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Abstract This paper presents an optimization study on

the layout and length of anchor cables for stabilizing rock

wedges from the perspective of their three-dimensional

geological characteristics. On the basis of the generalized

geometry model for rock wedges, the expression of driving

force of slope at the arbitrary longitudinal section can be

deduced by employing the hyperbolic model between

driving force and scale factor of rock wedges. Due to the

remarkable parabolic characteristics of the driving force

expression of rock wedges, a corresponding non-uniform

layout principle of anchor cables was proposed, with closer

layout in the central part and sparse layout near the side

boundaries. The rational length of anchor cables was

quantified on the basis of specification and the three-di-

mensional spatial characteristics of rock wedges. Further-

more, the upper limit spacing of anchor cables was

determined by the spacing threshold caused by the para-

bolic distributed driving force. The spacing distribution of

the optimized anchor cables was verified as a parabolic

distribution according to a case study on the Shuige rock

wedge in Lishui City, China. Compared with the conven-

tional uniform spacing and length design scheme, the

adjusted optimal non-uniform scheme can reduce the

anchor cables by 16.9 % and 18.9 % in number and in total

length, respectively.

Keywords Rock slope � Wedge failure mode � Anchor
cable � Non-uniform spacing layout � Length optimization

Introduction

With the rapid development of large-scale projects con-

structed in mountainous areas worldwide in recent decades,

there is a growing interest in understanding the stability of

the rock wedges caused by anthropogenic excavations.

Owing to the influence of excavation unloading, the sta-

bility of rock slopes may drop remarkably, which poses a

direct threat to the safety of construction projects (Kumsar

et al. 2000; Lee et al. 2007; Song et al. 2010). Many types

of rock slope reinforcement problems arise from the

development and construction of such projects. The anchor

cable reinforcement system is now recognized as one of the

most effective and convenient reinforcement measures for

rock slopes and foundations (Danziger et al. 2006; Sun

et al. 2010). The current study relates to anchored slopes

and focuses on stability of the rock slope, mechanical

calculation of anchor cables and optimization of anchor

cable design.

The methods used to design the stability of rock slopes

vary widely, and include analytical solutions and numerical

modeling approaches. Avcı et al. (1999), Sagaseta et al.

(2001), Hack et al. (2003), Kentli and Topal (2003), Di

Luzio et al. (2004) and Liu et al. (2014) examined the

stability of rock slopes using analytical approaches. In

addition, a number of monitoring experiments have been

conducted to investigate the stability of rock slopes (Yang

et al. 2001; Shu et al. 2005a, b; Lin et al. 2014). Due to the

rapid development of numerical modeling technologies,

numerical simulation is an efficient alternative method with

which to study the stability of a slope (Griffiths and
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Marquez 2007; Tan and Sarma 2008; Bui et al. 2011; Pain

et al. 2014), and has attracted worldwide attention. Stead

et al. (2006), Song et al. (2010), Böhme et al. (2013), He

et al. (2013) and Wong and Wu (2014) analyzed the sta-

bility and deformation of rock slopes using numerical

modeling methods. In particular, Park and West (2001),

Yoon et al. (2002), Tonon and Asadollahi (2008), Li et al.

(2009), Indraratna et al. (2010) and Jiang et al. (2013)

examined the stability and failure of rock wedges.

Anchor cables are now used widely to support rock

slopes, and the corresponding theoretical calculation

methods of anchor cables have been examined in several

studies. Shu et al. (2005a) and Sasiharan et al. (2006)

investigated the results of field tests conducted on anchors

used to support wire mesh and cable net rockfall protection

systems. Tang et al. (2010) developed calculation methods

to obtain the axial force of anchors in rock slopes. Zhang

et al. (2010) discussed the effect of reinforcement of a rock

slope with group anchorage cables and the stress charac-

teristics of pre-stressed anchorage cables in the fractured

surface. Koca et al. (2011) examined anchor applications

using the example of a Karatepe andesite rock slope. A

dynamic simplified model for anchor rod frame ground

beam to support slopes based on the elastic ground beam

theory and structural dynamics theory was proposed by

Yuan and Liu (2012). By using the FLAC3D numerical

simulation, the roadway full-length anchor support mech-

anism was investigated by Dong and Wang (2012) to

analyze the full-length anchor force-transferring mecha-

nism and stress-field distribution formed by rocks sur-

rounding roadways. Blanco-Fernandez et al. (2011, 2013)

analyzed the different hypotheses assumed in the calcula-

tion methods for flexible systems and the technique of

flexible systems anchored to the ground for slope

stabilization.

Optimization of the design of anchor cables is crucial to

engineering practice in rock slopes. Zhang et al. (2002)

proposed an optimized method based on analysis of the

failure factors of the anchorage system. The dynamic finite

element strength reduction method was employed by Ye

et al. (2010) to evaluate the dynamic stability of rock

slopes supported with anchors. Liu et al. (2012) carried out

an optimum arrangement of prestressed cables in rock

anchorage by using different lengths of prestressed cables.

The anchor spacing and inclined angles optimization of

cables were studied by Zheng et al. (2012) based on an

equivalent pseudo-static force analysis method.

The computational methods and application of anchor

cables have been examined in depth in recent decades;

however, most existing studies focus on the behavior of a

single cable or several cables within a limit area, few

studies in the literature have addressed the issue of the

overall layout of anchor cables according to the realistic

characteristics of the whole spatial distribution of rock

wedges. The conservation and design of evenly distributed

anchor cables indeed can ensure the safety of rock slopes;

however, a great number of useless anchor cables or bolts

can waste a tremendous amount of investment, especially

in the case of rock wedges. Consequently, the main pur-

pose of this paper was to present a novel optimal overall

layout and length of anchor cables for slope reinforcement

based on a study of the actual three-dimensional charac-

teristics of rock wedges. Note that the layout and length

optimization of the anchor cables described in this paper

can also apply to bolts reinforcement projects.

Theoretical background

Sliding failure of single-faced rock slopes

Generally, the wedge failures of single-faced rock slopes

can be divided into two modes in terms of sliding planes of

wedges, namely single plane sliding (Fig. 1a) and double

plane sliding (Fig. 1b), which is the general form of wedge

failure (Hocking 1976). If two joint planes bound a sliding

wedge, single plane sliding (Fig. 1a) is defined as a sliding

on only one of the joints bounding the base of the wedge,

whereas double plane sliding (Fig. 1b) is defined as a

sliding on both joint planes parallel to the line of inter-

section (Yoon et al. 2002).

To explain the sliding failure of single-faced rock slopes

with two typical rock wedges as above, a stereographic

projection graph can be used to conduct the analysis

(Fig. 2; after Hocking 1976, with minor revision), where J1

and J2 denote the joint planes; SL denotes the slope surface

(large circle); NJ1 and NJ2 are the true dip of the joint

planes J1 and J2, respectively; NSL denotes the true dip of

slope surface (SL); and NI denotes the intersection of joint

planes. If NJ1 or NJ2 of either of the joint planes (J1 or J2)

lies within the shaded area between NI and SL, as shown in

Fig. 2a, single plane sliding can occur (Hocking 1976). On

the other hand, if NI is located in the sliding envelope and

both NJ1 and NJ2 lie outside the area (shaded area in

Fig. 2b), then double plane sliding can occur (Hocking

1976; Yoon et al. 2002).

Simplified theoretical model of rock wedges

Considering rock wedges of single-faced rock slopes

(Fig. 1), a generalized analysis model can be established as

shown in Fig. 3, where ABD and BCD denote the slip

surface developed by two groups of preferred discontinu-

ities, respectively, and ADC denotes the free surface of the

slope in which to set anchor cables.
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In an attempt to perform quantitative analysis for a

generalized rock wedge, we made an effort to conduct a

symmetrical analysis on rock wedges. Assuming a sym-

metrical simplified model, the following geometrical

relationships can be set: (1) AB equals BC, AD equals DC,

respectively; point O is the center of AC; consequently, BO

and OD are perpendicular to AC, respectively; (2) the

thickest position of the sliding mass generally occurs in the

central part (major section BOD), and the thickness

decreases gradually along the distance from the central

section to the side boundaries. The driving force of the rock

slope in major section can be obtained by the rigid equi-

librium limit method [Code for Investigation of Geotech-

nical Engineering. National Standard of People’s Republic

of China GB 50021-2001 (2009 Revised); Li et al. 2010].

The related arbitrary longitudinal section (section T) of the

rock slope can be presented as in Fig. 4, which corresponds

to the red section region in Fig. 3.

Rational spacing and length calculation for anchor
cables

Area of any longitudinal section T

On the basis of the above simplified theoretical model of

rock wedges (Fig. 3) and the geometrical relationship

(Fig. 4), the area of the arbitrary longitudinal section

(section T) of the slope, namely S(x), can be calculated out:

J1

J2 J2

J1

SL SL

(a) (b)Fig. 1 Sliding failure for

sliding of a single-faced slope.

a Single plane sliding. b Double

plane sliding (Hocking 1976).

J1, J2 Joint planes; SL slope

surface

N

S

EW

N

S

EW

SL SL

J2

J2

J1

J1

Friction circle Friction circle

NJ2

NJ1

NSL

NI

NI

NSL
NJ2

NJ1

(a) (b)Fig. 2 Stereographic solution

for sliding of a single-faced

slope. a Single plane sliding.

b Double plane sliding (after

Hocking 1976 with minor

revision). J1, J2 Joint planes; SL

slope surface (large circle);

NJ1, NJ2 true dip of joint planes

J1 and J2, respectively; NSL

true dip of slope surface (SL);

NI intersection of joint planes

a

b

H

L

A

B

C

D

O
x

b(x)

a(x)
T

Fig. 3 A generalized analysis model for rock wedges. L Maximum

length of slope cross-section; H vertical height of free surface; a,

b side length in major section, respectively; section T is the

longitudinal profile with distance x to the major section, a(x) and

b(x) are corresponding side lengths in section T, respectively
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S ðxÞ¼ 1

2
a ðxÞ b ðxÞ sin h2 ð1Þ

where h2 denotes the angle between free surface and crest

surface.

Furthermore, as can be noted from the geometrical

relationship shown in Fig. 3, the equations of free surface

a(x) and free surface b(x) at the location of section x can be

expressed as:

aðxÞ ¼ 1� 2x

L

� �
� a ð2Þ

bðxÞ ¼ 1� 2x

L

� �
� b ð3Þ

Expression function for driving force in section T

The scale factor is defined as the ratio between the original

slope model and the calculated slope model, which can be

expressed as follows (Li et al. 2010):

e ¼ Zo

Zc
ð4Þ

where e denotes the scale factor; Zc denotes the height of

the calculated slope model; and Zo denotes the height of the

original slope model.

Considering the scale factor and the limit equilibrium

analysis of slope stability, the formula in the Fellennius

method can be rewritten as (Li et al. 2010):

K ¼
P

1
e cIlI þ 1

e2 WI cos aI tanuI

� �
P

1
e2 WI sin aI

ð5Þ

where WI denotes the weight of no. I slice; cI denotes the

cohesion of no. I slice; uI denotes the friction angle of no.

I slice; lI denotes the slip surface length of no. I slice; aI
denotes the slip surface dip angle of no. I slice; and Kx

denotes the stability coefficient at section T.

The study of the relationship between the driving force

and scale factor by Li et al. (2010) indicates that the

hyperbolic model can be used to describe the relationship

between driving force and scale factor. Consequently,

suppose the driving force along the major driving direction

is Fmax, the driving force F(x) along the arbitrary longitu-

dinal section T can be expressed as:

FðxÞ ¼ 1

e2
Fmax ¼

1

S
SðxÞ

� �2 Fmax ¼ 1� 2x

L

� �2

�Fmax ð6Þ

Equation (6) indicates that the distribution pattern of the

driving force along the arbitrary longitudinal section T is

accordance with the expression of parabolic function.

Consequently, we obtain the sketch of distribution of

driving force along the rock wedge shown in Fig. 5.

Rational spacing model for anchor cables

The height H(x) of the anchor cables installed in the arbi-

trary longitudinal section T of slope can be expressed as

follows:

HðxÞ ¼ 1� 2x

L

� �
� H ð7Þ

a(x)

b(x)

Slope Bedrock
T

α

θ1

θ2

Fig. 4 Longitudinal profile of section T with distance x to the major

section. a Angle between the corresponding slip plane of the arbitrary

longitudinal section of slope and horizontal plane, h1 angle between

the free surface and the slip surface, h2 angle between free surface and
crest surface

wedged slope

M
aj

or
 s

lo
pe

 p
ro

fil
e

Driving force

Boundary

Anchor cable

Fig. 5 Sketch of distribution discipline for anchor cables in a rock

wedge
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It is generally accepted that the driving force F(x) of the

rock slope is transferred to the bedrock by the corre-

sponding anchor cables. Specifically, the driving force

F(x) is usually obtained by the two-dimensional rigid

equilibrium limit method along longitude section T. Con-

sequently, we visualize the layout of anchor cables in the

horizontal direction in rows and in the vertical direction in

columns (see Fig. 6). Each column of anchor cables affords

the slope driving force F of the corresponding scale near

this column. For instance, as can be noted from Fig. 6, the

first column of anchor cables affords the slope driving

force F1 within the section J1 region, and the second col-

umn of anchor cables shares the slope driving force within

the J2 region, and so on. Here, S1 and S2 correspond to the

spacing of anchor cables of the first and second columns,

respectively.

It can be seen that the number of anchor cables depends

on the corresponding driving force. Therefore, the number

of anchor cables should correspond to the driving force of

the calculation section, i.e., the spacing of anchor cables is

determined by the corresponding driving force. As men-

tioned above, the distribution pattern of driving force along

the arbitrary longitudinal section T is a parabolic function.

Consequently, the spacing of anchor cables should be

adjusted to the parabolic change in the driving force, which

will result in a non-uniform layout: closer in the central

part and sparser near the side boundaries.

On the basis of the above non-uniform layout principle

for anchor cables, for any column of anchor cables, the

relationship among JI, SI and the calculation location xI can

be described as:

xI ¼
1

2

Xi
1

JI þ
Xi�1

1

JI � J1

 !
¼
Xi
1

SI�1 ð8Þ

SI ¼
JI þ JIþ1

2
ð9Þ

where I denotes the number of each column of anchor

cables, namely 1, 2, 3,……; JI denotes the distance of the

number I column anchor cables resisting the slope driving

force; and SI denotes the anchor cable spacing between the

cable numbers of (I) and (I ? 1).

Considering the mechanical equilibrium between the

driving force and the resistance provided by the anchor

cables, we can establish the following equation:

FI � JI ¼
Pa

g
� HðxIÞ

Sv

� 	
ð10Þ

where FI denotes the driving force along the number

I column of anchor cables; Sv denotes the vertical spacing

of anchor cables;
HðxIÞ
Sv

h i
denotes rounding function, which

stands for the necessary number of rows for anchor cables;

Pa denotes the anchorage force of single anchor cable; g
denotes the coefficient for importance of structure.

The required number and rational spacing of anchor

cables in any distance JI resisting the driving force can be

solved by a system of equations (Eqs. 6–10).

Determination of rational length of anchor cables

The total length of an anchor cable comprises two sections,

namely a free section length and an anchorage length. The

anchorage length can be calculated according to the stress

condition of anchor cables along the slope section (GB

50330-2013, 2013, Technical Code for Building Slope

Engineering). We assumed that the anchorage length

maintains a conservative necessary length constant along a

specific slope section; therefore, the length of an anchor

cable depends on changes in the spatial morphology of

rock wedges. The longitudinal profile of the layout of

anchor cables with distance x to the major slip section is

presented in Fig. 7, where 1, 2,…, N and N ? 1 denote the

number of anchor cables, respectively; b denotes the angle

between the axis of the anchor cable and the horizontal

x

y

o
J3J1 J2

Anchor cable

S2S1

Ji

2 3 i1

xi

Fig. 6 Sketch of anchor cables sharing the driving force of the rock

wedge

a(x)

b(x)
H(x)

N+1

N

3

2

1

α

θ

Anchor cable
Anchor cable

Anchor cable

Anchor cable

Anchor cable
Anchor cable

Anchor cable

β

1

N+2

Fig. 7 Layout of anchor cable with distance x to the major slip

section
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plane; H(x) denotes the vertical height of the free surface

with distance x to the major slip section.

The layout of the number N anchor cable with x distance

to the major slip section is presented in Fig. 8, where lxN
denotes the free section length of number N anchor cable,

and HxN denotes the vertical height of the number N anchor

head. As can be noted from the geometric relationship in

Fig. 8 and Eq. (7), the following equation can be proposed:

lxN

sin h1
¼ HxN

sin c� sin aþ h1ð Þ ¼
HðxÞ � Sv � N

sinðaþ bÞ � sin aþ h1ð Þ
ð11Þ

where N denotes the number of anchor cables, and

1�N � HðxÞ
Sv

h i
,

HðxÞ
Sv

h i
denotes the rounding function; c

denotes the angle between the anchor cable and the slip

surface, c ¼ aþ b.
The expression of lxN can then be obtained as follows:

lxN ¼ HðxÞ � Sv � Nð Þ � sin h1
sin c� sin aþ h1ð Þ ð12Þ

By solving the free section length in Eq. (12), we can

obtain the total length of the anchor cables, which is the

sum of free section length and unchanged anchorage

length. The expression can be written as:

ltN ¼ lxN þ laN ð13Þ

where ltN denotes the total length of anchor cables in

number N row; lxN denotes the free section length of

anchor cables in number N row; laN denotes the anchorage

length of anchor cables in number N row.

Case study

Project background

The Shuige sewage treatment plant is located in Lishui

City, Zhejiang Province, China (see Fig. 9). Due to con-

struction of the Shuige sewage treatment plant in the hilly

HxN

lxN

N
Anchor cable

α

β
γ

θ1

Fig. 8 Sketch of the length calculation of the number N anchor cable

Shuige sewage treatment plant
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K1c Chaochuan Formation of Early Cretaceous
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Fig. 9 Engineering geology plane of the Shuige slope
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Shuige industrial zone, the ground leveling involved

excavation of the original slope (see Fig. 10), which

requires evaluation of the stability of the cut slope and the

proposal of corresponding reinforcement measures.

The lithology of this slope is mainly argillaceous

sandstone, belonging to the Chaochuan Formation of the

Early Cretaceous period. The total length of the slope is

about 400 m. The altitudes of crown and toe after the

excavation were 121.8 and 69.00–71.00 m, respectively.

The stability of the slope will be affected seriously by the

excavation. The Shuige sewage treatment plant was

designed to be built on the levelled platform, with a safety

grade of ‘‘second-class’’ according the specifications in

China (Zhejiang Jiatu Survey and Design Co. Ltd. 2008). A

site photo of the Shuige slope (K0 ? 000 m–K0 ? 120 m)

is shown in Fig. 10—the zone within the red line is the area

studied in this paper.

The site investigation data revealed two major sets of

preferred discontinuities in the Shuige rock slope

(K0 ? 000 m–K0 ? 120 m), at 213\36 (bedding plane)

and 270\52 (joint plane), respectively. Combined with the

attitude of the excavated slope surface (222\53), the

wedged rock block can be formed by the cutting the two

sets preferred discontinuities and the excavated slope sur-

face (see Fig. 11).

As can be seen from Fig. 11, the line of intersection (NI)

is located within the sliding envelope and both NJ1 and

NJ2 lie outside this area (shaded area in Fig. 11); therefore,

double plane sliding could occur according to the failure

models presented in Figs. 1 and 2. Furthermore, the dip

angle of the intersection (NI) can be seen to be about 36�.

Distribution of driving force in rock wedges

Combined with the preferred discontinuities in the Shuige

rock slope, the actual geometry of the slope can be deter-

mined by the method presented in Fig. 12. Points A0 and
C0are the projections of A and C in the horizontal plane,

respectively. The attitudes of planes ABD, BCD and ADC

are 213\36, 270\52 and 222\53, respectively (see

Fig. 12a). The occurrence of intersecting lines DA and DC

can be identified in Fig. 11, and followed by the azimuthal

angle of DA0 and DC0 in the horizontal plane oxy. Finally,

the actual length of OA and OC can be calculated as in

Fig. 12b.

On the basis of the site investigation and laboratory

tests, as well as the calculation results of the slope above,

the recommended parameters for slope reinforcement in

the Shuige slope are listed in Table 1 (Zhejiang Jiatu

Survey and Design Co., Ltd. 2008).

Fig. 10 Site photo of the Shuige slope during construction. The bold red line delineates the optimization region

S

E

N

W

ID          Dip/Direction

J1 Bedding plane                     36/213
J2 Preferred plane                   52/270
SL Excavated slope surface    53/222

Wedge

Friction circle

SL

J1

J2

NJ2

NJ1

NSLNIDA

DC

Fig. 11 Stereographic

projection of the two sets of

preferred discontinuities and the

excavated slope surface of the

Shuige rock slope
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The driving force F(x) on both sides of the wedge slope

along the arbitrary longitudinal section T can be rewritten

by Eq. (6) as follows:

FOAðxÞ ¼ 1� x

LOA

� �2

�Fmax ð14Þ

FOCðxÞ ¼ 1� x

LOC

� �2

�Fmax ð15Þ

The corresponding height H(x) of the anchor cables

installed in the arbitrary longitudinal section T of slope can

be rewritten as:

HOAðxÞ ¼ 1� x

LOA

� �
� H ð16Þ

HOCðxÞ ¼ 1� x

LOC

� �
� H ð17Þ

Combined with Eqs. (14) and (15) and relevant param-

eters in Table 1, the curve of the driving force on both

sides of the major slip section can be shown as in Fig. 13.

Spacing optimization of anchor cables

The single anchorage force Pa in the Shuige slope project is

designed to be 1000 kN, and the layout of anchor cables is

4 9 4 m square (Zhejiang Jiatu Survey and Design Co.,

Ltd. 2008).

To demonstrate the optimization effect of the layout of

anchor cables, we emphasise the effect of the actual

characteristics of rock slope driving force on anchor

spacing by employing anchor cables with the same single

anchorage force. Taking construction conditions into con-

sideration, the longitudinal spacing remains unchanged at

4 m.

As mentioned above, the vertical spacing of anchor

cables Sv is 4 m, and the coefficient for importance of

structure g is 1.2. Therefore, Eq. (10) can be rewritten as:

FI � JI ¼ JI � 1� x

107

� �2
�Fmax ¼ Pa

1:2
� HOAðxÞ

4

� 	

ð18Þ

FI � JI ¼ JI � 1� x

13

� �2
�Fmax ¼

Pa

1:2
� HOCðxÞ

4

� 	

ð19Þ

Table 1 Calculation parameters for slope reinforcement in the Shuige slope (K0 ? 000 m–K0 ? 120 m)

Length of slope cross-

section LOA (m)

Length of slope

cross-section LOC (m)

Vertical height of

free surface H (m)

Angle

a (�)
Angle

h1 (�)
Horizontal angle of

anchor cable b (�)
Driving force in the major

slope section F (kN)

107 13 33.0 36.0 17.0 15.0 1556.8

a

b
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S

(a) (b)

B

B

42°

Fig. 12 Sketch of the

projection of the actual

geometry of wedge slope in the

horizontal plane. a Overall

view. b Partial enlarged detail
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Fig. 13 Driving force in the arbitrary longitudinal section T of slope
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Substituting the related parameters in Table 1 and the

above design parameters into Eqs. (8), (9), (18) and (19),

we can obtain all the corresponding distances JI of the

anchor cables sharing the slope driving force and spacing

(SI) of anchor cables, as listed in Table 2. A comparison of

the calculated horizontal spacing (OA) and the conven-

tional uniformly distributed anchor cables is presented in

Fig. 14.

Taking safety conservation and construction conve-

nience into account, anchor spacing is kept to just one

decimal place. Consequently, the final spacing Sif can be

determined as in Table 3.

As can be noted from Fig. 14, the shape of the curve of

optimized spacing of anchor cables can be described

approximately by a parabolic distribution, and the spacing

of anchor cables increases gradually along the distance

from the major intersection section to the side boundaries.

Compared with the conventional uniform layout of anchor

cables in Fig. 15, we can conclude that the optimal layout

scheme reduces the number of anchor cables markedly,

especially nearby the side boundaries of the slope. The

conventional layout of anchor cables is uniformly spaced,

without considering the actual characteristics of the three-

dimensional distribution of the driving forces of rock

wedges. Actually, the maximum slope driving force usu-

ally occurs in the central intersection plane; it then

decreases steadily along the distance from the intersection

plane to the side boundaries. Consequently, the conven-

tional layout of anchor cables under a uniform spacing

scheme includes some redundant anchor cables, which

causes a great waste of investment.

The conventional layout of anchor cables under a uni-

form spacing scheme and an optimized layout of anchor

cables under a non-uniform spacing scheme for reinforcing

the rock wedges are presented in Figs. 16 and 17, respec-

tively. The conventional layout of anchor cables is uni-

formly spaced, without considering the influence of the

actual spatial distribution of the rock slope driving force. In

contrast, the optimized layout of anchor cables under a

non-uniform spacing scheme is more reasonable due to

consideration of the three-dimensional driving force. The

maximum driving force occurs in the major slip section of

the slope; therefore, a correspondingly smaller spacing is

required to maintain slope stability. Similarly, greater

spacing can be used in the region far from the major

intersection plane. On the whole, considering the actual

characteristics of spatial distribution of rock slope driving

forces, the corresponding spacing of anchor cables should

be closer near the intersection region and sparser near the

side boundaries. In comparison with actual engineering

practice, the optimized scheme can reduce the amount of

anchor cables from 71 to 54—a saving in terms of number

of cables of 23.9 %.

Length optimization of anchor cables

As noted previously, we assumed that the anchorage length

remains a conservative necessary length along a specific

slope section. Consequently, we focused on determination

of the free section length lxN of anchor cables, which, plus

the laN anchorage length of anchor cables, is ltN the total

length of anchor cables in row number N. According to the

specifications (GB 50330-2013, Technical Code for

Building Slope Engineering), we set the conservative

Table 2 Calculated spacing of the anchor cables resisting the slope driving force

Column no. Section OA Section OC

1 2 3 4 5 6 7 8 9 1 2

JI J1 (m) J2 (m) J3 (m) J4 (m) J5 (m) J6 (m) J7 (m) J8 (m) J9 (m) J1 (m) J2 (m)

4.28 4.06 4.42 4.86 4.62 5.18 5.92 5.76 6.9 4.28 9.08

Calculated spacing SI S1 (m) S2 (m) S3 (m) S4 (m) S5 (m) S6 (m) S7 (m) S8 (m) S9 (m) S1
0 (m) S2

0 (m)

4.17 4.24 4.64 4.74 4.9 5.55 5.84 6.33 / 6.68 /
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Fig. 14 Comparison of the calculated horizontal spacing and the

conventional uniformly distribution anchor cables (left side of major

slip, Section OA)
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necessary anchorage length of anchor cables as 10.0 m,

i.e., laN = 10.0 m. Then, Eq. (13) can be rewritten as:

ltN ¼ lxN þ 10:0 ð20Þ

On the basis of Eq. (12) and the relevant parameters of

the Shuige slope in Table 1, the free section length lxN of

anchor cables can be calculated (see Table 4).

Combined with the anchorage length of anchor cables of

10.0 m, the corresponding total length ltN of anchor cables

can be obtained (see Table 5). Figure 18 shows the distri-

bution characteristics of the total length ltN of anchor

cables at different positions varying from the first row to

the ninth row, starting from bottom to top on the free

surface.

Discussion

The upper limit of anchor cable spacing

Due to the possible existence of secondary discontinuities

in rock wedges, too large a spacing of anchor cables could

induce local instability. Consequently, an upper limit for

spacing of anchor cables for engineering practice should be

determined.

There is a marked turning point in the x–SI curve in

Fig. 19, which is induced by the parabolic distributed

driving force. For safety considerations, we set the limit of

maximum spacing (limit of Smax) at this turning point (see

Table 3 Final spacing of the

anchor cables resisting the slope

driving force

Column no. Section OA Section OC

1 2 3 4 5 6 7 8 1

Final spacing Sif S1 (m) S2 (m) S3 (m) S4 (m) S5 (m) S6 (m) S7 (m) S8 (m) S1
0 (m)

4.1 4.2 4.6 4.7 4.9 5.5 5.8 6.3 6.6

Fig. 15 Conventional layout of the Shuige slope supported by anchor cables with connecting beams

D

CM O

R

K

K0+120m K0+80m K0+68m

4m4m

Anchor cable

4m
4m

Fig. 16 Conventional layout design of anchor cables under a uniform

spacing scheme for reinforcing rock wedges
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Fig. 17 Optimized layout of anchor cables under a non-uniform

spacing scheme for reinforcing a wedged slope
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Fig. 19). There is an exit threshold for spacing in the x–Sf
curve, at about 5.2 m. Therefore, to fulfil both safety and

economic considerations, we chose 5.2 m as the upper

limit of cable spacing Smax, i.e., this close spacing is

applied in the major intersection profile of the slope, with

spacing then increasing slowly along the distance to the

side boundaries, finally reaching the upper limit value of

spacing (see Fig. 19). We can then adjust the former

optimized layout of anchor cables on the free surface of the

wedge, and the newly adjusted rational layout scheme is

presented in Fig. 20. As can be seen from the layout graph

in Fig. 20, we need only 59 anchor cables in total; com-

pared with the 71 anchor cables in the conventional uni-

form scheme, we can therefore obtain a saving of 16.9 % in

the number of anchor cables.

Application of asymmetrical rock wedges

We assumed that rock wedges are symmetrical as in the

model shown in Fig. 3. However, actual rock wedges may

not be perfectly symmetrical objects. Indeed, due to the

cutting of different sets of discontinues, actual rock wedges

are more likely to be asymmetrical. However, the non-uni-

form layout principal presented above for anchor cables also

applies to asymmetrical rock wedges. The spacing and total

length of anchor cables can be obtained according to actual

Table 4 Calculated free

section length lxN of anchor

cables from rows 1–9 (unit m)

N x (m)

Section OA Section OC

0 4.2 8.4 13.0 17.8 22.7 28.2 34.1 6.7

1 31.3 30.0 28.8 27.4 / / / / 13.9

2 27.5 26.2 25.0 23.6 22.3 / / / 10.1

3 23.7 22.5 21.2 19.9 18.5 17.0 / / 6.3

4 19.9 18.7 17.4 16.1 14.7 13.3 11.6 / 2.5

5 16.1 14.9 13.6 12.3 10.9 9.5 7.9 6.1 /

6 12.3 11.1 9.8 8.5 7.1 5.7 4.1 2.4 /

7 8.5 7.3 6.1 4.7 3.3 1.9 0.3 / /

8 4.7 3.5 2.3 0.9 / / / / /

9 0.9 / / / / / / / /
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Fig. 18 Distribution chart of the total length of anchor cables at

different positions. Row numbering starts from top to bottom on the

free surface

Table 5 Calculated total length

ltN of anchor cables from rows

1–9 (unit m)

N x (m)

Section OA Section OC

0 4.2 8.4 13.0 17.8 22.7 28.2 34.1 6.7

1 41.3 40.0 38.8 37.4 / / / / 23.9

2 37.5 36.2 35.0 33.6 32.3 / / / 20.1

3 33.7 32.5 31.2 29.9 28.5 27.0 / / 16.3

4 29.9 28.7 27.4 26.1 24.7 23.3 21.6 / 12.5

5 26.1 24.9 23.6 22.3 20.9 19.5 17.9 16.1 /

6 22.3 21.1 19.8 18.5 17.1 15.7 14.1 12.4 /

7 18.5 17.3 16.1 14.7 13.3 11.9 10.3 / /

8 14.7 13.5 12.3 10.9 / / / / /

9 10.9 / / / / / / / /
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spatial characteristics. The optimal asymmetrical layout of

anchor cables can then be obtained as presented in the case

study of the Shuige rock wedge in Lishui City, China.

Specification considerations for length of anchor

cables

Considering the length of anchor cables, the National Norm

of China (GB 50330-2013) ‘‘Technical code for building

slope engineering’’ states the designated specification

length, for instance, 20, 25, 30, 35, 40 m, etc. Therefore, in

order to meet the requirement of the designated specifica-

tion length for construction convenience, the presented

total length of anchor cables can also be adjusted to suit.

Furthermore, due to the particular shape of the wedge, it is

possible to cut down the length of anchor cables at the

lower rows. For instance, Fig. 8 indicates that the thickness

of the rock wedges is quite small in the lowest row;

therefore, we can consider cutting down the length of

anchor cables or replacing them with anchor bolts so as to

obtain a more reasonable and economical design.

As can be seen in Fig. 14, the curve of each column of

anchor cables with distances x to the major intersection

profile of the slope is parallel to the others. For each row of

anchor cables, the total length has the same value in the

major intersection profile and to the side boundaries. For

each column of anchor cables, the total length increases

along with the height of the anchor cables. The above two

varying trends of anchor cable lengths depend on the three-

dimensional distribution characteristics of the driving force

as well as the shape of the rock wedges. Therefore, the

conventional scheme with uniform length of anchor cables

is an over-conservative scheme, which could result in

longer anchor cables than necessary, thereby resulting in

wasted investment. However, the actual shape character-

istics of the slope are not always prefect wedges. Taking

account of the actual situation and construction conve-

nience, the final length of the anchor cables can be deter-

mined from Table 6.

The maximum length of anchor cables was 30 m in the

actual project, and we suppose the average length to be

approximately 25 m. Comparing the adjusted final length

results of anchor cables in Table 6 with the conventional

uniform length design scheme, we can conclude that the

adjusted scheme can reduce the anchor cables by 18.9 % in

total length.

Conclusions

From the perspective of the three-dimensional geological

characteristics of rock wedges, this paper presents an

optimization study on the layout and length of anchor

cables stabilizing rock wedges.

A generalized theoretical model of rock wedges was

abstracted from a site investigation to represent the three-

dimensional characteristics of rock wedges. On the basis of
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Fig. 19 Sketch determining the limit of maximum spacing
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Fig. 20 Adjusted rational layout of anchor cables for reinforcing

rock wedges

Table 6 Adjusted final total length lf of anchor cables from rows 1–9

(units m)

N x (m)

Section OA Section OC

0 4.2 8.4 13.0 17.8 22.7 28.2 34.1 6.7

1 45 45 40 40 / / / / 25

2 40 40 40 35 35 / / / 25

3 35 35 35 30 30 30 / / 20

4 30 30 30 30 25 25 25 / 20

5 30 25 25 25 25 20 20 20 /

6 25 25 20 20 20 20 20 20 /

7 20 20 20 20 20 20 20 / /

8 20 20 20 20 / / / / /

9 20 / / / / / / / /

1410 C. Li et al.

123



the hyperbolic model between driving force and scale

factor, a parabolic function can be deduced to describe the

distribution pattern of driving force along an arbitrary

longitudinal section.

For a given longitudinal section, the number of anchor

cables depends on the corresponding driving force, which

is usually obtained by the two-dimensional rigid equilib-

rium limit method. Consequently, the required number of

anchor cables should correspond to the driving force of the

calculation section. Therefore, due to the remarkable

characteristics of parabolic curves in the expression of

driving forces, a corresponding non-uniform layout prin-

ciple of anchor cables was proposed, with closer layout in

the central part and sparse layout nearer the side

boundaries.

The total length of an anchor cable is comprised of two

sections, namely a free section length and an anchorage

length. Anchorage length can be calculated according to

the stress condition of anchor cables along the slope sec-

tions. The rational length of anchor cables was quantified

on the basis of specification and the three-dimensional

spatial characteristics of the rock wedges.

In addition, considering safety, an upper limit spacing of

anchor cables was proposed by the spacing threshold

caused by the parabolic distributed driving force.

The spacing distribution of the optimized anchor cables

was verified to be a parabolic distribution according to the

case study of the Shuige rock wedge in Lishui City, China.

The results indeed show that the curve of optimized anchor

cables spacing is verified to be a parabolic distribution.

Compared with conventional uniform spacing and length

design schemes, the adjusted optimal non-uniform scheme

can reduce anchor cables by 16.9 % in number and 18.9 %

in total length, respectively.
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