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Abstract Landslides, as one of the most destructive

natural phenomena, distribute extensively in Wolong Giant

Panda Natural Reserve and cause damage to both humans

and endangered species. Therefore, landslide susceptibility

zonation (LSZ) mapping is necessary for government

agencies and decision makers to select suitable locations

for giant pandas. The main purpose of this study is to

produce landside susceptibility maps using logistic

regression (LR), analytical hierarchy process (AHP), and a

combined fuzzy and support vector machine (F-SVM)

hybrid method based on geographic information systems

(GIS). A total of 1773 landslide scarps larger than one cell

(25 9 25 m2) were selected in the landslide inventory

mapping, 70 % of which were selected at random to be

used as test data, and the other 30 % were used as vali-

dation. Topographical, geological, and hydrographical data

were collected, processed, and constructed into a spatial

database. Nine conditioning factors were chosen as influ-

encing factors related to landslide occurrence: slope

degree, aspect, altitude, profile curvature, geology and

lithology, distance from faults, distance from rivers, dis-

tance from roads, and normalized difference vegetation

index (NDVI). Landslide susceptible areas were analyzed

and mapped using the landslide occurrence factors by

different methods. For conventional assessment, weights

and rates of the affecting factors were assigned based on

experience and knowledge of experts. In order to reduce

the subjectivity, a combined fuzzy and SVM hybrid model

was generated for LSZ in this paper. In this approach, the

rates of each thematic layer were generated by the fuzzy

similarity method, and weights were created by the SVM

method. To confirm the practicality of the susceptibility

map produced by this improved method, a comparison

study with LR, AHP was assessed by means of their vali-

dation. The outcome indicated that the combined fuzzy and

SVM method (accuracy is 85.73 %) is better than AHP

(accuracy is 78.84 %), whereas it is relatively similar to LR

(accuracy is 84.55 %). The susceptibility map based on
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combined the fuzzy and SVM approach also shows that

5.8 % of the study area is assigned as very highly sus-

ceptible areas, and 17.8 % of the study area is assigned as

highly susceptible areas.

Keywords Landslide susceptibility map � Wolong Giant

Panda Natural Reserve � GIS � Combined fuzzy and SVM

Introduction

Wolong Natural Reserve is one of the largest habitats for

giant pandas in the world. This region was listed as one of

the world’s top 25 biodiversity hotspots by Conservation

International, and named as a Global 200 eco-region by the

World Wildlife Fund, and inscribed as a World Heritage

Site in 2006 (UNESO World Heritage Center 2006).

Wenchuan earthquake (May 12, 2008) triggered abundant

secondary landslides and created unstable landslide areas,

which have threatened the ecological environment for giant

pandas in Wolong Natural Reserve (Ouyang et al. 2008).

Therefore, landslide susceptibility zonation (LSZ) of this

area is an urgent subject for future decision makers to

select the low susceptible areas of landslide hazards as

suitable locations for giant pandas.

In order to assess landslide hazards and construct maps

portraying their spatial distribution, many researchers have

attempted to use different methods, either qualitative or

quantitative (Aleotti and Chowdhury 1999; Guzzetti et al.

1999; Dai and Lee 2002; Ayalew and Yamagishi 2005).

Qualitative methods represent the susceptible level based

on expert opinion. Scholars used these methods very fre-

quently in the 1970s (Carrara and Merenda 1976; Fenti

et al. 1979; Kienholz 1978; Ives and Messerli 1981; Rupke

et al. 1988). To minimize the subjective bias from the

experts, quantitative methods, such as bivariate statistical,

multivariate statistical, and probabilistic prediction models

were developed (Corominas et al. 2014). In the meantime,

geographical information systems (GIS), with the avail-

ability of integrating various thematic layers, became

increasingly popular. Many researchers have done land-

slide susceptibility mapping by rating, weighting, and

superimposing various thematic maps corresponding to the

causative factors based on GIS, such as probabilistic

models (Rowbotham and Dudycha 1998; Luzi et al. 2000;

Lee and Min 2004; Akgun et al. 2008, 2011; Ozdemir

2009; Yilmaz 2010a; Oh and Lee 2010, 2011; Pourghasemi

et al. 2012a, b; Mohammady et al. 2012), bivariate statis-

tics (Brabb et al. 1972; Yilmaz and Yildirim 2006; Con-

stantin et al. 2011; Yilmaz et al. 2012; Yalcin et al. 2008,

2011; Magliulo et al. 2008; Lucà et al. 2011), multivariate

analysis (Carrara 1983; Chung et al. 1995; Santacana et al.

2003; Komac 2006; Piegari et al. 2009; Pradhan et al.

2010a; Nandi and Shakoor 2010), logical regression (Dai

et al. 2001, 2003, 2004; Lee and Min 2001; Lee and

Pradhan 2007; Can et al. 2005; Yesilnacar and Topal 2005;

Goesevski et al. 2006; Lee and Evangelista 2006; Nefes-

lioglu et al. 2008a; Yilmaz 2009; Lei et al. 2011; Pradhan

et al. 2008, 2010a, b, 2011a, b; Chauhan et al. 2010; Bai

et al. 2010; Akgun et al. 2012; Bui et al. 2011a; Felicisimo

et al. 2013; Süzen and Kaya 2012), and the analyti-

calhierarchy process (Ayalew et al. 2004; Yoshimatsu and

Abe 2006; Ercanoglu et al. 2008; Akgun and Türk 2010;

Pourghasemi et al. 2012c; Kayastha et al. 2013).

In recent years, machine learning approaches such as

artificial neural networks (ANN) and support vector

machines (SVM) have been partially successfully imple-

mented with the advantage of overcoming the deficiency of

statistical methods that require two class samples (Pradhan

B et al. Pradhan 2010c, d; Sezer et al. 2011; Oh and

Pradhan 2011; Tien et al. 2012; Micheletti et al. 2013; Yao

et al. 2008; Yilmaz 2008, 2010a; Yilmaz and Yuksek

2008a, b; Polykretis et al. 2015).

Proposed as indirect assessment strategies that combine

the advantages of quantitative and qualitative assessments,

hybrid models have become the new research hot issue

recently, with the intent to create an improved and objec-

tive model. Kanungo et al. (2006), Lee et al. (2009) and

Vahidnia et al. (2010) have combined a fuzzy inference

system (FIS) with an artificial neural network (ANN) to

generate LSZ. Goesevski et al. (2006) have integrated

fuzzy logic with AHP. Tehrany et al. (2013) applied an

ensemble rule based on decision tree (DT) and multivariate

statistical methods in the spatial prediction of flood areas in

Malaysia. Damasevicius et al. (2010) pointed out that

robustness and clustering algorithms can be positively

affected by combining grammar inference and SVM.

The hybrid methods cited above give rise to new

thoughts of combining two different models together in

order to reduce the sensitivity to noises and isolated sam-

ples, thus appealing for many scholars (Pradhan 2010a).

The combined fuzzy similarity and SVM (F-SVM) method

is an improved algorithm for SVM, which can overcome

the weakness of either approach. However, attempts to

create F-SVM are relative few.

In this paper, the F-SVM method has been created here

for landslide susceptibility mapping in Wolong Giant Panda

Natural Reserve. Nine factors were selected as landslide

controls factors: slope, aspect, altitude, geology, and lithol-

ogy, distance from rivers, distance from roads, distance from

faults, profile curvatures, normalized difference vegetation

index. They were constructed based on ArcGIS software for

data spatial analysis and manipulation. Then, LSZ was

generated and compared with three different approaches

(LR, AHP, F-SVM). Finally, the result based on the opti-

mum method in this particular study area could provide
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practical suggestions for government and decision makers

for future conservation of the giant panda.

The study area

General characteristics

Wolong Natural Reserve is a suitable living environment for

endangered species, especially for giant pandas. It is located in

the west of Sichuan province, China, approximately between

102�5200000E and 103�2500000E longitude, and 30�4500000N
and 31� 2500000N latitude, with an area of approximately

3600 km2. The epicenter of the Wenchuan earthquake is

located 30 km northeast of the study area, dissecting the rock

masses into small blocks. The fault zones near well-known

Longmenshan mountain fault zones include, from northwest

to southeast, Pitiao river fault, Gengda fault, andYingxiu fault

characterized bya series of parallel folds and faults that extend

NE 40–50�. The rocks in this area are intensively fractured,

and a number of joint sets are developed. The elevation ranges

from1194 to 5789m. Slope degree in this region is very steep,

varying from 0� to 86.117�. Owing to the particular geo-

graphical position and complex geological structure, it is

frequently subjected to landslides (Fig. 1).

Geological setting

The rocks outcropping in the study area range in age from the

Early Paleozoic era to Mesozoic. The formation of Jurassic

and Cretaceous in Mesozoic is missing, and tertiary units in

Cenozoic are also sparse. The Maoxian Group of Silurian is

formed of celadon sericite phyllite, silver sand phyllite with a

thin layer of quartzite, and thin-bedded and lenticular crys-

talline limestone in the southeast of the study area along

Pitiao River. Triassic formations are distributed in the

northwest along the Pitiao River, consisting of feldspar

quartz sandstone, slate, carbonaceous phyllite, thin-bedded

limestone, and fine siltstone. Additionally, the Jinning-

Chengjing formation in the Proterozoic period is distributed

in the northeast of the study area and is mainly composed of

diorite and granodiorite, with the characteristic of being

densely jointed and crushed. Since it is the oldest formation

and susceptible to weathering, large numbers of landslides

are observed in these units through field investigation.

Hydrological characteristics

The climate of the study area is very humid. According to

the data obtained from a local meteorological station, the

average humidity is up to 80 %. The average annual pre-

Fig. 1 Study area
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cipitation is 890 mm and generally concentrates in spring

and summer. The main streams in the study area are Pitiao,

Jin, Zhong, and Xi rivers. These rivers and their tributaries

form a dendritic drainage pattern due to topographical and

geological features of the study area.

Slope failures

Landslides that have occurred in this region are widely

distributed and represent a serious threat to humans and

giant pandas. Large scales of potential landslides and

detrital materials formed on the slope during the process of

the earthquake. The rock mass on the slope has become

loose after the earthquake and, therefore, provides source

material for a potential precipitation-induced landslide.

These unstable slopes are very likely to slide when trig-

gered by rainstorms or earthquakes. The following Fig. 2

shows that a landslide with an approximate 70 m length,

50 m width, and 40 m height occurred just after a heavy

rainfall. The main body is presumed to be created by the

May 12, 2008 Wenchuan earthquake. After heavy rain on

June 19, 2014, new tension cracks appeared at the back of

the main scarp. As material accumulated, movement

accelerated and secondary landslide occurred. Many simi-

lar landslides are cited for the study area.

Construction of a landslide spatial database

For the landslide susceptibility mapping, the primary step

is to construct the spatial database from relevant landslide

conditioning factors. This stage is thought to be the most

important part of landslide susceptibility and hazard miti-

gation studies (Guzzetti et al. 1999; Ercanoglu and Gok-

ceoglu 2004; Kincal et al. 2009). The spatial database for

the study area is composed of slope degree, aspect, altitude,

profile curvature, geology and lithology, distance from

faults, distance from rivers, distance from roads, and the

normalized difference vegetation index (NDVI). These

spatial conditioning factors make the slope susceptible

without trigger conditions and thus are considered

responsible for the occurrence of landslides in the study

area. As we know, rainfall and earthquakes, as triggering

factors and temporal phenomena, set off the movement by

shifting the slope from the quasi-stable state to an unstable

state. However, past data on these trigger factors in relation

to landslide occurrence are not available and thus are not

considered in this study. The sources of this spatial data-

base are shown in Table 1.

In this paper, a digital elevation model (DEM) with a

ground resolution of 25 m was constructed by interpolation

of 1:50,000 scale local digital contour lines using ArcGIS

software. Some significant terrain attributes such as slope

gradient, aspect, altitude, and profile curvature were

derived from this DEM. All other digital lines such as

geology maps, fault distribution, river distribution, and

road distribution were converted into raster format and

resampled with the same pixel size as the DEM.

Landslide inventory map

Since a reliable landslide inventory map plays the most

important role in mapping the landslide susceptibility, it is

necessary to determine the locations and outlines of land-

slides accurately (Pradhan and Lee 2007). However,

employing field survey and observation as the initial

method is difficult and time consuming on account of

complex and dangerous terrain conditions after the earth-

quake. Instead, remote sensing methods, such as high res-

olution remote sensing and aerial photographs, are used to

Fig. 2 a A typical landslide in the study area. b A profile map of a

typical landslide in the study area
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exact significant and cost effective information on land-

slides. Certainly, a field survey can be used to verify the

result of aerial photograph interpretation and remote

sensing imagery analysis.

It should be noted that different sample strategies

representing the landslide have different results and have

different meanings as well (Nefeslioglu et al. 2008b).

Nevertheless, the conceptual differentiation of sampling

strategies applied in susceptibility evaluation is commonly

ignored. Moreover, there is no agreement on the tech-

nique of producing a landslide inventory map. Generally,

point, seed cell (Süzen and Doyuran 2004; Yesilnacar and

Topal 2005; Sujatha et al. 2012), and scarp (Clerici et al.

2006) are used as training data to represent the failure

condition of landslides by researchers. Yilmaz (2010b)

has first compared the effect of these three different

sampling strategies by means of landslide inventory on a

landslide susceptibility assessment, and the result showed

that the scarp sampling strategy performed better than the

other two sampling strategies. According to Yilmaz

(2010b), the point sampling strategy described by a single

X, Y coordinate couldn’t reflect the landslide affected

area. As is well known, two genetically and morpholog-

ically distinct zones can be identified: the depletion zone

(the upper part of the landslide where the failure is

effectively generated) and the accumulation zone (the

lower part which is simply affected by the arrival of the

depleted material) (Clerici et al. 2006). If the whole

landslide is considered in assessing landslide susceptibil-

ity, the accumulation zones are erroneously considered to

be prone to landsliding. The depletion zone is generally

difficult to identify completely since it is partially occu-

pied by the displaced material. Thus, the main scarp (the

higher portion of depletion zone, especially its upper

edge) is the most evident morphological feature of a

landslide and can be easily distinguished from the

Table 1 The source of spatial

database used in landslide

susceptibility analysis

Classification Sub-classification Source Scale

Geological map Geology lithology, fault Geology Survey of Sichuan province 1:200,000

Topographic map DEM, road National Cartographic Center 1:50,000

Hydrographical map River National Cartographic Center 1:50,000

Fig. 3 Landslide inventory map. a The main scarp of landslides were analyzed from IKONOS; b the main scarp of landslides were interpreted

from SPOT
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accumulation/depletion zone or rupture zone as a polygon

feature (Yilmaz 2010b) (Fig. 3).

Different map scales (large, medium, and small scales)

should be considered in general natural hazard zonation

(Holec et al. 2013). Concerning the purpose of the

assessment, the extent of the study area, and data avail-

ability (Aleotti et al. 1996), a medium scale (1:50,000) is

chosen as the work scale to analyze landslide susceptibility

zonation. Additionally, only a few landslide areas (about

0.05 % of the total landslide number) are less than 100 m2

(Chong Xu et al. 2013), and 1:50,000 map scale is deemed

sufficient to delineate a landslide.

In this study, a total of 4771 landslides are identified via

RapidEye in 5 m resolution, SPOT-5 in 2.5 m resolution,

IKONOS in 1 m resolution, and QuickBird in 0.6 m res-

olution, and about 80 % of these landslides are verified by

field surveys; however, main scarps of landslides larger

than one cell (25 9 25 m2) were selected in the landslide

inventory mapping (the number adds up to 1773; Fig. 3).

Most of the landslides were rock slides according to the

classification system proposed by Varnes (1978). Among

these data, a random 70 % of the data were chosen as

training data for the landslide susceptibility map, while the

remaining 30 % were used for the model validation. The

pixel size of landslide inventory and other thematic maps

was 25 m. The study area includes 2,264,362 pixels, and

the main scarps of landslides include 63,631 pixels.

Slope degree

The main parameter of the landslide stability analysis is

the slope degree, since it dictates the distribution of slope

stress (Lee and Min 2001; Saha et al. 2005; Ercanoglu

et al. 2002). Meanwhile, the slope degree also restricts

the redistribution of material and energy of the earth’s

surface and controls terrestrial plumbing, the thickness of

the loose material, and recharge and discharge of

groundwater on the slope. Most importantly, the slope

influences the effective free face of the slope body, for

landslides tend to increase with the free face of the slope

body. For these reasons, the slope degree map of the

study area is crucial for this research. The slope degree

map is derived from DEM and divided into six slope

categories (Fig. 4a).

Aspect

Aspect is defined as the direction of the maximum slope of

the terrain surface. It has an indirect influence on slope

instability. Aspect related factors, such as exposure to

sunlight, land use, drying winds, rainfall (degree of satu-

ration), and discontinuities, may control the occurrence of

landslides (Yalcin 2008). For example, Xu et al. (2013b)

has reported that large numbers of landslides caused by the

Wenchuan earthquake occurred in south-facing aspects.

Therefore, in this study, the aspect map is also derived

from DEM and divided into nine classes: flat (-1�), north
(337.5�-360�,0�–22.5�), northeast (22.5�–67.5�), east

(67.5�–112.5�), southeast (112.5�–157.5�), south (157.5�–
202.5�), southwest (202.5�–247.5�), west (247.5�–292.5�),
northwest (292.5�–337.5�) (Fig. 4b).

Altitude

Altitude is also a relevant landslide conditioning factor. It

is well known that altitude influences temperature, veg-

etable, human activity, and gravitational energy of land-

slides. In turn, these conditions have the potential to affect

slope stability and generate slope failure. The altitude map

is derived from DEM and reclassified into seven classes

(Fig. 4c).

Profile curvature

The profile curvature is theoretically defined as the rate of

change of slope gradient or aspect, usually in one particular

direction (Wilson and Gallant 2000). Profile curvature on

the slope erosion processes influences the convergence or

divergence of water during downhill flow (Ercanoglu and

Gokceoglu 2002; Oh and Pradhan 2011). In addition, it

also controls the change of velocity of mass flowing down

the slope (Talebi et al. 2007). It is negative when the

concavity of the normal section directed up and vice versa

(Hengl et al. 2003). The profile curvature map was created

by using a spatial geo-scientific analyses model in ArcGIS

software (Fig. 4d).

Geology and lithology

Geology and lithology describe the material basement of

landslides. Rock types and structures decide the physical

properties of rocks and thus affect the stability of land-

slides. For this reason, it is essential to group the lithology

properties properly (Dai et al. 2001; Duman et al. 2006). In

this study area, different lithology associations are devel-

oped in different geological periods (Table 2). The geo-

logical map was prepared by the Geological Survey of

Sichuan province with 1:20,000 scale, then digitized and

converted into raster format with 25-m pixel size in GIS

(Fig. 4e).

Distance from faults

The specific shape, type, and displacement mechanism of

landslides were decided by pre-landslide geological fea-

tures. Tectonic action plays important role in landslides
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occurrence. Faults form a line or zone of weakness char-

acterized by tectonic structure (Foumelis et al. 2004).

Generally speaking, landslides occur more frequently near

the faults. Selective erosion and water movement along

fault planes promote landsliding. In this study, the dis-

tance-from-faults map was extracted from the geology map

at 1:200,000 scale. The buffer intervals were set to 200 m,

and then the buffer map was converted into raster format

(Fig. 4f).

Distance from rivers

The distance of the slope to drainage structure is another

important factor in terms of landslide stability. Streams

may adversely affect stability by eroding the slope or sat-

urating the lower part of the material resulting in water

level increases (Gokceoglu and Aksoy 1996; Saha et al.

2002). For this reason, six different buffer zones were

defined with 100-m intervals to determine how the streams

affected the slopes (Fig. 4g).

Fig. 4 The thematic map of landslide affecting factor. a Slope degree; b aspect; c altitude; d profile curvature; e geology and lithology;

f distance from faults; g distance from rivers; h distance from roads; i normalized difference vegetation index

GIS-based landslide susceptibility mapping with logistic regression, analytical hierarchy… 929
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Distance from roads

Distance from roads is another important factor. A high

slope caused by road excavation is more prone to slide

owing to disruption of the stress state and slope equilib-

rium. In fact, a large number of landslides were observed

closer to the road during the field investigation. For this

reason, five different buffer zones were created with 100-m

intervals to determine how the roads affected the stability

of slope (Fig. 4h).

Normalized difference vegetation index (NDVI)

The incidence of landslides is closely related to vegeta-

tion density. Barren slopes are more prone to landslides

as compared to one with higher vegetation coverage. The

NDVI was derived from German remote sensing images

(RapidEye) with 5 * 5 m resolution. The NDVI value

was calculated using the following equation:

NDVI¼ðNIR � RÞ=ðNIRþRÞ ð1Þ

Fig. 4 continued
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where NIR is the infrared value, and R is the red portion of

the electromagnetic spectrum, respectively. The study area

was divided into six classes to demonstrate how the NDVI

influences landslide occurrence (Fig. 4i).

Landslide susceptibility mapping

Logistic regression model

Logistic regression (LR) is a multivariate analysis model

used to find the optimal fitting to describe the relationship

between the presence and absence of landslides based on a

set of independent variables such as slope angle, aspect, and

lithology. In the present situation, the dependent variable is a

binary variable 0 or 1 that represents the absence or presence

of a landslide. The LR model generates coefficients to

estimate ratios for each of the independent variables.

Quantitatively, the relationship between occurrence and

its dependency on several variables can be expressed as:

p ¼ 1

1 þ e�z
ð2Þ

where the p value is the estimated probability of landslide

occurrence, and Z is the linear combination of each

affecting factor.

It follows that logistic regression involves fitting an

equation of following form to the data

z ¼ ðb0 þ b1x1 þ b2x2 þ � � � bnxnÞ; ð3Þ

where b0 is the intercept of the model; bi (i = 0, 1, 2,…
n) is the partial regression coefficient; xi (i = 0, 1, 2,…
n) is the independent variable.

Before using the logistic regression model, the spatial

databases of each factor influencing the landslide were

converted to ASCII format files. Then, the coefficient

between the landslide and each affecting factor was cal-

culated by statistical software (SPSS 15.0).

z ¼ ð0:12 � SLOPEÞ þ ð0:178 � ASPECTÞ
þ ð0:058 � LITHOLOGYÞ þ ð0:071 � NDVIÞ
þ ð0:012 � FAULTÞþ ð0:193 � ROADÞ
þ ð0:064 � RIVER)þð0:275 � ALTITUDEÞ
� ð0:027� ProcurÞ � 0:594

ð4Þ

where SLOPE is slope value; ASPECT is aspect value;

LITHOLOGY is geology and lithology value; NDVI is

NDVI value; FAULT is distance from fault value; ROAD

is distance from road value; RIVER is distance from river

value; ALTITUDE is altitude value; Procur is profile cur-

vature value; and z is a parameter.

Using Eqs. (2) and (3), the possibility of a landslide

occurrence was calculated, and finally, a susceptibility map

was obtained by converting the file into raster format. The

p value ranges from 0.42 to 0.83. Five classes (very low,

low, moderate, high, very high) were defined based on the

standard deviation (Fig. 5a).

Analytical hierarchy process (AHP)

The analytical hierarchy process, developed by Saaty

(1977), is a semi-qualitative method based on pair-wise

comparison of the contribution of different factors for

landslide occurrence. It is a multi-objective, multi-crite-

rion, decision-making approach that enables the user to

arrive at scale of preference drawn from a set of alterna-

tives (Saaty 1980). The decision maker can obtain the goal

using the following steps:

1. Break down a complex and unstructured problem into

component factors;

2. Arrange these factors in a hierarchical order;

3. Assign numerical values, weights, according to their

subjective relevance to determine the relative impor-

tance of each factor;

4. Synthesize the judgments to determine the priorities of

these factors (Saaty and Vargas 2001). In order to

construct the pair-wise comparison matrix, each factor

should be rated against any other factor by assigning a

score between 1 and 9, given in Table 3.

Fig. 4 continued
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When the factor on the vertical axis is more important

than the factor on the horizontal axis, this value varies

between 1 and 9. Conversely, the value varies between the

reciprocal 1/2 and 1/9. According to the above principles,

the importance of each parameter affecting landslide sus-

ceptibility and a calculated consistency ratio (CR) were

generated (Table 4). In the AHP method, the CR is used to

indicate the probability that the matrix judgments were

randomly generated. When CR is less than 0.1, it represents

a reasonable level of consistency (Malczewski 1999).

On the contrary, the judgment is needed when the CR is

above 0.1. In this study, the CR is 0.0551, which means the

ratio indicates a reasonable level of consistency in the pair-

wise comparison matrix. Geology and lithology, slope

degree, distance from faults, and NDVI were found to be

important parameters influencing the landslide occurrence,

whereas distance from river is of low importance. Using a

weighted linear sum procedure, the acquired weights were

used to calculate the landslide susceptibility models.

LSMAHP¼
X

R1i �W1i ð5Þ

where R1i is the rating class of each layer such as slope,

aspect, elevation, where W1i is the weight for each condi-

tioning factor. Based on the GIS, each conditioning factor

is converted into raster format and weighted summation.

The pixel values obtained are then classified into five

classes based on standard deviation to determine the class

intervals in the landslide susceptibility map (Fig. 5b).

Combined SVM and fuzzy similarity model

The novel hybrid learning model is the combination of

SVM and fuzzy similarity concept. Fuzzy similarity is

attractive because it is straightforward to understand and

implement. It is different from data-driven approaches such

as logistic regression or weight of confidence (Pradhan

2011a, b). However, the weight of thematic layer in the

fuzzy similarity method is controlled by the expert; in other

words, the determination of weights is qualitative not

quantitative. Consequently, combined fuzzy similarity with

SVM can integrate advantages of two methods and provide

objective and steady results. The flow diagram in Fig. 6

Table 2 Geology and lithology of the study area

Geological age Lithology Formation Symbol

Indo-Chinese Monzonite g5
1b

Indo-Chinese Hatherlite porphyry f5
1b

Yanshanian Plagioclase granite co2
(4)

Yanshanian Porphyritic biotite granite c5
2b

Proterozoic Basalt, andesite, dacite, rhyolite with dacite Huangshuihe Pthn1

Proterozoic Granodiorite – cd2
(4)

Proterozoic Diorite – d2
(3)

Proterozoic Biotite granite c2
(4)

Silurian Celadon phyllite, quartzite Dier Smx2

Silurian Dark grey phyllite includes crystalline limestone,sandstone, dolomite Disan Smx3

Silurian Schist, killas Maoxian Smx4

Silurian Celadon phyllite and grey phyllite, crystalline limestone Diwu Smx5

Devonian Phyllite and limestone, quartzite Yuelizhai Dyl
1

Devonian Phyllite, limestone Yuelizhai Dyl
2

Devonian Marlstone includes sandstone Yangmaba D2y

Devonian Dolomitic limestone, dolomite and a little shale Guanwushan D2g

Devonian Phyllite includes limestone, crystalline limestone Weiguan Dwg
1

Devonian Phyllite, quartzite Dwg2

Devonian Phyllite, quartzite, and a little crystalline limestone D2?3

Permian Basalt, psephitic limestone, limestone P

Permian Limestone, dolomite limestone with intercalations of chert limestone P1

Permian Marlstone, chert limestone, shale with intercalations of bauxite and coal bed P2

Triassic Phyllite includes limestone, fine sandstone, and siltstone Xikang T1b

Triassic Limestone, metamorphic quartz sandstone, and a little phyllite Xikang T2z

Triassic Fine sandstone and siltstone, phyllite and a little limestone Xindu T3zh
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involves three steps. Firstly, determine the rates of thematic

layers using the fuzzy similarity approach. Secondly,

determine the weights of thematic layers through the SVM

approach. Finally, integrate the weights and rates using

GIS to generate landslide susceptibility mapping. The flow

diagram of this hybrid method is shown in Fig. 6.

Fuzzy similarity method

To deal with complex problems, Zadeh (1965) first intro-

duced fuzzy set theory, which was oriented to the rationality

of uncertainty due to imprecision or vagueness. In fuzzy

similarity theory, a spatial object is a member of set. Such a

set is characterized by a membership, which can be assigned

any value between 0 and 1, reflecting the degree of certainty

of membership (Zadeh 1965). If the object belongs to

member of set, the value is 1, otherwise the value is 0.

In this study, the membership degrees of categories of

each conditioning factor are determined based on a fre-

quency ratio model. The frequency ratio is the ratio of area

where landslides occurred in the total area. If the value is

greater than 1, it shows that this affecting factor has a high

Fig. 5 Landslide susceptibility map using LR model (a); AHP model (b); F-SVM (c)
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correlation with landslide occurrence; if lower than 1, it is a

lower correlation; if equal to 1, it means an average value.

Then, the frequency ratio normalized between 0 and 1 to

describe the fuzzy membership values (Table 5).

Support vector machines

The support vector machine was originally developed by

Vapnik (1995) as a more recent machine-learning method

after artificial neural networks.

Using the training data, SVM implicitly converts the

original input space into higher dimensional feature space

based on kernel functions (Brenning 2005). Subsequently,

in the feature space, the optimal hyper-plane is determined

by maximizing the margins of class boundaries (Shigeo

Abe 2010). Therefore, SVM trains are modeled by con-

straining duality optimal solution.

Consider a training dataset of instance-label pairs (xi, yi),

with xi e Rn. The training vectors consist of two classes,

which are denoted as yi e {1, -1} and i = 1, 2,…, m. If a

point xi e Rn is above the hyper-plane, it is classified as 1,

otherwise it is -1. The goal of SVM is to search for an

n-dimensional hyper-plane differentiating the two classes

by the maximum gap.

Mathematically, it can be denoted as

min
1

2
wk k2 ð6Þ

Subject to the following constraints

yiððw � xiÞ þ bÞ� 1 ð7Þ

where kwk is the normal of the hyper-plane, b is a scalar

base, and � denotes the scalar product operation.

Introducing the Lagrangian multiplier, the cost function

can be defined as

L ¼ 1

2
wk k2�

Xn

i¼1

kiðyiððw � xiÞ þ bÞ � 1Þ; ð8Þ

where ki is the Lagrangian multiplier. The solution can be

achieved by dually minimizing Eq. (8).

For the case of linear separable data, a separate hyper-

plane can be defined as

yiððw � xiÞ þ bÞ� 1� ni; ni � 0; ð9Þ

where ni is the slack variable. The above equation will be

modified as

L ¼ 1

2
wk k2� 1

vn

Xn

i¼1

ni; ð10Þ

where v(0,1] is introduced to account for misclassification

(Scholkopf et al. 2000; Hastie et al. 2001). Additionally, a

kernel function K(xi, yi) is introduced accounting for the

nonlinear decision boundary.

Kðxi; xjÞ ¼ e�yðxi�xjÞ2 ð11Þ

Generally speaking, there are several kernel types, such

as linear kernel, polynomial kernel, RBF (Gaussian kernel).

Because the RBF kernel has proved to be the most pow-

erful kernel in dealing with nonlinear cases (Yao et al.

2008) it was thus employed in this study. For the RBF

kernel, the kernel width (c) is the primary parameter, which

controls the degree of nonlinearity of the SVM model

(Damasevicius 2010). Only (c) has to be determined for a

chosen v. For each pair (c, v), the dataset is divided into

n folds: one fold is considered as verification dataset, the

other n - 1 folds are considered as training datasets. By

iterating each fold as a verification dataset and combination

of other folds as training, the optimal (c, v) is determined.

For this research, (c, v) is choosen to be (0.1, 0.65) based

on a 60 % subset of test data as training data and the other

40 % of the data as verification data. Final weights of

landslide conditioning factors are given in Table 6 using

the SVM model. Datasets and their classes are given in

Table 5. Landslide susceptibility map produced by SVM is

shown in Fig. 5c.

It can be observed from Table 5 that when the slope

degree is greater than 50, the frequency ratio value is 2.21.

This means a high probability for landslide occurrence, and

thus the corresponding value of fuzzy membership is 1. For

slope degree between 0 to 10, the frequency ratio value is

0.3517, which indicates a low probability of landslide

occurrence, and the corresponding value of fuzzy mem-

bership is 0. In terms of slope aspect, landslides were the

most abundant on the southeast and south slopes. Thus, the

hill slope facing the southeast or south is more susceptible

to landslide. The slopes facing flat and northeast have a

lower probability of landslide. With respect to the altitude,

landslides were the most abundant on 1179–1500,

1500–2000, 2000–2500 m (1.88, 2.4837, and 2.094,

respectively). In the case of geology and lithology, the

frequency ratio (13.47) is the highest in the areas that are

composed of plagioclase granite in Yanshanian period, and

Table 3 Scale of preference between two parameters in AHP (Satty

2000)

Scales Explanation

1 Equal importance

3 Moderate prevalence of one over another

5 Strong or essential prevalence

7 Very strong or demonstrated prevalence

9 Extremely high prevalence

2, 4, 6, 8 Intermediate values

Reciprocals For inverse comparison
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Table 4 The pair-wise comparison matrix, factor weights, and consistency ratio of the data layers

Factors Classes 1 2 3 4 5 6 7 8 9 Rating (R1i)

Slope (�) 0–10 1 3 4 6 8 0.0377

10–20 1 2 6 8 0.0672

20–35 1 2 4 0.1343

35–50 1 3 0.2536

[50 0.5072

Consistency ratio 0.0436

Aspect Flat 1 1/6 1/3 1/4 1/4 1/7 1/2 1/5 1/3 0.0017

North 1 3 2 2 1/3 3 2 3 0.0111

Northeast 1 1/2 2 1/4 2 1/2 1 0.004

East 1 1/2 1/3 3 2 1/3 0.0066

Southeast 1 1/4 2 1 2 0.0029

South 1 2 4 3 0.0181

Southwest 1 3 2 0.0029

West 1 1/2 0.0079

Northwest 1 0.0041

Consistency ratio 0.0228

Elevation (m) 1179–1500 1 1 2 3 4 6 8 0.0075

1500–2000 1 2 2 4 6 7 0.007

2000–2500 1 2 3 5 7 0.0048

2500–3000 1 2 5 7 0.0035

3000–3500 1 3 6 0.0022

3500–4000 1 3 0.001

4000–5789 1 0.0006

Consistency ratio 0.0361

Profile curvature Concave 1 1/3 2 0.0108

Convex 1 7 0.034

Flat 1 0.0051

Consistency ratio 0.0025

Distance from faults (m) 0–200 1 2 3 4 5 6 0.0524

200–400 1 2 3 4 5 0.034

400–600 1 2 3 4 0.0221

600–800 1 2 3 0.0146

800–2000 1 3 0.0093

[2000 1 0.0054

Consistency ratio 0.0246

Distance from river (m) 0–100 1 2 3 4 5 6 0.0098

100–200 1 2 3 4 5 0.0065

200–300 1 2 3 4 0.0041

300–400 1 2 3 0.0026

400–500 1 2 0.0017

[500 1 0.0011

Consistency ratio 0.0194

Distance from road (m) 0–100 1 2 3 4 5 0.0194

100–200 1 2 3 4 0.0122

200–300 1 2 3 0.0074

300–400 1 3 0.0049

[400 1 0.0026

Consistency ratio 0.0283
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few landslides are distributed in C, T3zh, P1, P2, g51b,
f51b, D2?3, c5

2b.. In the case of profile curvature, the fre-

quency ratio values were higher in concave areas and lower

in flat areas. In the case of NDVI, the frequency ratio is

higher in 0.063–0.108, 0.108–0.28, 0.28–0.45. In the case

of distance from fault, at distances of 0–200, 200–400,

400–600, 600–800, 800–2000 m, the frequency ratios are

0.59, 0.739, 0.662, 1.154, 1.396, respectively, showing a

high probability of landslide occurrence. In the case of

distance from river, distances of 200–300, 300–400, and

400–500 m have a high probability for landslide. For the

distance from the road, the landslides mostly occurred at

distances of 100–200, 200–300, 300–400,[400 m.

Results and comparison of multi-models

The LSZ was generated by three different methods based

on GIS. To test the optimal approach, LR, AHP, and

F-SVM were compared and validated. The percentage

distribution of the susceptibility classes in the study area

was determined by standard deviation classification, since

the histogram of data values exhibits a normal

distribution.

According to the LSZ produced by the LR method, it

can be observed that 5.34, 20.15, 29.0, 20.17, and 25.34 %

of the study area can be classified as very high, high,

moderate, very low, and low susceptibilities (Fig. 7). As

shown in Fig. 7, the histogram of the landslide suscepti-

bility area based on the AHP model exhibits that 9.8 % of

the total area is very low probability for landsliding, and

5.4 % of the total area shows very high probability for

landsliding. The low area covers about 30.9 % of the total

area. The moderate susceptibility zone is about 27.6 % and

the high susceptibility area is 26.1 %. According to the

landslide susceptibility zone produced by F-SVM, 5.8 % of

the study area is very high zonation, 17.8 % high, 26.7 %

moderate, 21.1 % low, and 28.6 % very low area (Fig. 7).

For validation of landslide hazard calculation models,

two assumptions are needed. One is that the landslides are

related to spatial information. The other assumption is that

future landslides will be triggered by specific factors such

as rainfall and earthquake. In this study, both of the basic

assumptions were met. The landslide susceptibility maps

Table 4 continued

Factors Classes 1 2 3 4 5 6 7 8 9 Rating (R1i)

NDVI -0.2 to 0.063 1 1/2 1/3 1 3 0.0164

-0.063 to 0.108 1 1/2 2 3 0.0269

0.108–0.28 1 2 3 0.0385

0.28–0.45 1 2 0.0164

0.45–0.76 1 0.0085

Consistency ratio 0.0291

Geology and lithology Indo-Chinese 1 2 1 3 2 2 2 0.0789

Yanshanian 1 1 4 3 2 2 0.0714

Proterozoic 1 2 2 4 3 0.0789

Silurian 1 1/2 1/2 1/3 0.0305

Devonian 1 3 2 0.0332

Permian 1 2 0.0372

Triassic 1 0.0236

Consistency ratio 0.0747

Data layer Weight (W1i)

Slope 1 6 5 1/4 7 3 2 2 5 0.1894

Aspect 1 2 1/8 4 2 1/2 1/2 2 0.0634

Elevation 1 1/6 1/2 1/3 1/5 1/4 1/2 0.0267

Geology and lithology 1 9 6 4 3 7 0.3538

Distance from river 1 1/3 1/6 1/3 1/3 0.0257

Distance from road 1 1/4 1/3 1/2 0.0466

Distance from fault 1 2 3 0.1378

NDVI 1 3 0.1067

Profile curvature 1 0.0498

Consistency ratio 0.0551
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can be validated by comparing the known landslides

location data, which were not included in the susceptibility

analyses, with the susceptibility map obtained. In the pre-

sent study, 30 % of total landslides were used for valida-

tion based on random selection. Figure 8 presents a

histogram that summarizes the results of the entire process.

It can be observed that 41.7, 40.9, 13.6, 3.6 % of the val-

idation hazard data fall into the very high, high, moderate,

and low classes of the landslide susceptibility map using

the F-SVM method. Of the landslides that occurred, 38.7,

41.3, 15.8, and 4 % fall into the very high, high, moderate,

and low susceptibility classes in LSZ with the LR method.

It is worth mention that no validation data falls into the

very low susceptible class in LSZ with F-SVM and LR.

The landslide susceptibility map created with the AHP

method showed that 10, 51.2, 26.5, 10.7, 1.4 % of

landslides that occurred fall into very high, high, moderate,

low, very low susceptible classes.

Moreover, the rate curves are generated, and the area

under curve (AUC) is a good indicator to evaluate the

prediction performance of the model. If the AUC is close to

1, it indicates a more ideal model (Swets 1988; Yesilnacar

and Topal 2005). To obtain the relative ranks for each

prediction model, the calculated landslide susceptibility

index (LSI) of all cells in the study area was sorted in

descending order. Then the ordered cell values were divi-

ded into 100 classes with accumulated 1 % intervals.

Cumulative percentage of landslide occurrence in different

models appears as a line in Fig. 9. It can be observed from

Fig. 9 that three different methods show the same ten-

dency. This means all three methods can be used for pre-

dicting the susceptibility of landslide. In the case of the

Fig. 6 Flow diagram showing

the combined fuzzy and SVM

method for landslide

susceptibility mapping
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Table 5 Spatial probability relationship between each landslide affecting factor and landslide and fuzzy membership value

Factor Class Percentage of domain

(%)

Percentage of landslides

(%)

Frequency

ratio

Fuzzy membership value

(Ri)

Slope 0�–10� 7.3 2.56 0.3517 0

10�–20� 15.81 9.37 0.5925 0.13

20�–35� 42.08 33.27 0.79 0.23

35�–50� 29.36 42.7 1.45 0.59

[50� 5.43 12.02 2.21 1

Aspect Flat 0.00001 0 0 0

North 11.7 10.8 0.859 0.57

Northeast 11.8 5.98 0.5064 0.34

East 15.5 12.43 0.798 0.53

Southeast 14.20 21.1 1.4853 1

South 12.35 16.8 1.364 0.91

Southwest 12.63 11.06 0.875 0.589

West 10.48 8.4 0.808 0.54

Northwest 11.17 13.96 1.248 0.84

Altitude (m) 1179–1500 0.319 0.6 1.880 0.75

1500–2000 5.02 12.4 2.483 1

2000–2500 12.45 26.0 2.094 0.84

2500–3000 16.27 24.3 1.497 0.59

3000–3500 17.11 18.3 1.069 0.423

3500–4000 18.51 17.1 0.926 0.36

4000–5789 30.29 0.98 0.0324 0

Distance from river (m) 0–100 13.9 8.0 0.575 0

100–200 11.28 14.0 1.244 0.533

200–300 11.6 19.4 1.674 0.877

300–400 9.3 17.0 1.828 1

400–500 9.19 13.4 1.468 0.712

[500 44.6 27.9 0.626 0.04

Distance from fault (m) 0–200 2.88 1.72 0.59 0

200–400 2.62 1.93 0.739 0.178

400–600 2.64 1.74 0.662 0.082

600–800 2.40 2.75 1.154 0.6973

800–2000 12.32 17.2 1.396 1

[2000 77.1 74.6 0.967 0.463

Distance from road (m) 0–100 6.13 5.8 0.956 0

100–200 4.94 5.51 1.116 0.09

200–300 5.10 7.45 1.460 1

300–400 5.07 7.24 1.427 0.93

[400 73.5 73.9 1.004 0.32

Geology and lithology g5
1b 0.296 0 0 0

f5
1b 0.296 0 0 0

co2
(4) 2.47 17.4 7.06 0.52

c5
2b 3.1 0 0 0

Pthn1 0.065 0.08 13.47 1

cd2
(4) 1.56 6.33 4.057 0.3

d2
(3) 2.13 12.9 6.051 0.448

c2
(4) 0.136 0.24 1.806 0.34

Smx2 0.494 0.40 0.829 0.06

Smx3 2.30 2.26 0.984 0.07
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AHP method, 90 to 100 % (10 %) class of the study area

where the landslide hazard index had a high rank could

explain 40.22 % of all the landslides. Additionally,

80–100 % (20 %) class of the study area where the land-

slide hazard index had a high rank could explain 63.09 %

of all the landslides. In the case of the LR approach,

90–100 % (10 %) class of the study area where the

landslide hazard index had a high rank could explain

52.713 % of all the landslides. In addition, the 80–100 %

(20 %) class of the study area where the landslide hazard

index had a high rank could explain 71.98 % of all the

landslides. In the case of the fuzzy-SVM method,

90–100 % (10 %) class of the study area where the land-

slide hazard index had a high rank could explain 53.13 %

of all the landslides. In addition, 80–100 % (20 %) class of

Table 5 continued

Factor Class Percentage of domain

(%)

Percentage of landslides

(%)

Frequency

ratio

Fuzzy membership value

(Ri)

Smx4 9.403 3.90 0.415 0.03

Smx5 2.27 1.58 0.696 0.052

Dyl
1 0.109 0.24 2.24 0.166

Dyl
2 0.03 0.08 2.68 0.199

D2y 0.603 0.13 0.226 0.0167

D2g 0.386 0.6 1.554 0.115

Dwg
1 4.831 2.97 0.616 0.045

Dwg2 12.92 13.5 1.046 0.077

D2?3 0.156 0 0 0

P1 0.832 0 0 0

P2 0.067 0 0 0

T1b 6.52 9.0 1.39 0.1

T2z 17.05 10.81 0.634 0.047

T3zh 16.21 0.4 0.025 0.002

NDVI \-0.2 0.018 0 0 0

-0.2 to 0.063 19.8 11.6 0.585 0.224

0.063 to 0.108 15.1 6.15 0.405 0.155

0.108 to 0.28 9.9 25.8 2.610 1

0.28 to 0.45 20.8 33.24 1.592 0.609

0.45 to 0.76 34.2 23.15 0.6763 0.259

Profile curvature Flat 80 61.4 0.767 0

Convex 9.76 12.3 1.265 0.27

Concave 10.22 26.2 2.564 1

Table 6 Weights of each landslide affecting factor based on SVM

model

Factor Weight (Wi)

Slope 0.1991

Aspect 0.2408

Altitude 0.8213

NDVI 0.1417

Geology and lithology 0.5955

Distance from faults 0.0387

Distance from rivers 0.1056

Distance from roads 0.0721

Profile curvature -0.0293

Constant -0.2896

Fig. 7 A histogram showing the percentage of landslide zones

constructed with the LR, AHP, F-SVM methods
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the study area where the landslide hazard index had a high

rank could explain 73.06 % of all the landslides. In order to

be compared with the prediction accuracy of different

methods quantitatively, the area under the curve needs to

be calculated. In the case of the AHP method, the area ratio

was 0.7884. In other words, the prediction accuracy is

78.84 %. In the case of the LR method, the prediction

accuracy is 84.55 %. In the case of the fuzzy-SVM method,

the prediction accuracy is 85.73 %. It is easy to conclude

that F-SVM has better prediction than AHP, whereas it is

relatively similar to LR.

Discussion and conclusions

Since landslides are among the most dangerous natural

hazards, government and research institutions worldwide

have attempted to assess landslide susceptibility, risk, and

show its spatial distribution. The research for assessing

hazard susceptibility in cultural heritage sites or natural

heritage sites is relatively few (Kyoji Sassa et al. 2009).

Wolong Giant Panda Natural Reserve, as one of the

world’s cultural heritages, is located southwest of the

epicenter of the Wenchuan earthquake at a distance of

about 30 km. Obviously, the Wenchuan earthquake had

triggered enormous landslides and caused lager landslide

susceptible areas. In the present study, a total of 1773

landslide scarps larger than one cell (25 9 25 m2) were

selected in the landslide inventory mapping, 70 % of which

are randomly selected to be used as test data, and the other

30 % are used as validation. Nine landslide conditioning

factors were selected: slope degree, aspect, altitude, profile

curvature, geology and lithology, distance from faults,

distance from rivers, distance from roads, and normalized

difference vegetation index (NDVI). The logistic regres-

sion, analytical hierarchy process, and combined fuzzy and

SVM were applied and compared for landslide suscepti-

bility mapping in Wolong Giant Panda Natural Reserve.

The validation was carried out and showed that combined

fuzzy and SVM hybrid model would be the most accurate

LSZ map in this study area.

Many studies have compared neural network models

with LR, AHP, and conditional probability. Some authors

agree that soft computing (e.g., ANN, SVM) models have

superior performance to conventional conditional proba-

bility or LR methods (Yao et al. 2008), while other

authors find that soft computing models have no differ-

ence with other prediction methods (Tu 1996; Schu-

macher et al. 1996; Ottenbacher et al. 2001; Mahiny and

Turner 2003).

In this study, our results demonstrate that although three

different methods can predict landslide susceptibility

Fig. 8 A histogram showing the verification data that fall into the

various classes of the LR, AHP, F-SVM susceptibility maps

Fig. 9 Cumulative frequency

diagram showing landslide

hazard index rank occurring in

cumulative percent of landslide

occurrence
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according to their same tendency, the combined fuzzy and

SVM method (F-SVM) is better than AHP and has relative

similar accuracy to LR. The AHP method is a simple tool

and easy to be implemented based on expert opinion, but

the limitation is results with uncertainty and subjectivity.

The LR method is relatively excellent, for it can decrease

the subjective result to some extent as a data-driven model.

However, the combined fuzzy and SVM hybrid model

performed the most excellent. This may be because SVM

represents an objective approach, where weights for each

landslide conditioning factor are determined through the

SVM model, and rating of the thematic layer is determined

by the fuzzy similarity method.

In summary, the landslide susceptibility map generated

by the combined fuzzy and SVM hybrid model in Wolong

Giant Panda Natural Reserve is the objective approach.

According to LSZ based on F-SVM, 5.8, 17.8 % of the

study area is assigned as very high and high susceptibility

areas, which is very meaningful for government, managers,

and decision makers of protecting giant panda.
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