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Abstract Landslides are common phenomena in moun-

tainous regions worldwide. Over the past two decades,

catastrophic rockslides in mountainous regions have caused

serious damage and fatalities. To develop effective pre-

ventive countermeasures, it is important to estimate the

kinematic behavior of displaced masses after slope failures,

such as the velocity, run-out distance, and extent. Dis-

continuous deformation analysis (DDA) is an appropriate

tool to analyze the dynamics, kinematics, and deforma-

bility of a block assembly. Many studies have reported

applications of DDA to kinematic analyses of rockslides on

two-dimensional (2-D) terrain. However, because of the

restrictions of numerical techniques, few kinematic analy-

ses of rockslides on three-dimensional (3-D) terrain have

been performed using DDA. This study developed a new

DDA model for the analysis of rockslides on 3-D terrain.

First, contact treatment techniques for the 3-D model were

developed to create an accurate and efficient computational

scheme. The new model was then verified by the bench-

mark tests on the four basic types of block motion on 3-D

terrain. Finally, the new model was applied to a designed

rockslide with complex terrain to demonstrate its practical

applicability. The results indicate that the new 3-D DDA

model is an effective tool to analyze 3-D rockslides and

could potentially be used to optimize protection designs for

rockslides.

Keywords Rockslide � Kinematic analysis � 3-D terrain �
DDA � Triangulated regular network � Contact treatment

Introduction

Landslides are common phenomena in mountainous

regions worldwide. During the past two decades, catas-

trophic landslides in mountainous regions, such as the 1999
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Chiu-fen-erh-shan landslide (Wang et al. 2003) and

Tsaoling landslide (Yang et al. 2014) in Taiwan and the

2008 Daguangbao landslide (Zhang et al. 2013a, b, 2015c)

and Donghekou landslide (Zhang et al. 2014b, 2015b) in

Sichuan, have caused serious damage and fatalities. To

develop effective preventive countermeasures, it is

important to analyze the stability of a slope before failure

and estimate the kinematic behavior of the displaced

masses after failure, such as the velocity, run-out distance,

and extent. Traditional continuum-based approaches (e.g.,

Savage and Hutter 1989; McDougall and Hungr 2004;

Chen et al. 2006; Griffiths and Marquez 2007; Zhang et al.

2013a, b; Troncone et al. 2014; Han et al. 2015, 2016;

Wang et al. 2016b) are generally suitable for flow-like

landslides, such as earthflows, mudflows, debris flows, and

lahars. Simplified approaches based on the sliding-block

model (e.g., Miao et al. 2001; Conte and Troncone 2012;

Conte et al. 2016) neglect the contacts between rocks,

which prevents them from tracing the position or trajectory

of individual rocks during a landslide. In contrast, dis-

continuum-based approaches, such as the commonly used

distinct element method (DEM) (Cundall 1971) and dis-

continuous deformation analysis (DDA) (Shi 1988), are

appropriate tools to account for the kinematic behavior of

individual displaced rocks in a rockfall, rockslide, or rock

avalanche.

DDA has several basic advantages over the DEM, such

as using an unconditionally stable time integration

scheme (Doolin and Sitar 2004), having a larger time

interval and no overlapping contacts, and being compatible

with the finite element method (Jing 1998). With contin-

uous modifications, two-dimensional (2-D) DDA has been

accepted for analyzing rockslide problems, such as the

design of fences to intercept falling rocks (Ohnishi et al.

1996), the fragmentation due to rock-slope impacts (Lin

et al. 1996), the energy dissipation considering friction,

collision and vegetation (Ma et al. 2007) and the run-out

distance (Beyabanaki et al. 2016). In particular, Sasaki

et al. (2004), Wu et al. (2009), Wu (2010) and Zhang et al.

(2013a, b) proposed several input schemes of dynamic

loading for 2-D DDA to simulate the dynamic behavior of

blocks in seismically induced rockslides. Although practi-

cal applications of DDA have focused on 2-D rockslide

problems, three-dimensional (3-D) kinematic analysis is

still desirable because 2-D analysis cannot quantitatively

estimate (i) the effect of rock shape and terrain on the

lateral dispersion process, (ii) the effect of vegetation and

fences on the trajectory of the displaced rocks, and (iii) the

run-out extent of the displaced rocks. In conclusion, 2-D

analysis cannot supply sufficient information for rockslide

disaster prevention and mitigation.

Since Shi (2001) first derived the basic formulations of

3-D DDA, much effort has focused on more extensive

and efficient analyses of practical rock engineering

problems. For example, Yeung et al. (2003) investigated

the wedge failure problem in terms of both the effective

failure mode and block displacement history. Hwang et al.

(2004) developed a 3-D DDA program to simulate the

slope toppling failure process at a site in Japan. Beya-

banaki et al. (2009a, b) enhanced the blocks’ deforma-

bility by introducing finite element meshes into 3-D

DDA, and Beyabanaki et al. (2010) achieved the same

goal by employing high-order displacement functions in

3-D DDA. Liu et al. (2012) studied the wedge failure

mode and the Jiweishan rockslide using 3-D DDA com-

bined with tetrahedral finite elements. Shi (2014) used a

simple version of 3-D DDA to perform a stability analysis

of a major key block. Wu (2015) introduced a local frame

into each block to overcome the false volume expansion

and stress distortion problems that occur with large

rotations in rockslide simulations. Zhang et al. (2014a)

coupled the smoothed particle hydrodynamics (SPH)

model into 3-D DDA to investigate rockslide-generated

impulse waves (Wang et al. 2016a). Zhang et al. (2016a)

extended 3-D DDA to analyze the frictional-cohesive

failure behavior of a slope. Beyabanaki and Bagtzoglou

(2012, 2015) and Jiao et al. (2015) developed preliminary

3-D spherical DDA models to simulate the kinematic

behavior of rockslide problems. However, these spherical

models are more suitable for applications to particulate

media, and the terrain model is too ideal and simple to be

used for practical cases. To address this problem, Chen

et al. (2013) and Zheng et al. (2014) developed the

contact face element (CFE) model for realistic slope ter-

rain, on which the 3-D trajectories of rockfalls were

investigated. However, the preliminary CFE model can

only handle the independent movement of individual

blocks, i.e., the interaction between the blocks is not

considered. In addition, it only accounts for vertex-to-face

contacts between the block and the slope model and could

not prevent inter-penetration when the edges of a rock

block contact the edges of the slope model. Therefore, it

cannot be used to model the kinematic behavior of a large

number of rocks on complex terrain.

This study developed a new 3-D DDA model to analyze

the kinematic behavior of rockslides on complex 3-D ter-

rain. Including the introduction, this paper consists of six

sections. Section 2 introduces the fundamental theory of

3-D DDA. Section 3 presents an extension to the original

3-D DDA for the analysis of rockslides on complex 3-D

terrain. Section 4 verifies the accuracy of the new model

with the benchmark tests on the four basic types of block

motion, including parabolic motion, sliding, rolling and

bouncing on 3-D terrain. Section 5 shows the simulation

results of a designed rockslide on complex 3-D terrain and

provides a detailed discussion of the results to demonstrate
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the model’s practical applicability. Finally, Sect. 6 presents

the main conclusions.

Fundamental theory of 3-D DDA

Block displacements and deformations

For a 3-D DDA formulation, the linear system has twelve

degrees of freedom for each individual block with an

arbitrary polyhedral shape:

Di ¼ u0 v0 x0 rx ry rz ex ey ez cyz czx cxy
� �T

ð1Þ

where (u0, v0, w0) are the rigid body translations of a

specific point (x0, y0, z0) of Block i, (rx, ry, rz) are the rigid

body rotations of Block i with the center of rotation at (x0,

y0, z0), and (ex, ey, ez), and (cyz, czx, cxy) are the normal and

shear strains on Block i, respectively. The displacement of

an arbitrary point (x, y, z) in Block i is:

u v w½ �T¼ Ti x; y; zð Þ½ �Di ð2aÞ

where [Ti(x, y, z)] is the formula for the displacement

function of Block i, which is given by:

Equations of motion

The total potential energy is the summation over all of the

potential energy sources from the block stiffness, the initial

stress, the point loads, the body loads, the inertia forces, the

constraint springs of fixed points or measured displace-

ments, and the contact forces between the blocks.

The equations of motion for a system of n blocks is

derived by minimizing the total potential energy:

K11 K12

K22

� � � K1n

� � � K2n

Sym:
. .
. ..

.

Knn

2

6664

3

7775
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..

.

Dn

2

6664

3

7775
¼

F1

F2

..

.

Fn

2

6664

3

7775
ð3Þ

where Kij and Fi are 12 9 12 stiffness submatrices and

12 9 1 loading vectors, respectively. The submatrices Kii

depend on the material properties of Block i, and Kij

(i = j) is defined by the contacts between Blocks i and

j. For additional details, the interested reader is referred to

Shi (1988, 2001).

Limitations of the original 3-D DDA for kinematic

analysis of rockslides

A rigorous contact theory that allows 3-D DDA to address

contact problems for systems of arbitrarily shaped poly-

hedral blocks is still under development. The contact the-

ory must account for the geometrical and mechanical

relationships between the blocks; i.e., contact detection and

contact mechanics treatment, respectively. Contact detec-

tion and resolution is important because (i) it is the most

time-consuming part of discrete analyses and can take up

80% of the total computation time (Horner et al. 2000), and

(ii) the types of contacts determine the mechanical

response of the contacts (Cundall 1988).

In the original 3-D DDA, the terrain of a slope is gen-

erated as the boundaries of a single large block or the

combination of several artificial column blocks. In practice,

the blocky slope model is not applicable because of the

following factors: (i) no effective tools have been devel-

oped to automatically generate a large-scale, complex

polyhedral slope model to be used in 3-D DDA; (ii) if the

3-D slope is reconstructed as a single large polyhedral

block (Fig. 1a), difficulty will arise from the treatment of

the contacts between blocks with significantly different

sizes; and (iii) if the slope is discretized into several arti-

ficial column blocks (Fig. 1b), the computational cost for

these extra blocks will increase significantly.

Extensions of the original 3-D DDA for kinematic
analyses of rockslides on complex 3-D terrain

Triangulated regular network for the terrain

of a slope

Kinematic analyses of rockslides only consider the kine-

matic behavior of the displaced rocks, and the slope merely

Ti x; y; zð Þ½ � ¼

1 0 0 0 z� z0 � y� y0ð Þ x� x0 0 0 0
z� z0

2

y� y0

2

0 1 0 � z� z0ð Þ 0 x� x0 0 y� y0 0
z� z0

2
0

x� x0

2

0 0 1 y� y0 � x� x0ð Þ 0 0 0 z� z0
y� y0

2

x� x0

2
0

2

6664

3

7775

ð2bÞ
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serves as the boundary for these rocks to interact with.

Moreover, the ground motion and deformation that are

induced by the rockslide are neglected due to their small

values; for example, the velocities induced by a

2.5 9 106 m3 rockslide are on the order of 10-6 m/s

(Favreau et al. 2010). Therefore, it is not necessary to

generate a slope as blocks. A simpler slope model for the

terrain of a slope (Fig. 1c), such as a triangulated regular

network (TRN), can play a similar role as the boundary of

the blocky slope.

In practice, the terrain of a slope is usually prepared

in a geographical information system (GIS) in the form

of a contour map, which is represented by extracted

polylines (Fig. 2a). The polylines are a straightforward

description of the terrain, but they cannot be used

directly as the slope model in 3-D DDA because they do

not intersect with each other and cannot form polyhedral

faces. To solve this problem, the polyline file is first

transformed into a triangulated irregular network (TIN)

map (Fig. 2b), which is then converted into a raster

format (Fig. 2c). The terrain of the slope in the raster

format is represented mathematically by a set of eleva-

tion points in the form of an m 9 n matrix (where m and

n are the rows and columns of the matrix, respectively)

of elevations. Physically, the terrain of the slope is

composed of equally sized cells (D denotes the cell size)

in rows and columns. As shown in Fig. 3a, the coordi-

nates are contained in the ordering of the matrix; i.e., the

x- (or y-)coordinate of each point is calculated by mul-

tiplying the cell size and its x- (or y-)index, and the

elevation in the z-direction can be directly accessed from

the elevation matrix according to its x- and y-indices.

However, the raster slope model also cannot be used

directly in 3-D DDA because the faces in 3-D DDA are

defined as plane polygons. Therefore, it is necessary to

divide each cell into two triangles (Fig. 3b). If the indices

of the upper left point of a cell are (i, j), then the lower left

triangle consists of three points that are indexed as (i, j),

(i ? 1, j), and (i ? 1, j ? 1), and the upper right triangle

consists of three points that are indexed as (i, j), (i ? 1,

j ? 1), and (i, j ? 1) (Fig. 3). All of these triangles are

stored in sequence in an array. Accordingly, a lower left

triangle is always indexed in the array with an even num-

ber, whereas an upper right triangle is always indexed with

an odd number (Fig. 3). Assuming that a TRN slope model

is represented by an m 9 n matrix, the indices of the upper

left point of a cell are (i, j), and the indices of the lower left

and upper right triangles of this cell in the array can be
Fig. 1 Three types of slope models: a a single block; b artificial

column blocks; c TRN terrain
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directly obtained as 2 9 [(n - 1) 9 i ? j] and 2 9

[(n - 1) 9 i ? j] ? 1, respectively, according to the reg-

ular arrangement, which is useful in searching for possible

contacts.

Contact detection scheme

Search for possible contacting TRN elements

A TRN slope model that is represented by an m 9 n matrix

contains va (=m 9 n) vertices, ea edges (including

(n - 1) 9 m edges along the x-axis, (m - 1) 9 n edges

along the y-axis, and (m - 1) 9 (n - 1) edges that sepa-

rate the cells), and fa faces (including (m - 1) 9 (n - 1)

lower left and upper right triangles, respectively). If a block

contains vb vertices, eb edges, and fb faces, the number of

discrete contact combinations between the block and the

slope model is given by (Cundall 1988):

N ¼ va þ ea þ fað Þ � vb þ eb þ fbð Þ ð4Þ

For example, if a slope model is represented by a

570 9 455 matrix, it contains 2,59,350 vertices, 7,76,001

edges and 5,16,652 faces. Even if only one cuboid moves

on the slope, the total number of possible contacts would

be 4,03,52,078 per time step. Clearly, the number of con-

tact elements is too large to allow for an exhaustive search.
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Fig. 3 Representations of the terrain of a slope by a TRN map: a a

raster dataset; b the TRN generated from the raster dataset

Fig. 2 Representations of the terrain of a slope
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However, this drawback can be overcome in the TRN slope

model due to its regular element arrangement. A brief

procedure of the new program is presented in Fig. 4.

To improve the computational efficiency, the contact

detection begins by searching for possible contacting TRN

elements of the slope model. In this step, it should be

sufficient to confine each block to a relatively rough axis-

aligned bounding box (AABB) (Wu et al. 2005, 2014)

(Fig. 5a). Let xmin, ymin, zmin, xmax, ymax, and zmax be the

minimum and maximum coordinates of a block, and limit

the block within its AABB. The possible contact territory

for the block can be determined by enlarging its AABB

with a relatively small tolerance ctol that is the maximum

allowable vertex displacement within a single time step.

The possible contacting TRN elements of the slope can be

restricted within the region that is contained by the pro-

jection of the block’s contact territory on the xy-plane

(Fig. 5b, c). The range of the region can be indexed by

Eq. (5a–d):

imin ¼ INT
xmin � ctol

D

� �
ð5aÞ

imax ¼ INT
xmax þ ctol

D

� �
ð5bÞ

jmin ¼ INT
ymin � ctol

D

� �
ð5cÞ

jmax ¼ INT
ymax þ ctol

D

� �
ð5dÞ

where D is the cell size, and INT means taking the integer

portion of the value; that is, the triangles whose upper left

point’s indices (i, j) satisfy the condition:

i; jð Þji 2 imin; imax½ �; j 2 jmin; jmax½ �f g ð6Þ

are the possible contacting TRN elements for the block.

Furthermore, local contact detection can be avoided if

Eq. (7) is satisfied:

zmin � ctol� Zmax ð7Þ

where Zmax is the maximum elevation of the possible

contacting TRN elements (Fig. 5d). Consequently, the

number of possible contacting TRN elements is dramati-

cally decreased, and the efficiency of the contact detection

is greatly improved.

Examination of dominant contact types

In this step, the blocks and corresponding possible con-

tacting TRN elements are examined in more detail for the

dominant contact types (Fig. 4). Blocks contact these

possible TRN elements at their boundaries (i.e., vertices,

edges and faces). In general, seven contact types must be

addressed in 3-D cases, including vertex-to-vertex (V–V),

vertex-to-edge (V–E), vertex-to-face (V–F), crossing edge-

to-edge (E–E), parallel E–E, edge-to-face (E–F), and face-

Yes

Start

i = 0

Calculate contact region of Block i

Calculate AABB of Block i

Calculate the range of potential 
contacting TRN elements through 

Eqs. (5 and 6)

Satisfy Eq. (7) ?

No

i ++

Block i is the last block ?

End

Search contact types between 
Block i and the TRN elements

Identify entrance modes of 
these contacts

Generate TRN data 
with GIS tools

Step n =  0

Mechanical calculations
(including open-close iterations)

Step n is the last step ?

n ++

Output

Yes

No

No

Yes

Contact detection 
between blocks

Input geometric data,
physical and computational
parameters, TRN data, etc.

Fig. 4 Flow chart of the extended 3-D DDA program
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to-face (F–F) (Cundall 1988; Liu and Lemos 2001; Keneti

et al. 2008). However, as indicated by Shi (2015), only four

dominant contact types need to be examined in 3-D DDA,

including V–V, V–E, V–F and crossing E–E (hereinafter

referred to as ‘‘E–E’’ for short if not otherwise specified)

(Fig. 6), because the others can be converted to combina-

tions of these four dominant contact types.

Contact pairs of these dominant contacts can be in

contact when their distances are close enough to be within

ctol. Some contact pairs may belong to multiple types. For

Fig. 5 Global search between a

block and a TRN slope
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example, Vertex A in the V–E contact (Fig. 6b) actually

matches Edge B and Faces B1 and B2 at the same time.

These cases follow the rule of ‘‘complex to simple’’ (He

et al. 2014), which is V–V[V–E[V–F = E–E. The

purpose is to avoid misjudgment of complex situations.

Additional details of dominant contact examination can be

found in Zhang et al. (2016b).

Identification of the entrance plane and contact point pair

According to the entrance plane (EP) method (Zhang et al.

2015a), all dominant contacts will be converted to one or

two entrance modes; i.e., V–F and E–E entrance modes.

Fig. 5 continued

(a) V-V

(b) V-E

(c) V-F

(d) E-E

x

y
z

Block

Slope

Vertex A

Vertex B

x

y
z

Slope

Block

Edge B

Vertex A

x

y
z

Block

Slope

Vertex A

Face B

x

y
z

Block

Slope

Edge A

Edge B

Fig. 6 Contact types
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A V–F contact can occur between a vertex and a face. An

E–E contact can occur between two edges. A V–E contact

(denoted as Vertex A and Edge B) can occur between

Vertex A and either face that contains Edge B (i.e., V–F

entrance) or between Edge B and the edge that contains

Vertex A (i.e., E–E entrance). A V–V contact (denoted as

Vertices A and B) can occur between Vertex A and either

face that contains Vertex B (i.e., V–F entrance), between

Vertex B and either face that contains Vertex A (i.e., V–F

entrance) or between two edges that contain Vertices A and

B (i.e., E–E entrance).

For a V–F entrance, the face is the EP, and all of the

faces that contain the vertex should be on the outer side of

the EP. For an E–E entrance, the plane that contains one

edge and is parallel to the other edge is the EP, and the two

faces that contain one edge should be on one side of the EP,

while the two faces that contain the other edge should be on

the other side of the EP. General entrance formulas (Zhang

et al. 2015a) are used to determine if these entrance can-

didates can physically occur.

Finally, each dominant contact between a block and a

TRN slope model may occur in three modes: a block vertex

and a slope face (Mode 1), a slope vertex and a block face

(Mode 2), and a block edge and a slope edge (Mode 3)

(Fig. 7). A solution to real entrance modes and contact

point pairs can be determined using a ‘‘trial-and-error’’

procedure. Hence, ‘‘open-close’’ iterations (Jiang and

Yeung 2004) were employed to locate all closed entrances

and contact point pairs and to apply the most suit-

able contact force patterns for contact computation in each

time step.

Contact mechanics treatment

Submatrix of a normal contact spring

The relevant formulation for the V–F entrance between

polyhedral blocks was provided by Shi (2001), and the

counterpart for the E–E entrance can be found in Zhang

et al. (2016c). In the following sections, the formulation for

the entrances of the contacts between a block and a TRN

slope model are derived in a uniform way based on the

previous work of Shi (2001) and Zhang et al. (2016c).

Let Pa and Pb be a contact point pair that belong to

Block i and the slope model, respectively. The coordinates

and displacement increments of Point Pm (m = 1, 2, 3, 4)

are assumed to be (xm, ym, zm), and (um, vm, wm), respec-

tively. The submatrices of normal contact springs, shear

contact springs and friction force are derived as follows.

The normal distance between Pa and Pb can be

approximately calculated by Eq. (8a):

dn ¼ d0 þ

P4
r¼1 Ar2 Ar3 Ar4½ �

ur
vr
wr

2

4

3

5

8
<

:

9
=

;

A0

ð8aÞ

where

d0 ¼
P4

r¼1 Ar1

A0

ð8bÞ

and

Ars is obtained through Eqs. (9–11):

Denote

V0 ¼

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y3 z3

��������

��������

¼

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

��������

��������

ð9Þ

and Mrs as the cofactor of the determinant V0 about the

element ars in Eq. (9). For example,

M23 ¼

1 x1 y1 z1
1 x2 y2 z2
1 x3 y3 z3
1 x4 y3 z3

��������

��������

¼
1 y1 z1
1 y3 z3
1 y4 z4

������

������
ð10Þ

Denote Ars as the algebraic complement of the deter-

minant V0 about the element ars; i.e.,

Ars ¼ �1ð Þrþs�Mrs ð11Þ

In Mode 1, Vertex P1 belongs to Block i, and Vertices

P2, P3, and P4 belong to the base of the slope. Let:

Gi ¼
A12 A13 A14½ � Ti x1; y1; z1ð Þ½ �

A0

ð12Þ

A0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y2 z3 � z2
y4 � y2 z4 � y2

����

����

2

þ z3 � z2 x3 � x2
z4 � z2 x4 � x2

����

����

2

þ x3 � x2 y3 � y2
x4 � x2 y4 � y2

����

����

2
s

; for the V�F entrance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y3 � y2 z3 � z2
y4 � y2 z4 � y2

����

����

2

þ z3 � z2 x3 � x2
z4 � z2 x4 � x2

����

����

2

þ x3 � x2 y3 � y2
x4 � x2 y4 � y2

����

����

2
s

; for the V�F entrance

8
>>>><

>>>>:

ð8cÞ
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InMode 2, Vertices P2, P3, and P4 belong to Block i, and

Vertex P1 belongs to the base of the slope. Let:

Gi ¼
P4

r¼2 Ar2 Ar3 Ar4½ � Ti xr; yr; zrð Þ½ �f g
A0

ð13Þ

In Mode 3, Vertices P1 and P2 belong to Block i, and

Vertices P3 and P4 belong to the base of the slope. Let:

Gi ¼
P2

r¼1 Ar2 Ar3 Ar4½ � Ti xr; yr; zrð Þ½ �f g
A0

ð14Þ

Equation (8a) can be rewritten as:

dn ¼ d0 þGiDi ð15Þ

The potential energy of the normal contact spring is:

Y
n
¼ 1

2
knd

2
n ð16Þ

where kn is the stiffness of the normal contact spring.

By minimizing Pn, the submatrix of the normal contact

spring is formed as:

knG
T
i Gi ! Kii ð17aÞ

�knd0G
T
i ! Fi ð17bÞ

Submatrix of a shear contact spring

The shear distance between Pa and Pb is:

ð18Þ

where n = (nx, ny, nz) is the unit normal vector of the EP,

and N ¼
1� n2x 0 0

0 1� n2y 0

0 0 1� n2z

2

4

3

5:

The potential energy of the shear contact spring is:

Y
s
¼ 1

2
ksd

2
s ð19Þ

where ks is the stiffness of the shear contact spring.

By minimizing Ps, the submatrix of the shear contact

spring is formed as:

ks Ti xa; ya; zað Þ½ �TN Ti xa; ya; zað Þ½ � ! Kii ð20aÞ

�ks Ti xa; ya; zað Þ½ �TN
xa � xb
ya � yb
za � zb

2

4

3

5 ! Fi ð20bÞ

Submatrix of the friction force

A normal contact spring and friction force will be added to

Pa and Pb to account for the sliding motion, which is

controlled by the Coulomb friction law:

f ¼ �kndntan/ � es ð21Þ

where / is the friction angle, and es = (ex, ey, ez) is the unit

vector of the relative shear displacement from Pb to Pa.

(a) Mode 1: a block vertex and a slope face

(b) Mode 2: a slope vertex and a block face

(c) Mode 3: a block edge and a slope edge
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Fig. 7 Three modes of contacts between a block and a TRN slope
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The relative shear displacement at this iteration step is:

ð22Þ

The potential energy due to the friction forces is:
Y

f
¼ �f � df ð23Þ

By minimizing Pf, the submatrix of the friction force is

formed as:

�kndntan/ Ti xa; ya; zað Þ½ �T
ex
ey
ez

2

4

3

5 ! Fi ð24Þ

As shown above, the submatrices that depend on the

TRN slope itself can be excluded from Eq. (3), and the

stiffness submatrices that are defined by the contacts

between the block and the TRN slope are only located in

the main diagonal of the global stiffness matrix. Thus, the

efficiency of the matrix solutions is enhanced considerably.

Determination of the contact force pattern

Depending on the normal and shear components of the

contact force (Fig. 8), three patterns of the contact force are

determined by the following criteria (Shi 1988):

1. If dn B 0, the contact status is ‘‘open’’, and neither

spring nor a friction force is added to the contact

points;

2. If dn[ 0 and ksds[ kndntan/ ? cAc, the contact

status is ‘‘slip’’, and a normal spring and a friction

force are applied at the contact points;

3. If dn[ 0 and ksds B kndntan/ ? cAc, the contact

status is ‘‘stick’’, and both normal and shear springs

are placed at the contact points.

Benchmark tests

To investigate the accuracy of the new model, the bench-

mark tests on the four basic types of block motion (i.e.,

parabolic motion, sliding, rolling, and bouncing of blocks

on 3-D terrain) are presented. The value of the gravitational

acceleration g is taken as 10 m/s2.

Parabolic motion

An example of a projectile with an initial speed is used to

numerically investigate the accuracy of the parabolic motion

when a block is detached from the slope. In this example, the

block moves with a constant speed of vy (10 m/s) in the y-

direction and falls freely in the z-direction. Hence, the ana-

lytical solutions of the displacements in the y- and z-directions

at the centroid of the block after time t, dy, and dz, are:

dy ¼ vyt ð25aÞ

dz ¼ � 1

2
gt2 ð25bÞ

As shown in Fig. 9, the 3-D DDA results exhibit satis-

factory agreement with the analytical solutions, which

(a) normal contact spring

(b) shear contact spring

nk

No tension

Contact point

Entrance plane

sk
No tension

, c

Contact point

Contact point

Entrance plane

φ

Fig. 8 Mechanical models of a contact
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validates the precision of the new 3-D DDA model for

parabolic motion of a block.

Sliding motion

An example of a block sliding on an inclined plane due to

gravity with interface friction is used to numerically

investigate sliding motion. The parameters h and / are the

inclination of the slope and friction angle, respectively, and

/\ h. The analytical solution for the downslope dis-

placement of the block is:

d ¼ 1

2
g sinh� tan/coshð Þt2 ð26Þ

As shown in Fig. 10, the 3-D DDA results agree with

the analytical solutions. The block remains stable on the

inclined plane when / C h (h = 30� in this example).

Thus, the new 3-D DDA model is able to capture essential

aspects of sliding motion.

Rolling motion

An example of the so-called ‘‘critical rolling initiation

angle’’ (CRIA) is used to numerically investigate the roll-

ing motion of a block. The CRIA of a regular prism with

n equilateral edges (Fig. 11a) is defined as:

a ¼ 180

n
ð27Þ

In 3-D DDA simulations, the friction angle / is assigned

a greater value than the inclination of the slope h to avoid

sliding failure; then, h is gradually increased until rolling
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Fig. 10 Verification of the 3-D DDA solution for sliding motion
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Fig. 11 Verification of the 3-D DDA solution for rolling motion
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motion occurs when h = a. Thus, the value of h when

rolling motion occurs in the 3-D DDA simulation can be

used as the CRIA of the block.

As shown in Fig. 11b, the DDA results are nearly identical

to the analytical solutions, which confirms the precision of the

results of rolling motion from the new 3-D DDA model.

Bouncing motion

The existing DDA model assumes completely elastic

deformation without energy dissipation during block colli-

sion, so the rebounding rock will travel faster and further

than is observed in experiments or measured in the field.

From the perspective of contact mechanics, the TRN

slope model that was developed in this study is similar to

the completely fixed, rigid blocky slope model that was

used in the original 3-D DDA. This condition in a blocky

slope model can be approximately obtained when (i) the

slope block is fixed with springs of very large stiffness and

is not subjected to gravity, and (ii) the slope block has a

very large value of Young’s modulus and a Poisson’s ratio

of zero. As shown in Fig. 12a, the bouncing solutions using

a TRN slope model and a completely fixed, rigid blocky

slope model are nearly the same, in which Young’s mod-

ulus E = 1.0 9 1010 Pa, Poisson’s ratio t = 0.25, and the

normal spring stiffness kn = 1.0 9 1010 N/m.

The bouncing height in Fig. 12a is reduced because

some of the gravitational potential energy of the upper

colliding block is converted into elastic strain energy of the

block. The mechanical properties, including E and t, and
the computational parameter kn are the main factors that

affect the energy conversion during block collision. As

shown in Fig. 12b, the coefficient of restitution (COR)

approaches 1.0 when E and kn are sufficiently large.

However, the phenomenon of energy dissipation during

a collision has been observed in many experiments, but it is

not fully understood and thus requires further studies.

Hence, bouncing motion is difficult to simulate because it

depends on the kinetic energy that is absorbed as plastic

deformation of the soft layer of the slope surface or con-

verted into thermal energy.

To account for the energy dissipation due to the colli-

sion, a so-called post-adjustment method similar to Chen’s

(2003) was employed. The velocities of a rock immediately

before and after the collision are denoted vb and va,

respectively, and the initial velocity of the rock immedi-

ately after the collision is modified to:

va ¼ COR � vb ð28Þ

Estimating the value of the COR requires laboratory or

in situ tests, which were carried out by Zhu et al. (2016b).

According to the observed data cited by Chen (2003), the

COR in rockslides ranges from 0.6 to 0.8.

Applications to the kinematic analysis
of a designed large-scale rockslide

Model setup

Figure 13 shows the geometry of a model of a large-scale

rockslide. The TRN slope model consists of 2240 triangles

with a cell size of 0.5 m. The rockslide mass on the slope is

composed of 39 arbitrarily shaped polyhedral blocks with a

minimum volume of 50.833 m3 and a minimum edge

length of 1.670 m.

The blocks are allowed to move freely under gravity from

the resting state. The mechanical properties and computa-

tional parameters used in the simulations are: density
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q = 2500 kg/m3, Young’s modulus E = 5.0 9 1010 Pa,

Poisson’s ratio t = 0.25, gravitational acceleration

g = 10 m/s2, friction angle / = 25�, zero cohesion (be-

cause the cohesion is too sensitive to sliding stability (Shi

2014)), normal spring stiffness kn = 5.0 9 1010 N/m,

rebound velocity ratio COR = 0.7, time interval

Dt = 0.0001 s, and the total computational time is 20 s. A

normal contact spring stiffness value of E is used to obtain

reasonable displacements and stresses because the ratio of

the normal contact spring stiffness to the Young’s modulus

should range between 1/100 and 100 (Shi 1988; Wu 2008).

The computations were executed on a desktop computer

with an Intel(R) Core(TM) i7-4790 CPU (3.60 GHz, 8

cores) and 24 GB of RAM.

Results and discussion

Figure 14 shows the velocity, run-out distance and extent

of the example. The results show that:

1. The terrain has a strong influence on the run-out

distance and extent because of lateral dispersion

(Fig. 13a–d). These results indicate that using a 2-D

DDA model to describe the spatial motion along a

prescribed 2-D path may result in large errors. The

results predicted by the 3-D simulation, such as the

velocity (or kinetic energy depending on the mass

and the velocity of an individual block), run-out

distance, and extent, provide more straightforward

information than a 2-D model, which is useful in

rockslide disaster prevention and mitigation, such as

the design of fences to prevent a potential rockslide

from destroying structures (Fig. 14c, d).

2. The velocity of the rockslide masses greatly depends

on the slope angle (Ritchie 1963). The kinematic

process of the rockslide can be divided into two main

stages. In the first stage, the rockslide accelerates to a

high speed in a short period of time (Fig. 14a). In the

second stage, the rockslide decelerates to a stationary

state (Fig. 14b). This is due to the effect of the

inclination of the slope on the type of block motion.

For gentle slopes, the most commonly observed

phenomena are rolling and sliding (Volkwein et al.

2011). For intermediate slopes, rocks propagate as a

succession of parabolic motions and bouncing,

whereas for steep slopes, parabolic motion is the

dominant mode of block motion. Sliding motion

clearly plays a primary role in energy dissipation in

the form of friction.

3. The run-out distance appears to be related to the slope

angle. The friction angle (25�) is approximately equal

to the angle of reach (approximately 23.4�), which is

calculated by:

b ¼ tan�1 H

L

� �
ð29Þ

where H is the elevation difference between the top of

the source area and the toe of the deposit, and L is the

length of the horizontal projection of the streamline

that connects these two points (Fig. 14b). This rela-

tionship is consistent with the results that were

obtained from methods based on regression models

(Heim and Skermer 1989).

4. In this example, the computational time for 1000

steps using the TRN slope model is approximately

53 s, whereas the counterpart using the blocky slope

model is up to 880 s; that is, the new model

increased the computational efficiency by 17 times.

Because of the regular arrangement of elements, the

computation time using the TRN slope model will

remain the same as in the example even if the size

of the slope is greatly increased; however, for the

blocky slope model, the computational cost will

increase significantly due to the contact detection

between the blocks and the extra elements of the

blocky slope when it is expanded to a larger-scale

problem. In other words, the larger the problem is,

the more significantly the efficiency will be

improved using the TRN slope model.

Conclusions

This paper proposes a new TRN slope model for 3-D DDA

to analyze rockslides on complex 3-D terrain. The main

merits of the new model are as follows:

1. Large-scale slope models with complex terrain can be

created easily and efficiently using GIS tools.

Fig. 13 Geometry of the model
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2. The computational efficiency of the contact detection

is greatly improved because the total number of

possible contacts is dramatically reduced due to the

regular element arrangement of the TRN slope model.

3. The computational efficiency of the treatment of

contact mechanics is enhanced considerably because

all of the submatrices that are related to the TRN slope

are excluded from the matrix assembly.

To investigate the accuracy of the new model, the

benchmark tests on the four basic types of block motion,

including parabolic motion, sliding, rolling, and bouncing,

were verified. Finally, applications to large-scale rockslides

with complex terrain were provided to demonstrate the

practical applicability of the model. The results indicate

that the new 3-D DDA model is an effective tool to analyze

large-scale rockslides.

However, modeling three dimensional multi-block sys-

tems in 3D-DDA is a complex and challenging task because

the block cutting code (Shi 2006) in 3D-DDAdoes not have a

graphical interface and does not accept 3-D blocks as input;

rather, it uses 2-D triangles to build the blocks. A more

complex case study will be provided in the future after

incorporating more user-friendly techniques, such as

binocular photogrammetry (Zhu et al. 2016a) and computer-

aided design (CAD) techniques (Yagoda-Biran and Hatzor

2016).

Moreover, this study addressed the energy dissipation

due to a collision using a so-called post-adjustment

method, which is somewhat empirical and artificial.

Fig. 14 Comparisons of the velocity, run-out distance and distribution of the landslide deposit before (a, b) and after (c, d) construction of a

fence
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Further development of a more physical elastic–plastic

model instead of the current completely elastic model is a

way to address the problem of energy dissipation due to a

collision.

Finally, the dynamic analysis of large-scale rockslides on

complex 3-D terrain under seismic loading remains an inter-

esting topic for further study.This problem requires additional

effort to incorporate dynamic loading input schemes into the

current 3-D DDA model for dynamic analyses.

Acknowledgements This study is funded by the National Science &

Technology Pillar Program of the Ministry of Science and Technol-

ogy of China (Grant Number 2014BAL05B01), and the program of

Key Laboratory of Yangtze River Water Environment for Ministry of

Education, Tongji University (Grant Number 0400219339).

References

Beyabanaki SAR, Bagtzoglou AC (2012) Three-dimensional discon-

tinuous deformation analysis (3-D DDA) method for particulate

media applications. Geomech Geoeng 7(4):239–253

Beyabanaki SAR, Bagtzoglou AC (2015) Sphere-boundary edge and

sphere-boundary corner contacts model in DDA for simulating

particulate media in 3-D. Geomech Geoeng 10(2):83–94

Beyabanaki SAR, Jafari A, Biabanaki SOR, Yeung MR (2009a) A

coupling model of 3-D discontinuous deformation analysis (3-D

DDA) and finite element method. AJSE 34(2B):107–119

Beyabanaki SAR, Jafari A, Biabanaki SOR, Yeung MR (2009b)

Nodal-based three-dimensional discontinuous deformation anal-

ysis (3-D DDA). Comput Geotech 36(3):359–372

Beyabanaki SAR, Jafari A, Yeung MR (2010) High-order three-

dimensional discontinuous deformation analysis (3-D DDA).

J Numer Meth Bio 26(12):1522–1547

Beyabanaki SAR, Bagtzoglou AC, Liu L (2016) Applying disk-based

discontinuous deformation analysis (DDA) to simulate Donghe-

kou landslide triggered by the Wenchuan earthquake. Geomech

Geoeng 11(3):177–188

Chen GQ (2003) Numerical modelling of rock fall using extended

DDA. Chin J Rock Mech Eng 22(6):926–931

Chen H, Crosta GB, Lee CF (2006) Erosional effects on runout of fast

landslides, debris flows and avalanches: a numerical investiga-

tion. Geotechnique 56(5):305–322

Chen GQ, Zheng L, Zhang YB, Wu J (2013) Numerical simulation in

rockfall analysis: a close comparison of 2-D and 3-D DDA. Rock

Mech Rock Eng 46(3):527–541

Conte E, Troncone A (2012) Simplified approach for the analysis of

rainfall-induced shallow landslides. J Geotech Geoenviron

138(3):398–406

Conte E, Donato A, Troncone A (2016) A simplified method for

predicting rainfall-induced mobility of active landslides. Land-

slides. doi:10.1007/s10346-016-0692-8

Cundall PA (1971) A computer model for simulating progressive

large scale movements in blocky rock systems. In: Proceedings

of the international symposium on rock fracture, Nancy,

pp 129–136

Cundall PA (1988) Formulation of a three-dimensional distinct

element model—Part I. A scheme to detect and represent

contacts in a system composed of many polyhedral blocks. Int J

Rock Mech Min Sci Geomech Abstr 25(3):107–116

Doolin DM, Sitar N (2004) Time integration in discontinuous

deformation analysis. J Eng Mech 130(3):249–258

Favreau P, Mangeney A, Lucas A (2010) Numerical modeling of

landquakes. Geophys Res Lett 37(15):5

Griffiths DV, Marquez RM (2007) Three-dimensional slope stability

analysis by elasto-plastic finite elements. Geotechnique

57(6):537–546

Han Z, Chen GQ, Li YG, Tang C, Xu LR, He Y, Huang X, Wang W

(2015) Numerical simulation of debris-flow behavior incorpo-

rating a dynamic method for estimating the entrainment. Eng

Geol 190:52–64

Han Z, Li YG, Huang JL, Chen GQ, Xu LR, Tang C, Zhang H, Shang

YH (2016) Numerical simulation for run-out extent of debris

flows using improved cellular automaton model. B Eng Geol

Environ. doi:10.1007/s10064-016-0902-6

He L, An XM, Zhao ZY (2014) Development of contact algorithm for

three-dimensional numerical manifold method. Int J Numer

Meth Eng 97:423–453

Heim A, Skermer N (1989) Landslides & Human Lives. BiTech,

Vancouver, BC

Horner DA, Carrillo A, Peters JF (2000) Very large scale coupled

discrete element-finite element modeling for simulation excava-

tion mechanics. In: Fourteenth engineering mechanics confer-

ence, American Society of Civil Engineers, College Station,

Texas, pp 21–24

Hwang JY, Ohnishi Y, Wu J (2004) Numerical analysis of

discontinuous rock masses using three-dimensional discontin-

uous deformation analysis (3D DDA). KSCE J Civ Eng

8(5):491–496

Jiang QH, Yeung MR (2004) A model of point-to-face contact for

three-dimensional discontinuous deformation analysis. Rock

Mech Rock Eng 37(2):95–116

Jiao YY, Huang GH, Zhao ZY, Zheng F, Wang L (2015) An

improved three-dimensional spherical DDA model for simulat-

ing rock failure. Sci China Technol Sc 58(9):1533–1541

Jing L (1998) Formulation of discontinuous deformation analysis

(DDA)—an implicit discrete element model for block systems.

Eng Geol 49(3):371–381

Keneti AR, Jafari A, Wu JH (2008) A new algorithm to identify

contact patterns between convex blocks for three-dimensional

discontinuous deformation analysis. Comput Geotech

35(5):746–759

Lin CT, Amadei B, Jung J, Dwyer J (1996) Extensions of

discontinuous deformation analysis for jointed rock masses. Int

J Rock Mech Min Sci Geomech Abstr 33(7):671–694

Liu XL, Lemos JV (2001) Procedure for contact detection in discrete

element analysis. Adv Eng Softw 32(5):409–415

Liu J, Nan Z, Yi P (2012) Validation and application of three-

dimensional discontinuous deformation analysis with tetrahe-

dron finite element meshed block. Acta Mech Sin

28(6):1602–1616

Ma GC, Matsuyama H, Nishiyama S, Ohnishi Y (2007) Study on

analytical method for rockfall simulation. J Jpn Soc Civil Eng

63(3):913–922

McDougall S, Hungr O (2004) A model for the analysis of rapid

landslide motion across three-dimensional terrain. Can Geotech J

41(6):1084–1097

Miao T, Liu Z, Niu Y, Ma C (2001) A sliding block model for the

runout prediction of high-speed landslides. Can Geotech J

38(2):217–226

Ohnishi Y, Yamamukai K, Chen G (1996) Application of DDA in

rockfall analysis. In: Proceedings of the 2nd North American

rock mechanics symposium, Montreal, QC, Canada,

pp 2031–2037

Ritchie AM (1963) Evaluation of rockfall and its control. Highw Res

Rec 17:13–28

Sasaki T, Hagiwara I, Sasaki K, Yoshinaka R, Ohnishi Y, Nishiyama

S (2004) Earthquake response analysis of rock-fall models by

570 H. Zhang et al.

123

http://dx.doi.org/10.1007/s10346-016-0692-8
http://dx.doi.org/10.1007/s10064-016-0902-6


discontinuous deformation analysis. In: Proceedings of third

Asian rock mechanics symposium, Kyoto, pp 1267–1272

Savage SB, Hutter K (1989) The motion of a finite mass of granular

material down a rough incline. J Fluid Mech 199:177–215

Shi GH (1988) Discontinuous deformation analysis: a new numerical

model for the statics and dynamics of block systems. PhD

Thesis, University of California, Berkeley

Shi GH (2001) Three dimensional discontinuous deformation anal-

ysis. In: Proceedings of fourth international conference on

analysis of discontinuous deformation, pp 1–21

Shi GH (2006) Producing joint polygons, cutting joint blocks and

finding key blocks for general free surfaces. Chin J Rock Mech

Eng 25(11):2161–2170

Shi GH (2014) Application of discontinuous deformation analysis on

stability analysis of slopes and underground power houses.

Geomech Geoeng 9(2):80–96

Shi GH (2015) Contact theory. Sci China Technol Sci

58(5):1450–1496

Troncone A, Conte E, Donato A (2014) Two and three-dimensional

numerical analysis of the progressive failure that occurred in an

excavation-induced landslide. Eng Geol 183:265–275

Volkwein A, Schellenberg K, Labiouse V, Agliardi F, Berger F,

Bourrier F, Dorren LKA, Gerber W, Jaboyedoff M (2011)

Rockfall characterisation and structural protection—a review.

Nat Hazard Earth Syst 11:2617–2651

Wang WN, Chigira M, Furuya T (2003) Geological and geomorpho-

logical precursors of the Chiu-fen-erh-shan landslide triggered

by the Chi-chi earthquake in central Taiwan. Eng Geol

69(1):1–13

Wang W, Chen GQ, Zhang H, Zhou SH, Liu SG, Wu YQ, Fan FS

(2016a) Analysis of landslide generated impulsive waves using

coupled DDA-SPH method. Eng Anal Bound Elem 64:267–277

Wang W, Chen GQ, Han Z, Zhou SH, Zhang H, Jing PD (2016b) 3D

numerical simulation of debris-flow motion using SPH method

incorporating non-Newtonian fluid behavior. Nat Hazards

81(3):1981–1998

Wu JH (2008) New edge-to-edge contact calculating algorithm in

three-dimensional discrete numerical analysis. Adv Eng Softw

39(1):15–24

Wu JH (2010) Seismic landslide simulations in discontinuous

deformation analysis. Comput Geotech 37(5):594–601

Wu JH (2015) The elastic distortion problem with large rotation in

discontinuous deformation analysis. Comput Geotech

69:352–364

Wu JH, Juang CH, Lin HM (2005) Vertex-to-face contact searching

algorithm for three-dimensional frictionless contact problems.

Int J Numer Meth Eng 63(6):876–897

Wu JH, Lin JS, Chen CS (2009) Dynamic discrete analysis of an

earthquake-induced large-scale landslide. Int J Rock Mech Min

46(2):397–407

Wu W, Zhu H, Zhuang X, Ma G, Cai Y (2014) A multi-shell cover

algorithm for contact detection in the three dimensional discon-

tinuous deformation analysis. Theor Appl Fract Mech

72:136–149

Yagoda-Biran G, Hatzor YH (2016) Benchmarking the numerical

discontinuous deformation analysis method. Comput Geotech

71:30–46

Yang CM, Yu WL, Dong JJ, Kuo CY, Shimamoto T, Lee CT, Togo

T, Miyamoto Y (2014) Initiation, movement, and run-out of the

giant Tsaoling landslide—what can we learn from a simple rigid

block model and a velocity–displacement dependent friction

law? Eng Geol 182:158–181

Yeung MR, Jiang QH, Sun N (2003) Validation of block theory and

three-dimensional discontinuous deformation analysis as wedge

stability analysis methods. Int J Rock Mech Min 40:265–275

Zhang YB, Chen G, Zheng L, Li Y, Wu J (2013a) Effects of near-

fault seismic loadings on run-out of large-scale landslide: a case

study. Eng Geol 166:216–236

Zhang YB, Chen GQ, Zheng L, Li YG, Zhuang X (2013b) Effects of

geometries on three-dimensional slope stability. Can Geotech J

50(3):233–249

Zhang H, Chen GQ, Zheng L, Zhang YB, Wu YQ, Han Z, Fan FS,

Jing PD, Wang W (2014a) A new discontinuous model for three

dimensional analysis of fluid-solid interaction behaviour. In:

Proceedings of the TC105 ISSMGE international symposium on

geomechanics from micro to macro, Cambridge, UK,

pp 503–508

Zhang YB, Xu Q, Chen GQ, Zhao JX, Zheng L (2014b) Extension of

discontinuous deformation analysis and application in cohesive-

frictional slope analysis. Int J Rock Mech Min 70:533–545

Zhang H, Chen GQ, Zheng L, Han Z, Zhang YB, Wu YQ, Liu SG

(2015a) Detection of contacts between three-dimensional poly-

hedral blocks for discontinuous deformation analysis. Int J Rock

Mech Min 78:57–73

Zhang YB, Wang J, Xu Q, Chen GQ, Zhao JX, Zheng L, Han Z, Yu

PC (2015b) DDA validation of the mobility of earthquake-

induced landslides. Eng Geol 194:38–51

Zhang YB, Zhang J, Chen GQ, Zheng L, Li YG (2015c) Effects of

vertical seismic force on initiation of the Daguangbao landslide

induced by the 2008 Wenchuan earthquake. Soil Dyn Earthq Eng

73:91–102

Zhang H, Liu SG, Chen GQ, Zheng L, Zhang YB, Wu YQ, Jing PD,

Wang W, Han Z, Zhong GH, Lou S (2016a) Extension of three-

dimensional discontinuous deformation analysis to frictional-

cohesive materials. Int J Rock Mech Min 86:65–79

Zhang H, Liu SG, Han Z, Zheng L, Zhang YB, Wu YQ, Li YG, Wang

W (2016b) A new algorithm to identify contact types between

arbitrarily shaped polyhedral blocks for three-dimensional

discontinuous deformation analysis. Comput Geotech 80:1–15

Zhang H, Liu SG, Zheng L, Zhong GH, Lou S, Wu YQ, Han Z

(2016c) Extensions of edge-to-edge contact model in three-

dimensional discontinuous deformation analysis for friction

analysis. Comput Geotech 71:261–275

Zheng L, Chen GQ, Li YG, Zhang YB, Kasama K (2014) The slope

modeling method with GIS support for rockfall analysis using

3D DDA. Geomech Geoeng 9(2):142–152

Zhu H, Wu W, Chen JQ, Ma GW, Liu X, Zhuang XY (2016a)

Integration of three dimensional discontinuous deformation

analysis (DDA) with binocular photogrammetry for stability

analysis of tunnels in blocky rockmass. Tunn Undergr Sp

Technol 51:30–40

Zhu H, Wu W, Zhuang XY, Cai YC, Rabczuk T (2016b) Method for

estimating normal contact parameters in collision modeling

using discontinuous deformation analysis. Int J Geomech.

doi:10.1061/(ASCE)GM.1943-5622.0000745

A new DDA model for kinematic analyses of rockslides on complex 3-D terrain 571

123

http://dx.doi.org/10.1061/(ASCE)GM.1943-5622.0000745

	A new DDA model for kinematic analyses of rockslides on complex 3-D terrain
	Abstract
	Introduction
	Fundamental theory of 3-D DDA
	Block displacements and deformations
	Equations of motion
	Limitations of the original 3-D DDA for kinematic analysis of rockslides

	Extensions of the original 3-D DDA for kinematic analyses of rockslides on complex 3-D terrain
	Triangulated regular network for the terrain of a slope
	Contact detection scheme
	Search for possible contacting TRN elements
	Examination of dominant contact types
	Identification of the entrance plane and contact point pair

	Contact mechanics treatment
	Submatrix of a normal contact spring
	Submatrix of a shear contact spring
	Submatrix of the friction force
	Determination of the contact force pattern


	Benchmark tests
	Parabolic motion
	Sliding motion
	Rolling motion
	Bouncing motion

	Applications to the kinematic analysis of a designed large-scale rockslide
	Model setup
	Results and discussion

	Conclusions
	Acknowledgements
	References




