during

which the waves travel from the transmitter to the receiver.

Uniaxial compressive strength test

In the present study, the uniaxial compressive strength

(UCS) and deformation attributes of the rock materials

were verified under uniaxial compression by means of a

servo-controlled 3000 kN compression machine. All tests

were conducted under a stress-controlled state in which the

compressive load was applied at a constant rate of stress

around 0.5–1 MPa/s. In accordance with ISRM guidelines

(2007), the rock samples under compression were ruptured

within 5–10 min. During the test, a set of measurements on

load cell and axial strains (linear variable differential

transformers [LVDTs]) were recorded for the core samples

at regular intervals until failure in order to determine var-

ious rock material properties, including UCS, strain at

failure e and elastic modulus E. Similar to igneous and

metamorphic rocks, these medium-grained sedimentary

core samples typically display a brittle behaviour under

uniaxial compression, resulting in sudden failure in the

form of distinct fracture planes (see Fig. 5).

Calculating the modulus of elasticity

In engineering practice, the deformation behaviour of any

rock material/mass is commonly described either through

tangent elastic modulus (Etan) or secant elastic modulus

(Esec). These values are determined using an analysis of the

stress–strain relationship for any given rock material/mass

which is subject to unconfined compression. In the case of

rock material deformation measurement, it is customary to

use the tangent modulus (Etan; also called the modulus of

elasticity), which represents the slope of a stress–strain

curve at one-half the ultimate strength (50% UCS),

whereas for specifying rock mass deformation, most

engineers prefer to employ the secant modulus (Esec; also

known as modulus of deformation), which represents the

Fig. 4 Some of the cylindrical core samples prior to UCS tests

Fig. 5 Fracture planes in failed rock samples after performing UCS

tests
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slope of a straight line from origin (0, 0) to a certain stress–

strain point corresponding to either ultimate strength or

one-half the ultimate strength. The procedures representing

both the Etan and Esec are illustrated in Fig. 6. In the present

study, the former procedure was utilised for analysing the

stress–strain curve of each sandstone material to produce

the relevant tangent elastic modulus (hereinafter referred to

as the modulus of elasticity and denoted by E).

In this study, a total database of 96 data samples, including

Rn (in a range of 20–40.5),Vp (in a range of 1.67–3.16 km/s),

and Is(50) (in a range of 1.43–4.29 MPa) as predictors and

E (in a range of 10.5–32.22 GPa) as output, were prepared to

construct the predictive models. Figure 7 demonstrates three

input and one output variable with their respective data used

in the modelling process for all systems under consideration.

In addition, basic descriptive statistics of the database are

presented in Table 4.

Simple regression analysis

In order to examine the effect of input parameters, simple

regression analysis was carried out between the E and

other input parameters including Rn, Vp and Is(50). To

obtain equations with higher performance capacity, vari-

ous types including linear, exponential, power and loga-

rithmic equations were performed. In this study, the

coefficient of determination (R2), variance accounted for

(VAF) and root mean square error (RMSE) were calcu-

lated to control the capacity performance of all developed

models:

R2 ¼ 1 �
PN

i ¼ 1 y� y0ð Þ2

PN
i ¼ 1 y� ~yð Þ2

ð4Þ

VAF ¼ 1 � var y � y0ð Þ
var yð Þ

� 	

� 100 ð5Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N
�
XN

i ¼ 1
y� y0ð Þ2

r

ð6Þ

where y and y0 are the measured and predicted values,

respectively, ~y is the mean of the y values, and N is the total

number of data. The model will be excellent if R2 = 1,

VAF = 100 and RMSE = 0. The selected equations for

predicting E using the above-mentioned predictors together

with their performance indices are presented in Table 5,

which shows that the power, linear and logarithmic equa-

tion types give the best results for predicting E using Rn, Vp

and Is(50), respectively. The R2 values obtained for the

equations are 0.503, 0.545 and 0.445, respectively. The

purposed relationships between the E and relevant param-

eters of the rock are given in Fig. 8. The results revealed

that these relationships were statistically meaningful, but in

order to obtain higher-performance models for predicting

E in practice, multi-input parameters may be needed.

Therefore, three types of modelling techniques—FIS, ANN

and MR—were also constructed and developed.

Multi-input predictive models

Designing the Sugeno fuzzy system

This section presents the fuzzy predictive technique for

predicting the E of sandstone using results of Rn, Vp and

Is(50). For this purpose, as a first stage of modelling, the

proposed data set was normalised into a unit interval [0, 1]

using the following equation:

Xnorm ¼ X � Xminð Þ= Xmax � Xminð Þ; ð7Þ

where X and Xnorm represent the measured and normalised

values, respectively, and Xmin and Xmax are the minimum

and maximum values of the measured parameters,

respectively. Modelling and validating the fuzzy systems

are accomplished by dividing the complete data set into

training and test sets, each of which is determined as a

percentage of the original data: 80% is designated to design

the systems, and 20% is designated to measure the accu-

racy of the systems. This was implemented according to

the work of several scholars, such as Swingler (1996) and

Looney (1996). Therefore, in the present study, 77 data sets

were randomly chosen from which to develop the models,

and the remaining 19 data sets were assigned to test these

models.

In this research, several FIS models of first-order

Sugeno class were created based upon the subtractive

clustering algorithm as an effective preprocessor to those

data-based models. As a result of this preprocessing, a

number of clusters were identified to produce the MFs and

fuzzy conditional statements for each fuzzy system.

Fig. 6 Two procedures for characterising rock deformation using a

stress–strain curve
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Actually, the clustering-induced fuzzy system attempts to

form a pattern for physical behaviour of the proposed

empirical data set by relating the observations of three-

dimensional input space (Rn, Vp and Is(50)) to their corre-

sponding targets (E). Figure 9 presents a schematic of these

components associated with each of the proposed fuzzy

systems.

In contrast to the linear MFs, with sudden changes and

breaks at the intersection points of straight lines, the MFs

representing nonlinear relationships allow for a gradual,

smooth movement among fuzzy sets (Jang et al. 1997).

Consequently, a bell-shaped function with normal distri-

bution, referred to as Gaussian MF, was defined to char-

acterise each fuzzy set on the premise part of an if–then

rule. The following formula expresses a Gaussian MF by

its two geometric parameters c and r:

gaussian x; c; rð Þ ¼ e�
1
2

x�c
rð Þ2

; ð8Þ

where the parameters c and r represent the center and

spread coefficient for the Gaussian curve, respectively. As

mentioned above, the identified clusters within the pro-

posed data set provide both geometric parameters for each

input MF. In addition, each of the output MFs is a first-

order polynomial composed of the input variables and

expressed by the following equation. The coefficients of

this linear relationship are drawn from training data sam-

ples based on least squares estimation.

E ¼ aRn þ bVp þ cIsð50Þ þ d: ð9Þ
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Fig. 7 Operating range of three-element input and one-element target

Table 4 Basic descriptive statistics of the database used

Statistical parameter Rn Vp (km/s) Is(50) (MPa) E (GPa)

Minimum 20 1.67 1.43 10.50

Maximum 40.5 3.16 4.29 32.22

Average 30.92 2.42 2.58 20.30

Standard deviation 6.34 0.37 0.69 5.69

Skewness -0.02 -0.10 0.29 0.04

Table 5 Selected equations for

estimating E, together with their

performance indices

Predictor Equation type Developed equation R2 RMSE VAF

Rn Power E = 0.632 Rn
1.005 0.503 4.006 49.599

Vp Linear E = 11.237 Vp - 6.894 0.545 3.899 54.157

Is(50) Logarithmic E = 13.932 ln (Is(50)) ? 7.595 0.445 4.139 43.745
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The fuzzy operation for each rule in the antecedent part was

accomplished by AND operator: prod (product). The AND

method was then used to perform the implication function

whereby the antecedent part outcome (firing strength) for each

rule defined a level of corresponding linear output MF, Ei.

Finally, a weighted average method was employed to combine

all rules outcomes into a single value, representing the final

output of the proposed system, E, as follows:

E ¼
Pn

i ¼ 1 wiEi
Pn

i ¼ 1 wi

; ð10Þ

where the number of each rule is designated by n. In total,

seven Sugeno-type fuzzy models were constructed from the

training patterns given diverse parametric values of design.

The resulting models were then validated using only the

test set. Generally, the first stage in developing any data-

based FIS is to adjust the data clustering parameters. The

two characteristics associated with center coordinate and

number of identified clusters can be controlled by altering

the extent of the cluster radius parameter (indicated by Ra).

In most cases, assigning a minimum value to the cluster

radius parameter increases the size and quantity of identi-

fied clusters, and vice versa (Chiu 1994). The optimal

range of the cluster radius is usually set between 0.2 and

0.5 (MATLAB user guide 2007).

In addition to cluster radius, another parameter of sub-

tractive clustering, known as cluster neighbourhood (indi-

cated by Rb), can be tuned to govern the range of influence

of each cluster as well as the cluster numbers in the input

space under consideration. More precisely, increasing the

neighbourhood for each cluster allows subtractive cluster-

ing to find the centers for those clusters with larger inter-

mediate distances. Accordingly, a number of various

cluster radii (Ra) ranging from 0.2 to 0.5, along with a fixed

cluster neighbourhood value (usually greater than cluster

radius) for all the data dimensions, were used to create the

seven fuzzy models. Table 6 presents the design parame-

ters along with the number of fuzzy rules for each of the

seven fuzzy models.

The training set and then testing set performance

capacities of the proposed models are evaluated by means

of R2, VAF and RMSE, as shown in Table 7. However,

selecting the best model based upon only these perfor-

mance indices can be difficult, due to small differences

among the pertinent statistics. For this reason, a simple

ranking approach was used (Zorlu et al. 2008), in which

each of the fuzzy models was graded separately according

to its performance on training and test sets. As shown in the

assigned total rank scores listed in Table 7, the FIS1 model

was the most successful of the seven fuzzy models in

predicting E values.

For the FIS1 model, the training data points were grouped

into six clusters to construct the fuzzy system. Figure 10

demonstrates this natural grouping for just two selected

dimensions of input space, Is(50) against E. As a result of the

clustering process, the geometric parameters were produced

to form Gaussian-type input MFs. These Gaussian parame-

ters used in the model FIS1 configuration are arranged into a

matrix (denoted by c) in relation to center coordinates and

into a row vector (denoted by r) in relation to spread

coefficients, as indicated below:

Fig. 8 Purposed relationships between the E and input parameters

System FIS1: 3 inputs, 1 outputs, 6 rules

Rn (6)

Vp (6)

Is (6)

f(u)

E (6)

FIS1

(sugeno)

6 rules

Fig. 9 Overall structure of a three-input, one-output fuzzy system
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C ¼

Dim1 Dim2 Dim3 Dim4

0:2488 0:2289 0:2168 0:0106 Cluster1

0:4098 0:3304 0:2273 0:3352 Cluster2

0:8585 0:7459 0:6958 0:5801 Cluster3

0:0976 0:0580 0:1014 0:1842 Cluster4

0:4927 0:4319 0:3986 0:7293 Cluster5

1 0:8521 0:7273 0:7698 Cluster6

r ¼
Dim1 Dim2 Dim3 Dim4

0:0707 0:0709 0:0707 0:0707 AlltheClusters

Since the input MFs produced are equal in number to the

identified clusters, six fuzzy sets with their respective lin-

guistic labels (denoted by corresponding cluster number)

are assigned to each of the input variables. Figures 11, 12

and 13 graphically depict these six antecedent fuzzy sets

for the model FIS1. Similar to the input MFs, the number

of propagated fuzzy rules and identified clusters would be

equal. Therefore, six fuzzy conditional statements are

propagated for the model FIS1, as summarised in Table 8.

Functionally, each row of the rules tries to form a direct

relationship between a cluster from the premise part and a

cluster from the conclusion part.

Additionally, Fig. 14 shows how the antecedent and

consequent MFs interact with each other in the fuzzy

system FIS1. In other words, this graphical diagram sim-

ulates the system’s behaviour in mapping three-element

input to a one-element target. The prediction performance

of the FIS1 will be further discussed in a later section.

Designing the ANN model

Like the FIS systems, each of the ANN models utilises the

same distribution of normalised original data for estimating

the elastic modulus of sandstone, that is, 80% of the

database is set in the training part and the remaining data

sets are devoted to testing of the models. A challenging

task in designing any ANN models entails adopting an

optimal ANN architecture based upon the number of hid-

den layer(s) and the number of nodes per hidden layer. In

practice, an ANN model benefiting from a single hidden

layer can solve any complex fitting problem given suffi-

cient nodes for that layer (Cybenko 1989; Hornik et al.

1989). Furthermore, theoretically, the number of hidden

neurons per layer should be proportional to the problem

complexity. This means that a higher degree of complexity

requires additional nodes in hidden layer(s), so that they

can capture the true underlying relationships of the mod-

elled data, although an excessive increase in neuron num-

bers may cause certain difficulties, including overfitting

Table 6 Design parameters and input MF numbers for each devel-

oped FIS model

Sugeno

model

Ra Number of MFs

per dimension

FIS1 0.2 6

FIS2 0.25 5

FIS3 0.3 4

FIS4 0.35 3

FIS5 0.4 3

FIS6 0.45 3

FIS7 0.5 2

Table 7 Training and testing performance indices of each FIS model and their respective rank values

Model System result Ranking Total rank

Train Test Train Test

RMSE R2 VAF RMSE R2 VAF RMSE R2 VAF RMSE R2 VAF

FIS1 0.139 0.719 71.902 0.151 0.670 65.459 7 7 7 4 4 4 33

FIS2 0.141 0.709 70.940 0.174 0.563 52.288 6 6 6 2 1 2 23

FIS3 0.148 0.684 68.392 0.183 0.542 47.308 5 5 5 1 2 1 19

FIS4 0.154 0.658 65.759 0.143 0.682 68.016 4 4 4 6 6 6 30

FIS5 0.154 0.654 65.401 0.141 0.689 68.782 3 3 3 7 7 7 30

FIS6 0.155 0.652 65.216 0.143 0.679 67.738 2 2 2 5 5 5 21

FIS7 0.163 0.612 61.193 0.153 0.641 63.560 1 1 1 3 3 3 12
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Fig. 10 Data points and identified cluster centers for two dimensions
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and longer computation time. Thus, specifying an optimal

number of nodes for each hidden layer is crucial (Sonmez

et al. 2006). Table 9 lists chronologically several empirical

expressions with respect to hidden node numbers. Based on

the above discussion and the information in Table 9, the

initial network connection structure used in this research

will be composed of three input nodes, one output node and

a single hidden layer with neurons ranging in number from

one to seven.

Hence, the suggested network for this research will be a

two-layer feedforward network consisting of sigmoid hid-

den nodes and a single linear output node. Based on the

resulting neuron range, seven networks with different

hidden node numbers are established. The neural network

models are thus configured to be trained and then tested to

find the optimal number of nodes in the proposed hidden

layer. The RMSE is considered as convergence criterion

for the training process (Simpson 1990). In addition to

RMSE, other statistics are designated to assess the pre-

dictive performance of these trained networks, including R2

and variance accounted for (VAF).

After training the proposed models, testing samples are

used to put the trained models to the test and also to val-

idate the model generalisation according to the perfor-

mance results on the test data set. The task of selecting the

best network performance on both training and test sets is

accomplished by means of a simple ranking approach

(Zorlu et al. 2008), as described earlier. Most scholars

involved in the field of ANN put considerable emphasis on

the importance of the learning algorithm utilised for

training purposes. With regard to the efficiency of these

algorithms, several studies have shown that the Levenberg–

Marquardt (LM) BP algorithm has a number of distinct

advantages over conventional gradient descent approaches

(Hagan and Menhaj 1994). Accordingly, all the ANN

models developed in this research are trained using the LM

BP algorithm. Table 10 summarises the trained and tested

ANN models along with their respective performance

measures (RMSE, R2, VAF) and lists rank values for both

the training and testing parts of randomly chosen data.

As shown in Table 10, a set of performance measures

with a maximum rank value of 36 demonstrates the supe-

riority of model ANN4 over the others. Consequently, the

optimal number of hidden nodes will be equal to four,

according to the selected ANN model. Figure 15 illustrates

a schematic of the optimal structure for the ANN model
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Fig. 11 Six MFs derived from the clustering process for the input Rn

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.2

0.4

0.6

0.8

1 6tsulC3tsulC5tsulC2tsulC1tsulC4tsulC

P-wave velocity                   

M
em

be
rs

hi
p 

G
ra

de
s 

   
   

   
   

   
 

Fig. 12 Six MFs derived from the clustering process for the input Vp
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Fig. 13 Six MFs derived from the clustering process for the input

Is(50)

Table 8 Six fuzzy conditional statements for the best rule-based model

Rule no. Fuzzy if–then rule

1 If (Rn is in 1 cluster 1) and (Vp is in 2 cluster 1) and (Is is in 3 cluster 1), then (E is out 1 cluster 1)

2 If (Rn is in 1 cluster 2) and (Vp is in 2 cluster 2) and (Is is in 3 cluster 2) then (E is out 1 cluster 2)

3 If (Rn is in 1 cluster 3) and (Vp is in 2 cluster 3) and (Is is in 3 cluster 3) then (E is out 1 cluster 3)

4 If (Rn is in 1 cluster 4) and (Vp is in 2 cluster 4) and (Is is in 3 cluster 4) then (E is out 1 cluster 4)

5 If (Rn is in 1 cluster 5) and (Vp is in 2 cluster 5) and (Is is in 3 cluster 5) then (E is out 1 cluster 5)

6 If (Rn is in 1 cluster 6) and (Vp is in 2 cluster 6) and (Is is in 3 cluster 6) then (E is out 1 cluster 6)
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under consideration. Evaluation of the ANN model will be

provided later.

Designing the multiple regression

MR analysis is used to determine the values of parameters

for a function such that the function will best fit a provided

set of data observations. With this technique, the function

is a linear (straight-line) equation. MR solves engineering

problems by performing a least squares fit, which con-

structs simultaneous equations through the creation of a

regression matrix. By employing this technique, coeffi-

cients are suggested by means of a backslash operator.

Using the established normalised data set, an MR

equation was developed to predict E, as shown in Eq. 11.

Values of R2 of 0.588 and 0.715 were obtained for training

and testing of the proposed MR, respectively. In these

models, Rn, Vp and Is(50) were considered as inputs, and the

E was then estimated as a function of these inputs. The

statistical package SPSS 11.5 (SPSS 2007) was used to

construct the MR models. The predictive performance of

the MR models will be examined in greater detail in the

following section.

E ¼ 0:182 � Rn þ 0:453 � Vp þ 0:173 � Is 50ð Þ þ 0:061: ð11Þ

Comparing predictive performance

This section presents an evaluation of the capacity of the

developed models for predicting the E. Simple regression

analysis revealed the need to develop E predictive models

with higher accuracy using multi-input parameters. Hence,

FIS, ANN and MR models were also proposed for esti-

mating the E of the sandstone samples. In the FIS, ANN

and MR modelling procedures, all 96 data sets were ran-

domly divided into two sets for model development and

evaluation. As mentioned previously, in this study, R2,

VAF and RMSE were considered and calculated to eval-

uate the performance of the predictive models.

Table 11 presents the results of the models in predicting

E. Based on these results, the performance of the ANN

model is superior to that of both the FIS and MR for all

items, and the performance of the FIS predictive model is

superior to that of the MR model in most of the items.

Based on the predictive performance results for both

Fig. 14 Schematic representation of the entire fuzzy inference process for the optimal Sugeno fuzzy model, FIS1

Table 9 Suggested relationships for estimating the number of hidden

layer nodes (Takagi and Sugeno 1985)

Empirical equation References

Ni þ Noð Þ=2 Ripley (1993)

2þNi�Noþ0:5No� NiþN2
oð Þ�3

NiþNo

Paola (1994)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ni � No

p
Masters (1994)

2Ni=3 Wang (1994)

� 2Ni þ 1 Hecht-Nielsen (1987)

2Ni Kaastra and Boyd (1996)

Kanellopoulas and Wilkinson (1997)

Ni number of input layer nodes, No number of output layer nodes
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superior FIS and ANN models, the proposed ANN model is

able to estimate the sandstone elastic modulus, E, for both

training and testing samples with better accuracy compared

to the fuzzy model. As an example, R2 values of 0.715,

0.670 and 0.818 for the testing data sets of MR, FIS and

ANN, respectively, indicate that the ANN is the best pre-

dictive model for estimating the E of the sandstone

samples.

The high predictive ability of the proposed ANN model

is essentially attributable to its use of iterative optimisation

in predicting the response data E. In contrast, the poor

predictive performance of the fuzzy model is principally

due to its rule-based, one-pass mechanism that does not

implement any iterative optimisation for capturing the

underlying behaviour of the training data. However, to

improve the predictive capability of the FIS, two common

overall techniques have been proposed, both of which

emphasise the fine-tuning of MF parameters of the fuzzy

system (i.e. premise and consequent MFs) over a training

period. In the first of these, which is referred to as adaptive

network-based fuzzy inference system (ANFIS), a class of

adaptive networks is converted to an equivalent FIS being

used as a whole. In the second technique, a hybrid system

can be developed to combine the FIS with any optimisation

algorithm, such as particle swarm optimisation.

Conclusions

Several laboratory tests, including uniaxial compressive

strength, Schmidt hammer, point load strength and P-wave

velocity, were conducted on 96 samples of sandstone.

These core samples were acquired from sites in the state of

Sarawak, Malaysia, and sample preparation and testing

were carried out in accordance with ISRM guidelines. As a

target of this study, elastic modulus values were obtained

after conducting UCS tests.

Based on simple regression analysis, the relationships

between the E and other predictors were found to be

acceptable. Nevertheless, in order to obtain models with

higher accuracy, MR, FIS and ANN models were also

developed. Based on model performance indices and using

a simple ranking method, the best FIS and ANN models

were chosen from among the group of models constructed,

and then using the same data sets, an MR model was

developed to predict the E of the rock. The indices R2, VAF

and RMSE were utilised to check the predictive

Table 10 Performance statistics of the ANN models, each of which is graded using a ranking technique

Model Network result Ranking Total rank

Train Test Train Test

RMSE R2 VAF RMSE R2 VAF RMSE R2 VAF RMSE R2 VAF

ANN1 0.156 0.632 63.169 0.179 0.614 61.333 1 1 1 4 2 3 12

ANN2 0.135 0.707 70.737 0.201 0.610 59.993 2 2 2 1 1 2 10

ANN3 0.128 0.730 72.974 0.165 0.715 71.132 3 3 3 5 4 5 23

ANN4 0.110 0.812 81.146 0.127 0.818 81.023 5 5 5 7 7 7 36

ANN5 0.115 0.783 78.289 0.159 0.752 73.773 4 4 4 6 6 6 30

ANN6 0.101 0.824 82.351 0.189 0.724 67.087 7 7 7 2 5 4 32

ANN7 0.109 0.820 81.953 0.186 0.653 56.903 6 6 6 3 3 1 25

Fig. 15 A 3-4-1 back-propagation MLP suggested to estimate

E values of sandstone materials

Table 11 Performance indices for the proposed models in predicting

the E of rock samples

Model Performance index

R2 RMSE VAF

Train Test Train Test Train Test

MR 0.588 0.715 0.163 0.167 58.757 67.236

FIS 0.719 0.670 0.139 0.151 71.902 65.459

ANN 0.812 0.818 0.110 0.127 81.146 81.023
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performance of the models, with results revealing the ANN

to be the best predictive model. Based on RMSE, results of

0.167, 0.151 and 0.127 were obtained for testing data sets

of the MR, FIS and ANN models, respectively, demon-

strating the higher capacity of the ANN model in esti-

mating modulus of elasticity of the rock. It should be noted,

however, that the predictive models proposed in this study

were designed based on the properties of sandstone rock

samples; hence, direct implementation of the models must

be undertaken with caution and for similar conditions.
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