
ORIGINAL PAPER

In situ determination of hydraulic conductivity in Yangtze Delta
deposits using a modified piezocone model

Mingfei Zhang1 • Liyuan Tong1 • Yijun Yang2 • Hongbo Che1 • Huangsong Pan1

Received: 27 May 2016 / Accepted: 26 October 2016 / Published online: 9 November 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract In order to more precisely determine the in situ

hydraulic conductivity of soils as an essential parameter in

geotechnical engineering, this article presents a new

method based on piezocone tests. In light of results

obtained from a series of classical numerical simulations of

piezocone dissipation tests and in situ tests, the modified

direction and value assumptions of excess pore water

pressure distribution are fundamental: (1) the flow surface

of pore water is assumed to be cylindrical in shape at larger

scales, and (2) the initial state of induced excess pore

pressure is assumed to satisfy a negative exponential dis-

tribution in dissipating. After detailing the existing

approaches, a comparison of data in the Yangtze Delta

region between them and the proposed method based on

graphical and statistical analysis has been accomplished;

the comparison revealed the accuracy and validity of the

proposed method, with five indices utilized, including a

new relative error index. The reasonable assumptions,

logical derivation and mathematical analysis together

indicate the academic value and application potential of the

proposed method.

Keywords Hydraulic conductivity � CPTU � Modified

cylindrical flow model � Negative exponential distribution �
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Introduction

Hydraulic conductivity is one of the most important

mechanical properties of soil, influencing both long-term

consolidation deformation and soil stability (Shen et al.

2003; Zeng et al. 2011; Chai et al. 2011). Many challenges

in geotechnical engineering are related to the hydraulic

conductivity of soil, including the design of foundation pit

dewatering (Ma et al. 2014), the estimation of foundation

settlement and the analysis of soil consolidation (Shen

et al. 2013; Shen and Xu 2011; Xu et al. 2008, 2012, 2013;

Horpibulsuk et al. 2011). Hitherto, numerous research

projects have been dedicated to methods of hydraulic

conductivity measurement (Randolph and Wroth 1979;

Clarke et al. 1979; Baligh and Levadoux 1980; Leroueil

and Jamiolkowski 1991; Robertson 1990; Jefferies and

Davies 1993; Lunne et al. 1997; Elsworth and Lee 2005;

Elsworth and Lee 2007; Cai et al. 2007; Robertson 2009;

Chai et al. 2011; Wang et al. 2013; Wang and Shen 2013;

Zou et al. 2014). One widely used, economic and efficient

method to determine in situ hydraulic conductivity is the

piezocone penetration test (CPTU; Campanella and

Robertson 1988; Lunne et al. 1997; Mitchell and Brandon

1998), providing near-continuous measurements of tip

resistance qt, sleeve friction fs and pore water pressure u at

the shoulder, face or shaft of the cone. The test can provide

a quantitative measurement of various soil properties,

including soil stratigraphy, soil mechanical properties, soil

type and the distribution of soil saturation (Douglas and

Olsen 1981; Robertson 1990; Lunne et al. 1997; Mitchell

and Brandon 1998; Lu et al. 2004; Cetin and Ozan 2009;

Cai 2010; Shen et al. 2010, 2015; Wang et al. 2013; Wang

and Shen 2013).

The utility of equations derived from piezocone

soundings and employed to describe the hydraulic
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conductivity of soils can be classified into three types. The

first involves introducing a relation for the coefficient of

consolidation of soils via the dissipation test, then indi-

rectly deriving a further equation for hydraulic conductiv-

ity (Gupta and Davidson 1986; Robertson et al. 1992;

Danziger et al. 1997; Burns and Mayne 1998; Baligh and

Levadoux 1980; Leroueil and Jamiolkowski 1991; Cai

et al. 2007), a method that is both time-consuming and

labour-intensive. A second possible approach is to apply

the soil behaviour index proposed by Robertson

(1990, 2009). This index, however, is empirical and may

cause large errors in various parameters.

The final method involves theoretical analysis based on

a combination of dislocation analysis, Darcy’s law and

cavity expansion theory (Elsworth and Lee 2005; Elsworth

and Lee 2007; Chai et al. 2011; Wang et al. 2013; Wang

and Shen 2013; Zou et al. 2014). Elsworth and Lee (2005,

2007) first proposed a semi-rigorous method and an explicit

equation. After that, Chai et al. (2011) presented a modified

method based on a half-spherical flow assumption. Yet,

numerical simulations of piezocone dissipation tests (Yi

et al. 2012a, b; Mahmoodzadeh et al. 2014, 2015; Ceccato

and Simonini 2016) indicate that the distribution of excess

pore pressures is more suitable for cylindrical flow in the

horizontal direction, while the negative exponent distribu-

tion of initial excess pore water pressure satisfy the test

results closely (Baligh and Levadoux 1980; Roy et al.

1981; Zhu and Tang 1986; Tang et al. 2002; Zhu et al.

2005; Ma et al. 2007).

The objective of this paper is to propose an approach in

order to estimate the hydraulic conductivity. First, existing

approaches are briefly reviewed and discussed. A new

method is thereby presented in detail and compared with

existing approaches using piezocone data from Yangtze

Delta deposits through a graphical and statistical

methodology.

Modification methods for predicting hydraulic
conductivity

Brief review of Elsworth’s method

In order to evaluate the hydraulic conductivity directly from

piezocone tests, Elsworth andLee (2005) presented amethod

(hereafter referred to as Elsworth’s method) based on a dis-

location model (Elsworth 1991), as shown in Fig. 1a, where

a is the radius of the cone, ia is the hydraulic gradient at radius

r = a, k is hydraulic conductivity, U is the rate of cone

penetration, ua is the absolute pore water pressure measured

by the piezocone and us is the initial static pore water pres-

sure. The following assumptions are substantially adopted:

(1) during piezocone penetration, ‘dynamic steady’ spherical

flow of pore water will form around the tip of the cone; (2)

excess pore water pressure in the soil around the cone has a

power function distribution for radial distance; and (3) the

diameter of the spherical cavity is assumed to be the same as

the diameter of the cone, while the rate of spherical flow of

pore water through the periphery of the cavity is assumed to

be equal to the rate of volume penetrationM _V of the cone. An

explicit equation was derived to calculate the hydraulic

conductivity, using Darcy’s law and assuming that zero

excess pore water pressure exists at an infinite distance from

the cone.

In an infinite porous medium, on the condition that

excess pore water pressure is zero for radial distance

r ? ?, the distribution of pore water pressure u can be

expressed as:

u� us ¼ ðua � usÞa=r: ð1Þ

Then, the hydraulic gradient at radius r = a may be

deduced by way of

2a

2aq
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Pore pressure
distribution

Spherical 
radial  flow  rate 

Rate of volume
penetration

U

Power function
= maxa/r
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penetration
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Pore pressure
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Half spherical radial
 flow  rate 
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Fig. 1 Basic concept of a Elsworth’s method (recreated from Chai

et al. 2011) and b Chai’s method (modified from Chai et al. 2011)
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ia ¼
1

cw

du

dr
jr¼a ¼

ua � us

acw
¼ BqQt

r0v0
acw

; ð2Þ

where cw is the unit weight of water, and Bq and Qt are

the dimensionless pore water pressure ratio and dimen-

sionless tip resistance, respectively, defined as (Wroth

1984)

Bq ¼ ðu2 � u0Þ=ðqt � rv0Þ; ð3Þ

Qt ¼ ðqt � rv0Þ=ðr0v0Þ; ð4Þ

In which qt is the static point resistance, u0 is hydrostatic

pressure, u2 is pore water pressure on the cone shoulder,

rv0 represents the total overburden stress (Teh and Houlsby

1991; Lu et al. 2004) and r0v0 is the initial vertical effective
stress.

Spherical radial flow around the cone per unit time can

be obtained using:

q ¼ 4pa2iak: ð5Þ

Cone penetration amount per unit time is given by

M _V ¼ pa2U ð6Þ

Substituting Eq. (2) into Eq. (5), and assuming M _V ¼ q,

one can obtain the equation:

4kBqQt

r0v0
acw

¼ U: ð7Þ

A dimensionless hydraulic conductivity coefficient is

defined herein as:

KD ¼ 1=BqQt: ð8Þ

Combining the above equations, the in situ value of k is

expressed by:

KD ¼ 4kr0v0
acwU

or k ¼ cwKDU

4r0v0
: ð9Þ

Subsequently, the line KD = 1/BqQt does not provide

the best fit to the measured data. As a consequence, Els-

worth and Lee (2007) modified the KD - BqQt relation:

KD ¼ a

ðBqQtÞb
; ð10Þ

Where a and b are constants. Elsworth and Lee (2007)

suggested suitable values for a and b of 0.62 and 1.6,

respectively.

Chai’s method

On the basis of Elsworth’s method, Chai et al. (2011)

presented a half-spherical flow approach (hereafter referred

to as Chai’s method), as shown in Fig. 1b. In this approach,

the following hypotheses are assumed: (1) a half-spherical

flow of pore water covers the tip of the cone because pore

water cannot flow into the cone; and (2) the rate of half-

spherical flow of pore water through the periphery of the

cavity is linearly proportional to the rate of volume pene-

tration of the cone (Shen et al. 2015). Chai et al. (2011)

modified Elsworth’s method in terms of a bi-linear relation

defined by

K
0

D ¼
1=BqQt; BqQt\0:45

0:044=ðBqQtÞ4:91; BqQt [ 0:45

(
: ð11Þ

Compared to Elsworth’s method, it was deduced:

K
0

D ¼ 2kr0v0
acwU

¼ KD

2
: ð12Þ

Moreover, Chai’s approach is applicable to both nor-

mally or lightly over-consolidated clayey deposits as well

as loose sandy deposits.

Zou’s method

Owing to the stratification commonly observed in natural

soil deposits, the hydraulic conductivity in the horizontal

direction, kh, is often larger than that in the vertical

direction, kv (Leroueil et al. 1990). In fact, whereas most

laboratory consolidation tests are conducted with the

samples cut in the vertical direction with respect to the

in situ condition, pore pressure dissipation occurs mainly in

the horizontal direction. As a result, Zou et al. (2014)

proposed an explicit equation (see Fig. 2a), assuming

radial flow normal to an improved cylindrical surface,

which is given by

K
00

D ¼
1=BqQt; BqQt\0:35

0:017=ðBqQtÞ4:64; BqQt [ 0:35

(
: ð13Þ

Assuming that the rate of ‘dynamic steady’ flow through

the periphery of the cavity with a radius a of a cylinder is

linearly proportional to the rate of volume penetration of

the cone, one can obtain:

2pa � h � k � ia ¼ pa2U ¼ M _V : ð14Þ

The proposed method

The direction and value assumptions of excess pore water

pressure distribution are fundamental and substantial for a

reliable method, yet, the previous methods emphasized

pore water pressure distribution assumptions in a finite

local area, hence, the improved assumptions are as follows

(shown in Fig. 2b):

• A dynamic steady cylindrical flow of pore water will

form around the tip of the cone.
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• The diameter of the cylindrical cavity is assumed to be

the same as the diameter of the cone.

• Excess pore water pressure in the soil around the cone

has a negative exponential function distribution for

radial distance, and there is no excess pore water

pressure at an infinite distance.

Based on the assumption q ¼ M _V ¼pa2Uð Þ, the math-

ematical function adopted in this case is:

2pa � gh � kh � ia ¼ pa2U ¼ M _V : ð15Þ

As shown in Fig. 3, based on the numerical simulation

of piezocone dissipation tests (Ceccato and Simonini

2016), the scope of excess pore water pressure dissipation

is not confined to the filter thickness h, but instead extends

to a larger range gh (where g is a parameter calibrated with

the experimental and simulation values). Yet, it could not

be considered in previous methods.

It is essential to determine the distribution of initial

excess pore water pressure during penetration, hence, a

number of laboratory and field tests (Fig. 4) are carried out

which revealed that the negative exponent distribution of

initial excess pore water pressure near the tip fit the test

results closely (Baligh and Levadoux 1980; Roy et al.

1981; Zhu and Tang 1986; Gupta and Davidson 1986;

Tang et al. 2002; Zhu et al. 2005; Ma et al. 2007).

Therefore, under the condition that excess pore water

pressure is zero for radial distance r ? ?, the distribution

of pore water pressure u can be expressed as:

u� us ¼ ðu2 � usÞe�hðr=a�1Þ; ð16Þ

Where h is a soil parameter: 0.35\ h B 1.5 for clay,

0.3\ h B 0.35 for silt and 0.1\ h B 0.3 for sand (Zhu

and Tang 1986; Ma et al. 2007; Shen et al. 2015).

According to Darcy’s law, the hydraulic gradient on the

surface of the cylinder ia can be expressed by,

2a

2a

Rate of volume
penetration

U  h
q

ua

us

Pore pressure
distribution

Cylindrical radial
 flow  rate 

Power function
= maxa/r

(a)
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2a

Rate of volume
penetration

U

q
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us

Pore pressure
distribution

Cylindrical radial
 flow  rate 

Negative exponential
u= umaxexp(- (r/a-1))

(b) 

Fig. 2 Basic concept behind: a Zou’s method (Zou et al. 2014); b the

method proposed in the present paper

Fig. 3 Excess pore pressure distribution around the cone (Ceccato

and Simonini 2016)
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ia ¼ h
u2 � us

acw
e�hðr=a�1Þjr¼a ¼ hBqQt

r0v0
acw

: ð17Þ

Chai et al. (2011) considered that KD values (and, thus,

the value of k) deduced from CPTU tests mainly represent

the hydraulic conductivity of a natural deposit in the hor-

izontal direction. The results obtained from a series of

classical numerical simulations of piezocone dissipation

tests and in situ tests (see Figs. 3, 5a, b for conventional

CPTU), indicated the surface area for water flow could be

cylindrical in shape around the cone at larger scales, even

though this area seems spherical in shape only in a finite

local area, whereas the half-spherical surface area assu-

redly is more suitable for spudcans (Fig. 5c) and piezoballs

(Fig. 5d). More conformity of the surface area and the

distribution of initial excess pore water pressure with actual

conditions increase the possibility of accuracy. Hence, the

cylindrical surface is more suitable for conventional CPTU

primarily.

Substituting Eq. (17) into Eq. (15), one can obtain:

kh ¼
Ua

2gh
� 1
ia
¼ a

2gh
� 1

BqQth
� Uacw
r0v0

: ð18Þ

Defining KD
000 = 1/BqQt, kh is expressed as:

kh ¼
a

2gh
� K

000
D

h
� Uacw
r0v0

: ð19Þ

Comparing with Elsworth’s method, the relationship is

given by

K
000

D ¼ hghKD=2a: ð20Þ

Based on previous methods (Elsworth and lee 2005;

Chai et al. 2011; Wang et al. 2013; Wang and Shen 2013;

Zou et al. 2014), it follows that:

K
000

D ¼
1=BqQt; BqQt\e

a=ðBqQtÞb; BqQt [ e

(
; ð21Þ

where e is a constant parameter. According to international

standards for CPTU cones, their height should be equal to

5 mm and their radius to 17.85 mm. Considering Ma et al.

(2007) found the value of h equal to 0.3, the data provided

by Elsworth and Lee (2005; see Fig. 6) can be employed to

obtain values of g = 8 and e = 0.98. Equation (21) can

then be expressed as follows:

K
000

D ¼
1=BqQt; BqQt\0:98

0:87=ðBqQtÞ7:81; BqQt [ 0:98

(
: ð22Þ

Data

The area of the Yangtze River Delta (including Shanghai,

Suzhou, Wuxi, Changzhou and other cities) is located in

the eastern part of China, with seven sites across the region
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Fig. 5 Distribution of excess pore pressures: a Yi et al. (2012a);

b Mahmoodzadeh et al. (2015); c Yi et al. (2012b); d Mahmoodzadeh

et al. (2014)
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(four in Suzhou: Yushan Station, Xinghui Road Station,

Hongzhuang Station and Zhuhui Road Station; two in

Nanjing: Jiangbei work well and the fourth Yangtze River

Bridge; and the Yangtze Bridge in Taizhou) selected for

the present study, as shown in Fig. 7. A summary

description of these sites is also provided in Table 1.

Typical profiles of CPTU measurements, including cone tip

resistance (qt), side friction resistance (fs), and pore water

pressure (u2) versus depth recorded at Hongzhuang Station

in Suzhou are presented in Fig. 8. At each of the investi-

gated sites, high-quality piston samples were taken at dif-

ferent depths that corresponded to the depths of piezocone

dissipation tests undertaken in comprehensive laboratory

testing. Soil samples were collected by means of a sta-

tionary piston sampler, 76 mm in diameter, at 1.0-m

intervals below ground level. Once the stationary piston

sampler was withdrawn from the borehole, the soil at both

ends of the tube was excavated for wax sealing. Horizontal

permeability tests were carried out in the laboratory on

undisturbed samples of cohesive soils obtained from high-

quality thin-wall samplers, with field pumping tests also

performed in boreholes located on cohesionless soils.

Groundwater tables at the sampling sites are located at

0–5 m and with depths ranging from 12 to 40 m.

The CPTU device used throughout the study was pro-

duced by Vertek-Hogentogler and Co., USA, and com-

prised a versatile piezocone system equipped with

advanced digital cone penetrometers fabricated with a 608
tapered, 10-cm2 tip area cone, which provided measure-

ments of qt, fs and u2 with a 5-mm-thick porous filter

located just behind the cone tip. The rate of penetration for

all tests was 20 mm/s, enabling one set of readings to be

obtained for every 50-mm penetration. Shear wave veloc-

ities were measured at intervals of 1.0 m, corresponding to

successive rod additions during advancement of the

penetrometer.

Analysis and discussion

Qualitative analysis

Hydraulic conductivity values obtained using the afore-

mentioned methods were subsequently compared with the

laboratory and field pumping results (see Fig. 9 through

Fig. 16). The fact that more than 90% of data points are

scattered above the bi-linear line in Figs. 9 and 11 and

below the perfect line displayed in Figs. 10 and 12 indi-

cates that both Elsworth’s method and Chai’s method

substantially underestimate the hydraulic conductivity of

saturated soils. In contrast, more than half of the data points

obtained using Zou’s method lie above the bi-linear in

Fig. 13 and below the perfect line shown in Fig. 14, which

implies that the predicted accuracy of this particular

Nanjing 

Taizhou 

Suzhou 

Fig. 7 Map of the Yangtze River Delta showing the seven CPTU site

locations

Table 1 Soil properties and description of sites

Site name Major soil layer Depth range

(m)

Site name Major soil

layer

Depth range

(m)

Yushan Station (Suzhou) Clay 1.0–4.8 Xinghui Road Station (Suzhou) Clay 2.0–11.8

Clay-rich silt 5.5–7.0 Silty sand 12.0–18.5

Silty clay 18.6–22.4 Silty clay 19.5–28.6

Hongzhuang Station (Suzhou) Clay 0.8–3.8 Zhuhui Road Station (Suzhou) Clay 1.7–4.9

Silty clay 5.5–13.6 Silt 11.0–16.8

Silty sand-rich Silty

clay

21.2–28.0 Silty clay 16–22.6

Jiangbei work well (Nanjing) Silty clay 2.3–6.7 The fourth Yangtze River Bridge

(Nanjing)

Silty clay 1.2–4.1

Muddy clay 8–10 Silty sand 6.2–9.8

Clay 16–18 Silty sand 16.5–18.4

The Yangtze Bridge at Taizhou

(Taizhou)

Muddy clay 0.8–1.8

Silty clay 3.1–13.4

Silty sand 18.1–28.6
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method is higher. However, the results shown in Figs. 15

and 16 reveal that the proposed modified method is most

applicable to Yangtze Delta soils due to the proximity of the

line and data points. It is obvious that the values of kh for

soils ranging from partially drained silt through to undrained

clay may be continuously and reasonably evaluated from

piezocone sounding records using the modified method. As

can be seen from Fig. 16, the data points are evenly dis-

tributed around the perfect line y = x, which implies that the

proposed method produces the best agreement.

Quantitative analysis

The reliability of the adopted correlations is assessed on

the basis of four existing and one new criteria: root mean

square error (RMSE; Grima and Babuška 1999), the first

(mean) and second moment (standard deviation) statistics

of the ratio of the estimated to test-determined shear wave

velocity (K; Briaud and Tucker 1988), ranking index (RI;

Briaud and Tucker 1988), ranking distance (RD; Cheru-

bini and Orr 2000) and a new relative error index (RE).

RMSE is the square root of the average of the squared

difference between true values and the corresponding

observed values. Errors in RMSE are squared before they

are averaged; consequently, a relatively high weight is

given to large errors. This means that the RMSE is most

useful when large errors are particularly undesirable, with

the lower the RMSE value, the better the model perfor-

mance. RMSE is determined via the following equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðhl � hcÞ2
s

; ð23Þ

where n is the number of data points, hc is the hydraulic

conductivity calculated from empirical equations and hl is

the hydraulic conductivity measured directly from tests.

The first (mean l) and second moment (SD standard

deviation) statistics of the ratio of estimated to measured

hydraulic conductivity is denoted by K and determined via

the following equation:

K ¼ hc=hl ð24Þ

whereas the accuracy of a method refers in this case to its

ability to predict the measured hydraulic conductivity and

is represented by the mean of K (Briaud and Tucker 1988;

Cherubini and Orr 2000; Giasi et al. 2003), method pre-

cision refers to the scatter around the mean and is quanti-

fied by the standard deviation of K (Briaud and Tucker

1988; Cherubini and Orr 2000; Giasi et al. 2003; Onye-

jekwe et al. 2015). Theoretically, K ranges from 0 to

infinity with an optimum value of one; this results in the

nonsymmetric distribution of K around the mean and, thus,

also an unequal weight of underprediction and overpre-

diction (Briaud and Tucker 1988).
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The ranking index (RI) is also one of the two methods

proposed by Briaud and Tucker (1988) with which to

alleviate the problem of nonsymmetrical distribution of K

data. Hence, RI values can be used to express an overall

judgment regarding the quality of a correlation whilst

simultaneously accounting for the mean value and SD of

all K data. The ranking index is obtained via the following

equation (Briaud and Tucker 1988):

RI ¼ llnðKÞ

��� ���þ rlnðKÞ; ð25Þ

where l and r represent the mean and SD of the series of

analysed data, respectively. RI has been used by several

investigators (e.g. Briaud and Tucker 1988; Cherubini and

Orr 2000; Giasi et al. 2003) to evaluate the performance of

empirical equations.

RD, first proposed by Cherubini and Orr (2000), is

another method enabling users to make an overall judg-

ment as to the quality of a calculation method, again taking

into consideration the mean value and standard deviation of

all K data. RD represents, on a plot with mean (l) values on
the x axis and SD (r) on the y axis, the distance of the point

representing a computation using a particular correlation

from the point representing the optimum condition (l = 1

and r = 0). RD is determined as follows (Cherubini and

Orr 2000):

RD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� lKÞ2 þ r2K

q
: ð26Þ

RD and RI provide different evaluations of the suit-

ability of a given correlation equation to fit a measured

value (Cherubini and Orr 2000). For correlation equations

where the precision (as indicated by the SD), mean value

and accuracy are similar, RD gives a better result than RI,

while for those that are either very accurate or very precise,

RI provides the best result. RD gives equal weight to

accuracy and precision, and has been used by several

investigators (e.g. Cherubini and Orr 2000; Giasi et al.

2003) to evaluate the performance of empirical equations.

Relative error (RE), a new statistical criterion proposed

in the present paper, is the ratio of the absolute difference

between the measured value and the estimate of the mea-

sured hydraulic conductivity; the lower the RE value, the

better the model performance. RE is mainly used to assess

the pros and cons of different methods and is expressed as

follows:

RE ¼ hl � hcj j=hl ¼ K � 1: ð27Þ

Results and discussion

In the following section, both the observed and calculated

data are presented in logarithmic form due to the fact that

the obtained values of hydraulic conductivity varied by up

to six orders of magnitude; with the more logarithmic the

result, the lower the original hydraulic conductivity (that is

always less than 1). A summary of the RMSE, K, RE, RI

and RD values obtained for the Jiangsu clays is presented

in Table 2. RMSE, RI and RD data are also illustrated in

Fig. 17 in log form, while those for RE are shown graph-

ically in Fig. 18.

In terms of RMSE, the best performing correlation was

provided by the proposed method (RMSE = 0.940).

However, regarding general overestimation (K[ 1 or

RE[ 0), all methods produced more than 50% of K values

greater than 1, indicating that all underestimated the

hydraulic conductivity of the studied saturated soils. In

terms of accuracy (based on the closeness of the mean of

K to 1 or RE to 0), the proposed method again produced the

best performance, with a K mean of 1.003. Similarly,

Table 2 Results for RMSE, K,

RE, RI and RD
Methods RMSE K RE RI RD

[1 (%) |l| r [0 (%) |l| r

Elsworth’s method 2.347 96.6 1.149 0.079 96.6 0.149 0.076 0.206 0.168

Chai’s method 1.744 89.8 1.100 0.073 89.8 0.100 0.062 0.161 0.124

Zou’s method 1.121 71.2 1.034 0.070 71.2 0.034 0.041 0.101 0.078

The proposed method 0.940 54.2 1.003 0.068 54.2 0.003 0.038 0.070 0.068

Elsworth's method Chai's method Zou's method The proposed method

10-1

100

#

 RI
 RD

  

Fig. 17 Results for RMSE, RI and RD
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regarding RI values, as well as the r of K and RE, the

proposed method provided the most accurate evaluation

(RI = 0.070). However, both RMSE and RI have certain

shortcomings, with the former highlighting only substantial

errors (i.e. low accuracy) and the latter considering both

accuracy and precision but not assigning an equal weight to

them. In contrast, RD, which gives equal weight to accu-

racy and precision, is a better parameter with which to

compare the suitability of different correlation equations

(Onyejekwe et al. 2015). In terms of RD, the best method

for the analysed Jiangsu soft clays was the proposed

method (RD = 0.068). Considering a common allowable

limit of relative error (ALE) of 5%, the percentage relative

error less than ALE (PRELA) is shown graphically in

Fig. 18 for each method, with the higher the PRELA value,

the better the correlation performance. Again the proposed

method achieved the best performance (PRELA = 78%),

followed by Zou’s method (64%). In summary, the most

efficient of the four studied methods is that proposed in the

present paper.

Conclusions

Despite several recent improvements, evaluation using

conventional CPT-based methods continues to underesti-

mate the in situ hydraulic conductivity of soil. In order to

obtain more accurate values of this parameter, the present

paper has outlined a new method based on the analysis and

comparison of existing methods. A comparison of the

results obtained by the proposed method and existing

approaches using piezocone, field pumping and laboratory

data for Quaternary deposits in the Yangtze Delta region

was conducted. The most important findings of our study

can be summarized as follows:

1. Existing methods mainly assume spherical or half-

spherical radial flow around the cone or/and a power

functional distribution. Yet, the surface area for water

flow seems to be cylindrical rather than spherical in

shape around the cone, with the exception of regions

very close to the cone, while the surface area seems to

be a half ellipsoid or spherical shape for spudcans and

piezoballs according to the numerical simulation of

piezocone dissipation tests. A number of laboratory

and field tests were also carried out demonstrating that

the negative exponent distribution of initial excess

pore water pressure near the tip fits these results

closely. These new hypotheses yielded a new method

that builds on existing approaches.

2. Obtained using a graphical method for the analysis of

field data, the results of measured versus predicted kh
values for the four analysed methods indicate that the

proposed method can evaluate the hydraulic conduc-

tivity of soil (based on the CPTU test) more accurately.

3. In terms of the general overestimation (K[ 1 orRE[ 0)

of kh, the methods of Elsworth and Chai fundamentally

underestimate the hydraulic conductivity of soils. In

terms of RI and RD, Zou’s method (RI = 0.101 and

RD = 0.078) and the newly proposed method

(RI = 0.070 and RD = 0.068) provide more accurate

evaluations regarding the allowable limits of relative

error (ALE) (5%); however, the proposed method

achieved a percentage RE less than ALE (PRELA) value

14% greater than that of Zou (at 78 and 64%, respec-

tively). Generally speaking, the most efficient method is

the proposed one in the present paper. This method has

been selected thanks to its larger accuracy and truthful-

ness compared with other possible approaches.
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