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Abstract Triaxial compression tests were performed to

determine the strength and deformability of small-scale

rock mass models with multiple joint sets and frequencies

under confining stresses up to 12 MPa. The cubical sand-

stone specimens (80 9 80 9 80 mm3) with joint sets

simulated by saw-cut surfaces were compressed to failure

using a true triaxial load frame. The joint frequencies

ranged from 26 to 76 joints per meter. The results indicate

that the Hoek–Brown criterion with two material parame-

ters (m and s) can describe rock mass strengths as well as

the three parameter criteria of Sheorey, Yudhbir and

Ramamurthy-Arora. The parameter s notably decreases

with increasing joint frequency, while parameter m is less

sensitive to joint frequency. The confining stresses tend to

enhance the effects of joint frequencies on rock mass

compressive strengths. The deformation moduli in the

direction normal to the joints tend to be lower than those

parallel to the joints. They decrease with increasing joint

frequency. Goodman’s equation was modified here to

allow calculation of the deformation moduli of the rock

mass along the three principal directions. The modified

equation can sufficiently describe the deformation moduli

normal and parallel to the joints for one-joint set and three-

joint set specimens under all confining stresses.

Keywords Triaxial compression � Joint frequency �
Deformation modulus � Rock mass strength criterion

Introduction

Several criteria have been proposed to describe rock mass

strength based on laboratory testing (Hoek and Brown 1980;

Saroglou and Tsiambaos 2008; Singh and Singh 2012; Rafiai

2011; Kulatilake et al. 2006). Some criteria are developed

based on case studies (Sheorey et al. 1989; Cai et al. 2004) and

numerical simulations (Halakatevakis and Sofianos 2010),

primarily to determine the effects of joint frequency, joint

orientation, and joint set number on rockmass strengths. It has

been found that rock mass strength decreases with increasing

joint frequency (Ramamurthy and Arora 1994) and joint set

number (Yang et al. 1998). The joint orientation also affects

rockmass strength. The lower strengths are obtainedwhen the

joint planes make angles between 30� and 40�with the major

principal stress (Ramamurthy and Arora 1994; Colak and

Unlu 2004;Goshtasbi et al. 2006). Some strength criteria have

been verified by comparison with actual in-situ conditions

(Edelbro 2004) and laboratory testing (Sridevi and Sitharam

2000; Goshtasbi et al. 2006).

Goodman (1970) presents an equation to evaluate the

elastic constants for an equivalent continuous material

representative of a rock mass regularly crossed by a single

set of joints using the concept of joint stiffness. Based on

testing results, Yoshinaka and Yamabe (1986) present

equations for obtaining equivalent deformation moduli of

rock masses with joints in arbitrary orientations and spac-

ings. Ramamurthy (2001) introduces a joint factor to pre-

dict the decrease of deformation modulus with increasing

joint frequency. The variation of the deformation moduli

due to various joint orientations exhibits U-shaped behav-

ior as reported by Ramamurthy (2001) and Tiwari and Rao

(2006). Nasseri et al. (2003), Tiwari and Rao (2006), and

Ebadi et al. (2011) suggest that the deformation modulus

tends to increase with confining pressure. Even though
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several rock mass strength and deformability criteria have

been proposed, verification of their predictability under

large confinements has rarely been attempted, particularly

for rock masses with multiple joint sets.

The objective of this study was to perform triaxial com-

pressive strength tests on sandstone specimens with single

and multiple joint sets under confining stresses up to

12 MPa. The joints were simulated by saw-cut surfaces with

frequencies ranging from 26 to 76 joints per meter. Some

commonly used strength and deformability criteria were

applied to the test results to evaluate their validity. From our

results, the effects of joint frequency, joint set number, and

confining stress on the strengths and deformation moduli of

the small-scale rock mass models were determined.

Sample preparation

The rock specimens used in this study were Phra Wihan

sandstone, which is a fine-grained quartz sandstone with

highly uniform texture and density (Boonsener and

Sonpiron 1997). We prepared them to obtain cubical rock

mass specimens with nominal dimensions of

80 9 80 9 80 mm3. We also made artificial joints out of

saw-cut surfaces using a universal masonry saw (Husq-

varna TS 400 F). This saw has a 400-mm diameter blade

with a constant rotational speed of 2800 rpm. Water is

used as cutting fluid. The saw base has two mutually per-

pendicular guide rails to provide a precise cutting angle

and intervals. For our research, large blocks (250 9

250 9 250 mm3) of the sandstone were first cut into thin

slabs to obtain a predefined thickness (e.g., 40, 27, 20

and 13 mm) depending on the required joint frequencies.

These slabs are then cut across to obtain tabular-shaped

specimens, and subsequently, cubical-shaped specimens.

These small blocks were assembled to form rock mass

models with different joint frequencies and joint set

numbers. Figure 1 shows example of rock blocks pre-

pared for three-joint set specimens. Rock blocks with

visible crack or chipping at the edges and corners were

discarded. In total, we prepared up to 80 rock mass

model specimens with two different joint conditions:

single-joint set and sets with three mutually perpendic-

ular joints. The joint frequencies and orientations with

respect to the applied loads are shown in Table 1. They

are briefly described below.

For case I, one-joint set specimens wre prepared to study

the effects of joint frequency on the strength of the rock

specimens. The joints were parallel to the major principal

axis. There were 1, 2, 3, or 4 joints for each set (equivalent

to 26–63 joints per meter), and each set had equal spacing.

Case II is similar to case I: one-joint set specimens were

prepared to assess the effect of joint frequency when the

joints are normal to the major principal axis.

For Case III, specimens with three-mutually perpen-

dicular joint sets were prepared to study the effects of joint
Fig. 1 Examples of small blocks prepared for three-joint set spec-

imens with 38 joints/m (a) and 76 joints/m (b)

Table 1 Small-scale rock mass

specimens prepared for triaxial

compression tests with r3 up to

12 MPa

Cases Joint orientation Joint frequencies (joints/m)
26 38 51 63 76

I 

One-joint set 
parallel to the 
major principal 
axis

II

One-joint set 
normal to the 
major principal 
axis

III
Three-mutually 
perpendicular 
joint sets

N/A

N/A
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set number and joint frequency. This case involved 1, 2, 3,

4, or 5 joints for each set (equivalent to 26–76 joints per

meter).

Test method

A true triaxial load frame (Komenthammasopon 2014) was

used to apply axial stress (r1) and constant confiningpressures
(r3) to the intact and jointed rock specimens (Fig. 2). This

device was developed to test rock specimens with soft to

medium strengths under polyaxial stress states. Three pairs of

100-ton hydraulic pressure cylinders are set in three mutually

perpendicular directions. Themeasurement system comprises

pressure transducers, displacement transducers, a switching

box, and a data logger. The device can accommodate the cubic

or rectangular specimens of different sizes by adjusting the

distances between the opposite steel loading platens. For this

study the specimenswere oven-dried before testing.Neoprene

sheets were placed at all interfaces between the loading pla-

tens and specimen surfaces to minimize the friction. The

constant confining (lateral) stresses ranged from0, 1, 3, 5, 7, to

12 MPa. First, the specimen was subjected to the pre-defined

confining stresses. The axial stress was then increased at a

constant rate of 0.1 MPa/s using an electric hydraulic pump.

The specimen deformations were monitored along the three

loading directions, and were used to calculate the principal

strains during loading. The readings were recorded until

failure occured. We defined failure by the drop of the applied

axial stress. Photographs were taken of the post-test speci-

mens and the modes of failure were identified.

Test results

Tables 2, 3, and 4 give the strength results in terms of the

major andminor principal stresses at failure for cases I, II and

III. The strengths decrease with increasing joint frequency.

Figure 3 shows examples of stress–strain relations in terms

of the differential stress as a function of strain for the three

mutually perpendicular joint set specimens (Case III). The

effect of joint frequency on the rock specimens can be

observed by the reduction of failure stresses and the increase

of the failure strains. More discussions and analyses of the

deformation moduli as affected by the joint frequency are

given in the following section.

The effects of the confining stresses on the strength of the

specimens can be observed from the r1–r3 diagrams, as

shown in Fig. 4. The relations between r1 and r3 at failure
tend to be non-linear for the intact sandstone and for the

specimens with all joint frequencies. The specimens with

higher joint frequencies (Jf) show lower strengths than those

with lower joint frequencies. The effect of joint frequency on

strength tends to be greater for the specimens with joints

parallel to r1 (Case I, Fig. 4a), as compared to those withFig. 2 True triaxial load frame

Table 2 Deformation moduli for case I

Joint frequency,

Jf (joints/m)

r3
(MPa)

r1
(MPa)

m Em,p

(GPa)

Em,p

(GPa)

Em,n

(GPa)

Intact 0 43.3 0.26 10.4 10.0 9.8

1 47.8 0.28 10.3 10.3 10.3

3 63.4 0.28 9.1 10.3 8.1

5 74.1 0.27 10.7 10.1 11.5

7 88.9 0.28 8.5 8.2 8.9

12 106.9 0.27 9.7 10.4 9.2

26 0 36.1 0.27 7.7 7.7 7.7

1 43.1 0.25 7.9 7.8 7.8

3 59.0 0.26 5.5 5.5 4.6

5 68.8 0.27 7.0 6.9 6.2

7 77.6 0.25 6.2 6.4 6.0

12 95.1 0.29 7.0 6.9 6.3

38 0 34.1 0.24 5.0 5.1 4.5

1 41.1 0.27 5.1 5.2 4.5

3 54.7 0.24 5.2 5.0 4.0

5 66.0 0.24 5.3 5.2 5.1

7 74.5 0.24 5.0 5.0 4.6

12 91.0 0.27 6.2 5.9 5.8

51 0 29.0 0.24 3.1 3.2 3.0

1 36.6 0.27 4.9 5.0 3.7

3 51.3 0.28 5.1 5.1 5.0

5 64.7 0.28 4.7 4.5 3.9

7 70.5 0.25 5.4 5.5 5.4

12 87.4 0.26 5.9 5.9 5.7

63 0 26.5 0.24 3.4 3.5 3.1

1 34.8 0.23 3.8 3.6 2.8

3 49.0 0.22 4.8 4.5 3.6

5 59.4 0.24 4.4 4.4 4.3

7 66.9 0.25 4.1 4.1 4.0

12 82.9 0.29 4.2 4.2 4.2
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joints normal to r1 (Case II, Fig. 4b). For example, the

strengths of the specimens in case I with 63 joints/m

decreases by about 20 % from the intact strength. Under this

joint frequency the specimen strengths for case II decrease

by about 15 %. The effects of joint frequency are greatest for

the three-joint set specimens (Case III, Fig. 4c). The

strengths of specimens containing three-joint sets with 63

joints permeter drop by nearly 40 % from the intact strength.

The decreases of the specimen strengths with increasing

joint frequencies can also be observed from ther1-Jf diagrams

inFig. 5. For the one-joint set specimens the differences of the

strengths between case I and case II tend to be larger when the

confining stresses increase (Fig. 5a). The r1-Jf diagrams for

case III (Fig. 5b) suggest also that the decreases of the three-

joint set specimen strengths with increasing joint frequency

are more rapid than those of the one-joint set specimens.

Post-test observations

Post-test specimens show two types of failure mode:

extensile splitting and compressive shear failure. The

specimens with joints parallel to r1 (Case I) failed mainly

under the extensile splitting mode, particularly under low

confining stresses (Fig. 6a). Some shear fractures were

found in the specimens that failed under high confining

stresses. The compressive shear failure was predominant in

the specimens with joints normal to r1 (Case II, Fig. 6b).

These observations support the measurement results that

the single-joint set specimens with joints normal to r1
(Case II) show higher strength than those with joints par-

allel to r1 (Case I). The strength discrepancies are pri-

marily due to the fact that r1 direction for case I was

parallel to small plates of the sandstone forming the rock

mass models. The height-to-width ratios of these plates are

relatively high (varying from 2 to 6, depending on the joint

frequencies). Under axial loading, each plate can laterally

dilate (toward the thinner sides), and hence the extensile

fractures can be induced in vertical or nearly vertical

directions. The pre-existing joints also help the induced

Table 3 Deformation moduli for case II

Joint frequency,

Jf (joints/m)

r3
(MPa)

r1
(MPa)

m Em,p

(GPa)

Em,p

(GPa)

Em,n

(GPa)

26 0 37.6 0.25 4.8 4.8 4.8

1 44.6 0.26 6.6 5.5 4.7

3 60.6 0.27 6.4 6.2 5.4

5 71.4 0.27 7.1 6.9 5.8

7 85.6 0.28 7.3 7.6 6.3

12 101.6 0.24 5.9 6.0 5.9

38 0 34.8 0.25 6.9 6.0 4.1

1 42.2 0.26 7.3 6.1 4.4

3 59.1 0.24 4.4 4.5 4.4

5 70.0 0.26 5.3 5.2 5.0

7 80.9 0.26 4.5 4.7 4.8

12 97.6 0.27 6.7 6.5 6.0

51 0 30.9 0.22 3.4 3.7 2.5

1 39.3 0.25 3.1 3.2 3.3

3 54.6 0.25 5.8 4.7 3.5

5 67.7 0.26 4.9 4.9 4.8

7 75.0 0.22 5.1 5.1 4.7

12 93.9 0.25 5.7 5.7 5.9

63 0 28.6 0.20 3.7 3.4 3.2

1 37.6 0.24 3.3 4.0 4.1

3 54.0 0.23 3.9 3.9 3.4

5 63.7 0.25 3.8 3.2 3.5

7 73.5 0.24 3.7 3.7 3.5

12 89.2 0.26 4.8 4.8 4.6

Table 4 Deformation moduli for case III

Joint frequency,

Jf (joints/m)

r3
(MPa)

r1
(MPa)

m Em,1

(GPa)

Em,2

(GPa)

Em,3

(GPa)

26 0 35.4 0.21 5.1 5.3 4.9

1 41.9 0.21 5.3 6.2 4.7

3 53.1 0.15 5.8 5.7 5.8

5 66.3 0.20 4.9 4.3 5.6

7 74.7 0.23 5.4 5.7 5.2

12 90.7 0.28 5.9 5.7 6.1

38 0 32.9 0.22 4.2 4.3 4.5

1 39.8 0.25 3.5 4.3 3.0

3 50.0 0.26 3.9 5.2 3.1

5 60.0 0.24 4.7 6.2 3.8

7 69.9 0.26 4.5 4.0 5.1

12 83.3 0.26 5.7 5.5 5.8

51 0 25.5 0.19 3.4 3.2 3.0

1 34.7 0.16 2.3 3.6 1.7

3 46.2 0.16 2.1 2.0 2.2

5 56.7 0.17 2.6 2.8 2.5

7 62.4 0.17 3.4 3.5 3.2

12 74.4 0.23 3.9 4.5 4.4

63 0 20.4 0.20 3.0 2.9 2.8

1 28.2 0.21 1.7 2.6 1.2

3 41.1 0.17 2.8 3.0 2.7

5 51.2 0.26 2.4 2.3 2.5

7 57.0 0.19 2.2 2.1 2.2

12 69.4 0.23 3.3 3.4 3.2

76 0 18.1 0.12 0.6 0.6 0.6

1 25.3 0.15 0.9 1.1 0.7

3 35.2 0.16 1.5 1.5 1.5

5 44.4 0.22 1.6 1.6 1.5

7 50.0 0.26 1.8 1.8 1.8

12 62.2 0.29 2.2 2.2 2.2
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extensile fractures to propagate through the specimen

models. The induced fractures can propagate more easily

for the specimens with higher joint frequency, as compared

to those with lower joint frequencies. This explains why the

strengths of case I specimens decreased with increasing

joint frequency. Under large confinement the lateral dila-

tion of the sandstone plates toward the pre-existing joints

becomes more difficult, and hence some shear fractures are

induced across the specimen models.

The sandstone plates assembled for case II specimens

were normal to the r1 direction. They could not dilate

easily under loading, and therefore the compressive shear

fractures were predominant. As a result the strengths of

case II specimens tended to be greater than those of case I.

These shear fractures for case II can propagate more easily

in specimens with higher joint frequencies and under lower

confining stresses, as compared to those with lower joint

frequencies and higher confining stresses.

Fig. 3 Examples of differential

stresses as a function of strain

for three mutually perpendicular

joint sets under various

confining pressures. a 26 joints/

m, b 38 joints/m, c 51 joints/m,

d 63 joints/m and e 76 joints/m
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Both failure modes were found in the three-joint set

specimens (Case III, Fig. 6c). This is probably because

all case III specimens were formed by small cubical

blocks of sandstone (varying from 13 9 13 9 13 to

40 9 40 9 40 mm3, depending on joint frequency). Under

the same joint frequency the strengths of the case III

specimens were lower than those of cases I and II because

each sandstone block had an additional free face to dilate

(i.e., there were two mutually perpendicular joint sets

parallel to the r1 direction).

For all cases the extensile splitting and shear fractures

were induced in the intact portion of the specimens. This

suggests that if there were invisible cracks or damages

along the edges and corners of the small blocks, they may

not have had a significant impact on the strength of the

specimens.

Strength criteria

Four commonly used strength criteria were compared

against the test results obtained from the three-joint set

specimens. These include criteria introduced by Hoek–

Brown (1980), Sheorey (1989), Yudhbir et al. (1983), and

Ramamurthy and Arora (1994). Exhaustive reviews of these

criteria have been given elsewhere (Hoek and Brown 1980;

Sheorey 1997; Hoek et al. 2002; Edelbro 2004). They have

been widely used to study the strengths of rock mass.

The Hoek–Brown (1980) criterion defines the relation-

ship between the major and minor principal stresses at

failure as:

r1 ¼ r3 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mrcr3 þ sr2c

q

ð1Þ

where m and s are material constants and rc is the uniaxial
compressive strength of the intact rock.

Sheorey (1989) defines the rock mass strength criterion

as:

r1 ¼ rcm 1þ r3
rtm

� �bm

ð2Þ

where bm is a constant, rcm is the uniaxial compressive

strength of rock mass, and rtm is the uniaxial tensile

strength of rock mass.

Yudhbir et al. (1983) modify the original Bieniawski

(1974) criterion, and propose a more general form as:

r1
rc

¼ Aþ B
r3
rc

� �a

ð3Þ

where a and B are material constants, and A is a dimen-

sionless parameter depending on rock mass quality.

Ramamurthy and Arora (1994) present a strength crite-

rion that is modified from the Mohr–Coulomb theory:

r1 � r3
r3

¼ b
rcm
r3

� �a

ð4Þ

where a and b are the material constants. Ramamurthy and

Arora (1994) suggest an alternative formula to determinercm
in terms of joint factor JF as: rcm = rc exp(-0.008 JF).

Hoek et al. (2002) propose a generalized form of the

Hoek–Brown criterion as:

r1 ¼ r3 þ mbrcr3 þ sr2c
� �a ð5Þ

Fig. 4 Major principal stresses at failure as a function of confining

pressure for cases I (a), II (b), and III (c)
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where mb, s and a are fitting parameters. It is applicable to a

heavily jointed rock mass. The parameters mb and s can be

estimated from the geological strength index (GSI) (Hoek

1994; Hoek et al. 1995; Hoek and Brown 1998; Sonmez

and Ulusay 1999). This index is determined from the joint

surface conditions, structure rating, and volumetric joint

count. The calculated GSI for the rock specimens used here

are from 40 to 45 because the tested joints have no infilling

and weathering. It is recommended that if GSI is greater

than 25, the ‘‘a’’ parameter should be set equal to 0.5

(Sheorey 1997; Sonmez and Ulusay 1999). In this study the

original Hoek–Brown criterion is therefore used instead of

the generalized Hoek–Brown criterion.

Statistical analyses are performed using the SPSS code

(Wendai 2000) to fit the test results with the criteria above.

The predictive capability of these criteria is determined and

compared using the coefficient of correlation (R2) as an

indicator. The material constants and coefficients of cor-

relation calculated for these criteria are summarized in

Table 5. All criteria provide good correlation with the test

data, with R2 greater than 0.9. Figure 7 compares the test

results with the curve fits in the terms of r1 as a function of

r3 at failure.

Even though the Hoek and Brown criterion uses only

two material constants, its predictive capability is as good

as those with three material constants. Figure 8 shows the

decrease of parameters m and s of the Hoek–Brown crite-

rion as the joint frequency increases. For intact sandstone

specimens, the parameter m is determined as 14.1 where

s = 1.0. These m and s values for one-joint set specimens

are greater than those for three-joint set specimens. For

one-joint set specimens, the effect of joint orientation on

m and s is relatively small (comparing cases I and II). The

difference of the Hoek–Brown parameters between case I

and case II seems to be the same for all joint frequencies

(Fig. 8). However, significant decreases of both m and

s values are found for the three-joint set specimens when

the joint frequencies increase (Case III). The parameter

s drops from 1.0 for intact condition to 0.1 for specimens

with joint frequency of 76 joints/m. The Ramamurthy and

Arora (1994) criterion can not predict the rock mass

strength under unconfined conditions (r3 = 0). As a result,

Eq. (5) was proposed to predict the uniaxial strength of

rock mass (rcm). Both the Sheorey and Ramamurthy-Arora

criteria can sufficiently describe the uniaxial strength of the

rock specimens as shown in Fig. 9. The uniaxial strengths

Fig. 5 Failure stress (r1) as a
function of joint frequency (Jf)

for one-joint set specimens

(a) and three-joint set specimens

(b)

Fig. 6 Examples of extensile

splitting (a), compressive shear

failure (b), and combination

mode (c)
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Table 5 Strength criteria and their constants calibrated from test results of case III

Strength criteria Parameters Joint frequencies (joints/m)

Intact 26 38 51 63 76

σ1

σ3

σ3

σ1

σ3

σ3

σ3

σ1

σ3

σ3

σ1

σ3

σ3

σ1

σ3

σ1

σ3

σ3

Hoek-Brown (1980) r1 = r3 ? (m rc r3 ? s

rc
2)1/2

m 14.10 11.30 9.22 7.89 6.03 4.83

s 1.0 0.7 0.5 0.4 0.3 0.2

R2 0.992 0.969 0.984 0.971 0.979 0.986

Sheorey et al. (1989) r1 = rcm(1 ? r3/rtm)
bm rcm 41.8 35.8 31.0 26.5 22.9 19.6

rtm 2.6 2.1 1.8 1.4 1.2 1.0

bm 0.54 0.51 0.48 0.47 0.46 0.45

R2 0.991 0.986 0.988 0.991 0.992 0.997

Yudhbir et al. (1983) r1/rc = A ? B(r3/rc)
a A 0.97 0.82 0.70 0.59 0.50 0.43

B 4.04 3.64 3.31 2.98 2.71 2.44

a 0.79 0.76 0.72 0.70 0.68 0.65

R2 0.986 0.984 0.986 0.987 0.989 0.993

Ramamurthy and Arora (1994) (r1 - r3)/
r3 = b(rcm/r3)

a
rcm 43.3 37.4 32.3 27.5 24.0 20.7

b 3.19 3.15 3.13 3.08 3.00 2.90

a 0.69 0.69 0.69 0.69 0.69 0.69

R2 0.989 0.973 0.979 0.980 0.997 0.995

Fig. 7 Test results (points) and

curve fits for four strength

criteria
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decrease from 43.3 MPa for intact conditions to about

20 MPa for the joint frequency of 76 joints/m.

Deformation moduli

The deformationmoduli along the three principal axes of rock

specimens are determined from the stress–strain curves at

about 50 % of the failure stress. It is initially assumed that the

Poisson’s ratio (m) of the specimens is the same for all principal

planes. The deformation moduli along the three principal

directions for each case can be derived from the elastic stress–

strain relations (Jaeger et al. 2007) as shown below.

In case I:

e1;p ¼ r1=Em;p � mðr3=Em;p þ r3=Em;nÞ ð6Þ

e3;p ¼ r3=Em;p � mðr1=Em;p þ r3=Em;nÞ ð7Þ

e3;n ¼ r3=Em;n � mðr1=Em;p þ r3=Em;pÞ ð8Þ

Case II:

e1;n ¼ r1=Em;n � mðr3=Em;p þ r3=Em;pÞ ð9Þ

e3;p ¼ r3=Em;p � mðr1=Em;n þ r3=Em;pÞ ð10Þ

e3;p ¼ r3=Em;p � mðr1=Em;n þ r3=Em;pÞ ð11Þ

where e1,p and e1,n are the major principal strains parallel

and normal to the joints, e3,p and e3,n are the minor prin-

cipal strains parallel and normal to the joints, and Em,p and

Em,n, are the deformation moduli parallel and normal to the

joints.

In case III:

e1;m ¼ r1=Em;1 � mðr3=Em;2 þ r3=Em;3Þ ð12Þ

e3;m ¼ r3=Em;2 � mðr1=Em;1 þ r3=Em;3Þ ð13Þ

e3;m ¼ r3=Em;3 � mðr1=Em;1 þ r3=Em;2Þ ð14Þ

where e1,m is the major principal strain, e3,m is the minor

principal strains, Em,1 is the deformation modulus along the

vertical (r1) axis, and Em,2 and Em,3 are the deformation

moduli along the two lateral principal axes. Tables 2, 3,

and 4 show the calculation results for all cases. The cal-

culated Poisson’s ratios tend to be independent of the joint

frequency and loading direction. Their values average

between 0.23 and 0.29. For one-joint set specimens the

deformation moduli parallel to the joints (Em,p) are about

13 % higher than those normal to the joints (Em,n) as shown

in Fig. 10. This is true for all joint frequencies regardless of

whether the joints are parallel (case I) or normal (case II) to

r1. For the three-joint set specimens, the deformation

moduli are similar for all principal directions (Fig. 11).

Figure 12a and b plot the average deformation moduli that

are parallel (Em,p) and normal (Em,n) to the joints for cases I

and II. For the three-joint set specimens (case III), the

deformation moduli averaged from the three principal

directions (represented by Em) are plotted as a function of

r3 in Fig. 12c. The deformation moduli (Em,p, Em,n and Em)

decrease with increasing joint frequency.

Deformability criteria

The deformation moduli calculated above are compared

against the criteria developed by Goodman (1970),

Yoshinaka and Yamabe (1986), and Ramamurthy (2001).

Fig. 8 Hoek–Brown parameters m (a) and s (b) as a function of joint

frequency

Fig. 9 Uniaxial compressive strengths of rock mass model (rcm) with
three joint sets (case III) as a function of joint frequency. The

predictions (lines) are compared with the measurements (points)
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Goodman (1970) presents an equation to determine the

deformation modulus that is normal to the joints as:

1

Em;n
¼ 1

kns
þ 1

Ei
ð15Þ

where Ei is the elastic modulus of intact rock, kn is normal

joint stiffness and s is the average joint spacing. This

equation is only applicable to the results obtained from

case II testing.

Yoshinaka and Yamabe (1986) proposed an equation to

describe the deformability of samples with more than one

joint under various joint orientations.

For case I testing, the joints are parallel to r1 and the

proposed equation becomes:

1

Em;p
¼ 1

Ei

: ð16Þ

For cases II and III, the joints are parallel and normal to r1
and their equations become:

1

Em;n
¼ 1

Ei

þ 1

kns
Case IIð Þ ð17Þ

1

Em

¼ 1

Ei

þ 1

kns
Case IIIð Þ: ð18Þ

Ramamurthy (2001) defines the relationship between the

ratios of deformation moduli, Em,n/Ei, Em,p/Ei and joint

factor (JF) as:

Em;n ¼ Em;p ¼ Eiexp �1.15� 10�2JF
� �

ð19Þ

where JF is the joint factor, which is defined by:

JF ¼ Jf

n � r ð20Þ

where Jf is the joint frequency (number of joints per meter),

n is the inclination parameter depending upon the orien-

tation of the joint, and r is a joint strength parameter

dependent upon the joint condition. Note that Eqs. (19) and

(20) are applicable to cases I and II only.

Fig. 10 Deformation moduli parallel to joint planes as a function of

those normal to joint planes

Fig. 11 Deformation moduli calculated along the two minor princi-

pal axes (Em,2 and Em,3) as a function of those along the major

principal axis (Em,1) for case III

Fig. 12 Deformation moduli parallel (a) and normal (b) to r1 axis as
a function of confining stress for one-joint set specimens and for

three-joint set specimens (c)
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The elastic moduli that are parallel and normal to the

joints are plotted as a function of joint frequency for single-

joint set specimens in Fig. 13a and b. Their average value

(data point) and standard deviation (shown as error bars)

obtained from all confining pressures are shown in the

figure. The joint normal stiffness used here is 381.2 GPa/m,

which is obtained from Kamonphet (2012). The elastic

modulus of the intact sandstone in the figure is averaged

from the measurement results given in Fig. 12. The joint

factors of Ramamurthy (2001) used in this study are

summarized in Table 6. The Ramamurthy (2001) equation

gives a good estimation for the deformation moduli parallel

to the joint planes (Fig. 13a) and normal to the joint planes

(Fig. 13b). The Goodman (1970) and Yoshinaka and

Yamabe (1986) equations can also describe the deforma-

tion moduli normal to joint planes (Fig. 13b). Figure 13c

shows the elastic moduli averaged from the three principal

directions for the three-joint set specimens. Yoshinaka and

Yamabe’s (1986) equation adequately describes the

deformation moduli of the rock specimens with three-joint

sets (Fig. 13c). Note that Yoshinaka and Yamabe (1986)

cannot describe the deformation modulus of the rock mass

along the axis that is parallel to the joint plane.

Modified Goodman equation

The Goodman (1970) equation is modified here to deter-

mine the deformation modulus along three principal

directions. It is proposed as:

1

Em

¼ N

kns
þ 1

Ei

ð21Þ

Parameter N is introduced as an empirical constant to

allow the Goodman equation to be able to predict the

deformation moduli that are parallel to the joint plane

(Table 7). The N values are defined by the direction of

deformation moduli with respect to the joint plane as

shown in Table 7. Predictions of the deformation moduli

for the three cases are given in Fig. 14. Good correlations

are obtained for all cases (R2[ 0.9). The proposed equa-

tion, however, can predict the deformation moduli only in

the directions normal and parallel to the joint planes.

Discussions and conclusions

Series of triaxial compression tests were performed to

determine the strength and deformability of small-scale

rock mass models with single- and multiple-joint sets and

joint frequencies under large confinements. It was found

that the compressive strengths decrease with increasing

Fig. 13 Predictions of deformation moduli compared with test data

for one-joint set specimens (a, b) and three-joint set specimens (c).
Points and error bars represent mean and standard deviation of

deformation moduli from all confining pressures

Table 6 Joint factors calculated for this study

Joint orientation Joint

frequency (Jf)

n r Joint

factor (JF)

One-joint set parallel

to the major

principal axis

Intact 1 0.8 –

26 0.85 0.8 38.2

38 0.85 0.8 55.9

51 0.85 0.8 75.0

63 0.85 0.8 92.6

One-joint set normal

to the major

principal axis

Intact 1 0.8 –

26 0.98 0.8 33.2

38 0.98 0.8 48.5

51 0.98 0.8 65.1

63 0.98 0.8 80.4
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joint frequency. This agrees with the experimental obser-

vations by Ramamurthy and Arora (1994) on jointed

specimens of Plaster of Paris. For one-joint set specimens

tested here, the strengths of rock specimens with joints

normal to the r1 axis are always greater than those with

joints parallel to the r1 axis. This agrees with experimental

observations by Colak and Unlu (2004), Saroglou and

Tsiambaos (2008), and Goshtasbi et al. (2006). The

decrease in rock mass strengths as the joint frequency

increases tends to act equally throughout the range of

confining stresses used here (1–12 MPa).

All strength criteria used here can sufficiently predict the

strengths of the rock mass specimens under the confining

stresses up to 12 MPa. The Hoek–Brown criterion with only

twoconstants (m and s) candescribe the rockmass strengths as

well as the three parameters criteria. The parameter s de-

creases rapidly with increasing joint frequency while param-

eter m tends to be insensitive to the joint frequency. The

parameters m and s of the one-joint set specimens are higher

than those of the three-joint set specimens. This suggests that

decreasing joint set numbers will increase the rock mass

strength. The measured uniaxial compressive strengths of the

rock specimens (rcm) decrease with increasing joint fre-

quency. They agree well with the rcm calculated from the

Sheorey (1989) and Ramamurthy and Arora (1994) criteria.

It is recognized that the joints studied here were simu-

lated by smooth saw-cut surfaces. The strengths of the rock

specimens for all cases, therefore, represent the lower

bound of the strengths of actual rock mass where most

fractures are rougher. In addition, the major principal

stresses applied here are always normal or parallel to the

joint planes. It is expected that the rock mass model

strengths would be lower if the applied stress makes obli-

que angles with the joint planes, as evidenced by the test

results obtained by Ramamurthy and Arora (1994), Colak

and Unlu (2004) and Goshtasbi et al. (2006).

For one-joint set specimens the deformation moduli

parallel to the joints show the highest values compared to

those that are normal to the joints. This is true for all joint

frequencies. For three-joint set specimens, the deformation

moduli are similar for all principal directions. The defor-

mation moduli decrease with increasing joint frequency.

This agrees with the experimental observations by Tiwari

and Rao (2006).

Table 7 Parameter N defined for the modified Goodman equation

Number

of joint

sets

Orientation of joint

with respect to r1
axis

N

1 Parallel to r1 σ1 Em,p 0.5a

1 Normal to r1 σ1 Em,n
1.0 (original

Goodman’s

equation)a

2 Parallel and normal

to r1

σ1 Em,p Em,n 1.5

3 Two parallel and

one normal to r1

σ1 Em

Em

Em

2.0a

a Verified by test results in Fig. 14

Fig. 14 Predictions of deformation moduli by modified Goodman

equation compared with test data for one-joint set specimens (a,
b) and three-joint set specimens (c)
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The Goodman (1970) equation can sufficiently predict

the deformation moduli for one-joint set specimens with

joints normal to the major principal axis (case II). It,

however, cannot calculate the deformation modulus for

specimens with more than a one-joint set. Yoshinaka and

Yamabe’s (1986) equation can determine the specimen

deformability with more than a one-joint set and orienta-

tion but it cannot calculate the deformation modulus par-

allel to the joints. Ramamurthy’s (2001) equation can

predict the deformation moduli parallel to the joint planes

(case I) and normal to the joint planes (case II). It cannot

calculate the deformation moduli of specimens with three-

joint sets. A modified Goodman equation is proposed here

to determine the deformation moduli along the three

principal directions. The parameter N is introduced, whose

values depend on joint set directions. The modified equa-

tion can adequately describe the deformation moduli par-

allel and normal to the joints planes for one-joint set and

three-joint set specimens.
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