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Abstract In blasting works, the aim is to provide proper

rock fragmentation and to avoid undesirable environmental

impacts such as back-break. Therefore, predicting frag-

mentation and back-break is a significant step in achieving a

technically and economically successful outcome. In this

paper, considering the robustness of artificial intelligence

methods utilized in engineering problems, an artificial

neural network (ANN) was applied to predict rock frag-

mentation and back-break; an artificial bee colony (ABC)

algorithm was also utilized to optimize the blasting pattern

parameters. In this regard, blasting parameters, including

burden, spacing, stemming length, hole length and powder

factor, as well as back-break and fragmentation were col-

lected at the Anguran mine in Iran. Root mean square error

(RMSE) values equal to 2.76 and 0.53 for rock fragmenta-

tion and back-break, respectively, reveal the high reliability

of the ANN model. In addition, ABC algorithm results

suggest values of 29 cm and 3.25 m for fragmentation and

back-break, respectively. For comparison purposes, an

empirical model (Kuz-Ram) was performed to predict the

mean fragment size in the Anguran mine. A mean fragment

size of 33.5 cm shows the ABC algorithm can optimize rock

fragmentation with a high degree of accuracy.

Keywords Blasting � Rock fragmentation � Back-break �
Artificial neural network � Artificial bee colony

Introduction

Blasting is a common rock fragmentation technique

utilized in mining operations, as well as some civil

engineering applications such as tunneling and road

construction. In blasting operations, only 20–30 % of the

produced energy is utilized to fragment and displace the

rock mass (Jahed Armaghani et al. 2013; Khandelwal and

Monjezi 2013). The rest of this energy is wasted to

produce undesirable environmental impacts such as

ground vibration, air-overpressure, flyrock and back-break

(Monjezi et al. 2012; Görgülü et al. 2013; Hajihassani

et al. 2014a, b; Raina et al. 2014). Among these envi-

ronmental impacts, back-break is the unwanted conse-

quence of an unsuitable blast design (Khandelwal and

Monjezi 2013). This phenomenon is defined as frag-

mentation of rocks beyond the limits of the rear row of

holes in a blast pattern (Jimeno et al. 1995). Back-break

may cause rock mine wall instability, fallings, improper

fragmentation, and an increased total blasting cost (Es-

maeili et al. 2012; Mohammadnejad et al. 2013).

In addition, the main objective of blasting is to control

the amount and quality of the rock fragmentation. The size

distribution of fragmented rock plays an important role in

the overall mining and processing plant economics

(Michaux and Djordjevic 2005; Monjezi et al. 2009). Blast

design is a significant factor in the process of securing

desired fragmentation. However, it should be mentioned
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that rock fragmentation faces several problems due to the

fact that there are many issues not within the control of a

blast engineer; hence, solving these problems seems to be

difficult. Three different categories are introduced by

Thornton et al. (2002) as factors most pertinent to rock

fragmentation: properties of rock masses, blast geometry

and explosive properties. Normally, rock fragmentation

around a blast-hole depends on several parameters such as

detonation and the dynamic response of the rock (Zheming

et al. 2007).

Utilizing soft computing approaches such as an artificial

neural network (ANN) in solving complex and non-linear

problems of geotechnical engineering (Atici 2011; Tonni-

zam Mohamad et al. 2012, 2014; Jahed Armaghani et al.

2014a) and also for prediction of back-break and rock frag-

mentation are highlighted in the literature (Bahrami et al.

2011; Sayadi et al. 2013). In the present study, an attempt has

been made to minimize rock fragmentation and back-break

resulting from blasting using the blasting data measured at

the Anguranmine in Iran. In addition, a new algorithm based

on the artificial bee colony (ABC) algorithm was utilized to

optimize the blasting pattern in this mine.

Previous investigation

Numerous researchers have focused on the prediction of

back-break and fragmentation through artificial intelligent

approaches. Fuzzy inference system (FIS) and multivari-

able regression (MR) models were developed to predict

back-break using data collected from the Gol-E-Gohar iron

mine in Iran by Monjezi et al. (2010a). Burden, spacing,

hole depth, specific drilling, stemming, charge per delay,

rock density, and powder factor were set as system inputs.

They found that the performance capacity of the FIS model

is higher than that of the MR model for prediction of back-

break. Esmaeili et al. (2012) applied an ANN, the adaptive

neuro-fuzzy inference system (ANFIS) and MR models to

predict back-break using the data collected from the San-

gan iron mine in Iran. Their results show the capability of

the ANFIS model in predicting back-break compared to

other techniques. In an other study of back-break estima-

tion, Mohammadnejad et al. (2013) predicted the back-

break phenomenon in blasting work using a support vector

machine (SVM). They selected system inputs based on

simple and multiple regression analyses. Finally, they

introduced the SVM technique as a reliable and accurate

tool for prediction of back-break. Monjezi et al. (2009)

used the FIS model and regression analysis to predict rock

fragmentation using 415 datasets collected from the Gol-E-

Gohar iron mine in Iran. In their study, burden, spacing,

hole depth, specific drilling, stemming, charge per delay,

rock density and powder factor were chosen as input

parameters. Results indicated the superiority of the FIS

approach for prediction of fragmentation. An ANN model

was proposed to predict rock fragmentation utilizing 250

blasting datasets from the Sangan iron mine in Iran by

Monjezi et al. (2010b). A model topology with an 8-3-3-2

neuron architecture with a coefficient of determination (R2)

equal to 0.98 was suggested for fragmentation prediction.

The sensitivity analysis results show that charge per delay,

burden to spacing ratio, rock density, and number of

blasting rows are the most influential parameters on frag-

mentation. Table 1 shows some recent studies with their

Table 1 Recent works on back-break and rock fragmentation prediction using soft computation techniques

Reference Technique Input Output No. of

dataset

R2

Monjezi et al. (2010a) FIS B, S, ST, SD, PF, HD, C, RD Back-break – R2 = 0.95

Esmaeili et al. (2012) ANN, ANFIS ST, N, SC, CLR Back-break 42 RANN
2 = 0.92

RANFIS
2 = 0.96

Monjezi et al. (2012) ANN-GA HL, D, C, SD, PF, B, S, RMR Back-break 195 R2 = 0.96

Mohammadnejad et al. (2013) SVM B, S, ST, SD, PF, HD Back-break 193 R2 = 0.92

Khandelwal and Monjezi (2013) SVM B, S, ST, SD, PF, HL Back-break 234 R2 = 0.99

Monjezi et al. (2014) ANN B, S, ST, N, PF, SD, RF, DB Back-break – R2 = 0.87

Monjezi et al. (2009) FIS B, S, ST, SD, PF, HD, RD Fragmentation 415 R2 = 0.96

Monjezi et al. (2010b) ANN D,HD, BS, ST, N, PF, RC, C Fragmentation 250 R2 = 0.98

Bahrami et al. (2011) ANN B, S, ST, SD, PF, HD, C, BI, D Fragmentation 220 R2 = 0.97

Sayadi et al. (2013) ANN B, S, HD, SD, SC Fragmentation 103 R2 = 0.85

HL hole length, S spacing, B burden, ST stemming, PF powder factor, SD specific drilling, SVM support vector machine, C charge per delay,

D hole diameter, HD hole depth, RD rock density, BS burden to spacing, N number of row, BI blastability index, GA genetic algorithm, RMR rock

mass rating, CLR charge last row, SC specific charge, DB delay per burden, RF rock factor
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performances in predicting back-break and rock fragmen-

tation induced by blasting.

Case study and data collection

In this study, a site investigation was conducted at the

Anguran lead and zinc mine. The Anguran mine is situated

135 km southwest of Zanjan province, Iran, at 478200E
longitude and 368400N latitude, at an altitude of 2,950 m

above sea level (see Fig. 1). The Anguran mine, which is

the largest and oldest lead and zinc mine in Iran, has been

excavated since 1940 and is one of the examples of

improper management that has encountered several

instabilities in its northern and western flanks. The site is a

part of the Oroumieh-Poldokhtar zone, where it extends

between the Zagros belt and the central Iranian district. The

mine is a central core of a turned anticline and dominant

rock at the mine area, composed of graphite-bearing

metamorphic limestones. The effect of folding is reduced

beyond the carbonaceous part of the district toward the

west and metabasic rocks. The studied area is composed of

a series of volcanic, sedimentary and metamorphic rocks.

The evidence of plutonic and volcanic activity is pre-

dominant in the area. These are the primary instances of

metamorphism and hydrothermal intrusion that formed the

different ore veins at the mines in the region. The total

geological resource of the deposit is about 25 Mt, whereas

Fig. 1 a Location of the

Anguran mine, b view of the

Anguran mine
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the proven reserve is about 12 Mt, with average grades of

27.87 and 4.26 % for zinc and lead, respectively.

Blasting operations at the Anguran mine utilize blast

holes of 114 mm, explosive material of ammonium nitrate/

fuel oil (ANFO; specific gravity of 0.85–0.95 gr/cm3),

vertical blast holes and a delay timing of 5 s. In this mine,

the blast holes are stemmed with drill cutting. One of the

most important problems of blasting operations in the

Anguran mine is back-break causing damage to the pit

walls (see Fig. 2). Moreover, large fragmented rocks are

another problem in this mine (see Fig. 3). Based on this

figure, these large size rocks should be excavated by using

secondary blasting in the Anguran mine. It is well known

that back-break (damage) and fragmentation are influenced

by several rock parameters as well as blast design.

Therefore, after going through these parameters, the most

influential parameters in back-break and fragmentation,

including burden, spacing, stemming length, hole length,

and powder factor, were measured in the Anguran mine.

Hole depths in the blasted area were in the range of

11.5–13.5 m. Overall, the design of holes was rhomb-like

with distances (B9S) of 3.5 m 9 4.5 m in the rock

deposit. Overall, powder factors in these operations ranged

between 0.55 and 0.75 kg/m3 , whereas, the exact ranges

were between 0.45 and 0.95 kg/m3. The maximum mea-

sured stemming length (fine gravel) was 4.3 m.

In order to determine size distribution, an image analysis

technique was performed in this study. Due to accuracy,

rapidity and economy of this model, it can be employed

rather than the traditional sieve method. As such, a suffi-

cient number of digital images were processed on a com-

puter; thereafter, a size distribution curve could be made.

Fragmentation quality has been determined on the basis of

80 % passing size (D80). The D80 quantity determines

loading machines and primary crusher efficiency; the lesser

the D80, the higher the performance of the equipment. In

this study, Split-Desktop software was used to analyze size

distributions of the fragmented rocks using digital images.

In this regard, a number of photographs were taken after

each blasting operation. The results of the Split-Desktop

software, as well as blasting pattern parameters, were

prepared to refine the proposed models. Figure 4 shows a

sample size distribution curve obtained via the Split-

Desktop software.

A minimum and maximum of 15 and 40 cm were cal-

culated for fragmentation. Also, a maximum amount of

7 m of backbreak (measured by measuring tape) is being

observed beyond the last row of blast holes. Table 2 shows

variations of the input and output parameters and their

range. In total, the aforementioned parameters of 34

blasting events were obtained to construct the predictive

models.
Fig. 2 A view of back-break in the Anguran mine

Fig. 3 Boulders resulting from blasting operations at the Anguran

mine

Fig. 4 Sample of a size distribution curve obtained using Split-

Desktop software
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In order to minimize back-break and provide desirable

rock fragmentation using ANN and ABC algorithms, the

following steps were performed (see Fig. 5):

1. Blasting pattern parameters, as well as back-break and

rock fragmentation (D80), were measured in the

Anguran mine;

2. Back-break and rock fragmentation values were pre-

dicted using an ANN;

3. In order to minimize back-break and provide desirable

rock fragmentation, an ABC model was proposed.

Artificial neural network (ANN)

An ANN is a soft computation technique inspired by the

human-brain information process. A typical ANN consists

of three main constituents, namely the learning rule, the

network architecture, and the transfer function (Simpson

1990). There are two major types of ANNs: recurrent and

feed-forward. Shahin et al. (2002) recommended that if

there is no time-dependent parameter in the ANN, the feed-

forward (FF) ANN can be employed. A multi-layer per-

ceptron (MLP) neural network is one of the most well-

known FF-ANNs (Monjezi et al. 2013). An MLP consists

of a number of nodes or neurons in three layers (input,

hidden and output) linked to each other by weights. Du

et al. (2002) and Kalinli et al. (2011) stated the high effi-

ciency of MLP-ANNs in approximating various functions

in high-dimensional spaces. Among the many kinds of

learning algorithms to train MLP-FF models, the back-

propagation (BP) algorithm is the most extensively utilized

(Dreyfus 2005; Jahed Armaghani et al. 2014b; Momeni

et al. 2015). In a BP-ANN, the imported data in the input

layer starts to propagate to hidden neurons through con-

nection weights (Kuo et al. 2010). Within a FF-BP algo-

rithm, the signals flow from the input layer to output layer

(the forward pass). The output is then compared to the

actual values and the value of the difference or error is

computed. The calculated error is propagated back through

the network (the backward pass) and the individual weights

are updated. Weights in the BP algorithm can be calculated

based on delta rule as follows:

Wnew
ij ¼ Wold

ij þ Dwij ð1Þ

Dwij ¼ �l
oEp

owij

outj ð2Þ

where outj is the output of the jth neuron, l is the training

rate, and Ep is the ANN error that can be obtained using

Eq. 3:

Ep ¼
1

2

XP

P¼1

XK

K¼1

dpk � Opk

� �2 ð3Þ

where dpk andOpk are actual and predicted values of the kth

neuron, k is the total number of neurons, and P is the

number of datasets.

In this study, burden, spacing, stemming length, hole

length and powder factor were considered as inputs,

whereas, fragmentation and back-break were set as output

parameters. The performance of ANN models is strongly

dependent on the suggested architecture of the network.

Therefore, determination of the optimal architecture is

required to design an ANN model. The network architec-

ture is defined as the number of hidden layers and the

number of nodes in each hidden layer. Zhu et al. (2008)

suggest that utilizing one or two hidden layers can achieve

better results in non-linear prediction applications. Several

ANN models with different architectures were modelled

for prediction of fragmentation and back-break. It should

be noted that, in a conventional ANN model, the dataset

was divided into two subsets: 70 % of the dataset was set

for training purposes and the remaining 30 % was utilized

for checking the network performance. Finally, an ANN

architecture with two hidden layers consisting of five and

four neurons in the hidden layers was selected as the best

ANN model (see Fig. 6). It is worth mentioning that, in the

recommended ANN model, the learning rate and momen-

tum coefficient were set to be 0.1 and 0.9, respectively.

Figures 7 and 8 show the actual and predicted values of the

Table 2 Summary of the measured blasting parameters

Parameter Type Unit Symbol Min Max

Burden Input m B 2.6 4

Spacing Input m S 3.5 6

Stemming length Input m ST 3 4.3

Hole depth Input m L 11.5 13.5

Powder factor Input kg/m3 PF 0.45 0.95

Fragmentation Output cm Fr 15 40

Back-break Output m BB 3 7

Fig. 5 Different steps applied

in this study
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rock fragmentation and back-break for all datasets,

respectively, using the ANN model. Based on these figures,

the predicted rock fragmentation and back-break values are

in close agreement with their measured values, indicating

the capability of an ANN in predicting these parameters.

Furthermore, in order to control model performance, the

values of R2, root mean square error (RMSE) and amount

of ‘‘value account for’’ (VAF) were computed for two

ANN models (see Table 3):

R2 ¼ 1�
PN

i¼1ðy� y0Þ2
PN

i¼1ðy� ~yÞ2
ð4Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ðy� y0Þ2
vuut ð5Þ

VAF ¼ 1� varðy� y0Þ
varðyÞ

� �
� 100 ð6Þ

where y, y0 and ~y are the measured, predicted and mean of

the y values, respectively, and N is the total number of data

Fig. 6 Suggested architecture by ANN models

Fig. 7 Comparison between

real and ANN-predicted rock

fragmentation

Fig. 8 Comparison between

real and ANN-predicted back-

break
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points. The model will be excellent if the VAF is 100 and

RMSE is zero. Based on Table 3, the ANN can predict

fragmentation and back-break values with a high degree of

accuracy.

Artificial bee colony (ABC) algorithm

ABC theory

An artificial bee colony (ABC) algorithm was proposed by

Karaboga (2005) to optimize complex engineering prob-

lems. Intelligent searching behaviour of honey bee swarms

can be simulated by the ABC algorithm. Colony bees are

divided to three categories: employed, onlookers and

scouts (Kisi et al. 2012). Initially, searching for a food

source is started by scout bees. In the searching period,

several colony bees are considered continuous onlooker

bees. Communication among scout bees about the food

sources quality occurs in the dancing area. The dance is

referred to as the ‘‘waggle dance,’’ which is performed by

employed bees when a high quality food source is found.

Then, by using this information, the colony bees select the

desirable food sources (see Fig. 9). In the ABC algorithm,

a possible solution of the problem can be optimized by a

food source. The quantity of nectar in a food source cor-

responds to the quality of the solution represented by that

food source.

Adjustable parameters in the ABC algorithm include the

number of scout bees (N), the number of food sources (M),

the number of selected food sources (E), the number of

bees dispatched to selected food sources (Nre), the number

of bees dispatched to other food sources (Nsp), the radius of

the neighborhood search (Ngh) and the number of repeti-

tions (Imax). In the ABC algorithm, initial solutions (food

source positions) are created within the problem parameter

ranges:

Xij ¼ Xmin
j þ rand 0; 1ð ÞðXmax

j � Xmin
j Þ ð7Þ

where i = 1, …, N, j = 1, …, D, N is the number of food

sources, D is the number of optimized variables. In the next

step of the ABC algorithm, a new solution of Vjk in the

neighborhood of Xk is produced for each solution as

follows:

Vjk t þ 1ð Þ ¼ Xjk tð Þ þ ujk tð ÞðXjk tð Þ � Xwk tð ÞÞ ð8Þ

K ¼ int rand � Nð Þ þ 1 ð9Þ

where ujk is uniform distribution of random numbers in the

range [-1,1] and Xjk shows the jth solution from kth pop-

ulation solution in which k is selected randomly from the

range of [1,…,N]. If the new solution is more compatible, it

will replace the previous solution. In the scout bee phase, by

using Eq. 10 and based on calculated possibilities, each bee

selects a solution. Subsequently, an onlooker bee finds a

new solution against the selected solution; if the new

solution is well-matched it will be chosen.

Pi ¼
fitðxi tð ÞÞPN
j fitðxi tð ÞÞ

ð10Þ

ABC algorithm evaluation

In order to evaluate the ABC algorithm, Rastrigin’s func-

tion is utilized (see Eq. 11). Due to the non-linear and non-

convex nature of Rastrigin’s function (see Fig. 10), it is

one of the most popular functions used to examine the

performance of optimization algorithms (Bozorg Haddad

2005). Implementation of the ABC algorithm written by

MATLAB in Rastrigin’s function can be seen in Fig. 11.

As shown in this figure, by using the ABC algorithm, the

optimum point of Rastrigin’s function can be found. Based

on this figure, the error result equals 0.0003 and shows the

applicability of the ABC algorithm. This indicates that the

ABC algorithm written by MATLAB is acceptable for use

in this study.

f6 xð Þ ¼ 10nþ
Xn

i¼1

ðx2i � 10 cosð2pxiÞ

� 5:12� xi � 5:12 ð11Þ

Table 3 Performance indices of the ANN models

Output Performance indices

R2 RMSE VAF (%)

Fragmentation 0.78 2.76 77.73

Back-break 0.77 0.53 77.25

Fig. 9 Collection and distribution of information by bees
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Optimization of blasting pattern using ABC algorithm

In order to optimize the blasting pattern in the Anguran

mine, an ABC algorithm is utilized. Several ABC models

were constructed using different adjustable parameters.

After performing a series of analyses, the most appropriate

ABC parameters were obtained, as tabulated in Table 4.

Based on the presented ABC parameters, blasting pattern

parameters using the ABC technique were suggested (see

Table 5). According to this table, the best achievable val-

ues obtained via the optimization process are 3.25 m and

29 cm for back-break and fragmentation, respectively.

Also, values of 3.9, 4.0, 3.3, 12.9 m, and 0.45 kg/m3 were

suggested for burden, spacing, stemming length, hole

length and powder factor, respectively by the ABC model.

However, convergence of ABC models in 10 repetitions is

displayed in Fig. 12. It is worth mentioning that, in these

models, each bee represents the information of one blasting

pattern.

Comparison of optimization results with empirical

model

The Kuz-Ram model was proposed to empirically predict

the size of fragmented rock and has been utilized exten-

sively in industrial application (Cunningham 1983, 1987).

This model can be presented as follows:

Fig. 10 3D view of Rastrigin’s

function

Fig. 11 Convergence of the ABC algorithm for Rastrigin’s function

Table 4 Controllable

parameters of the ABC

algorithm

Controllable parameter Symbol Value

Blasting pattern N 20

Selected pattern of M among N blasting pattern M 5

Best blasting pattern E among selected pattern M Nre 4

Radius of neighborhood search Ngh 0.0001

Blasting pattern that sends back to the selected pattern, M-E Nsp 6

The number of best blasting patterns, E, among the selected pattern M-E Npm 1

The number of algorithm repetitions Imax 2,000
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�X ¼ Fr � q�0:8 � Q
ð1
6
Þ

b � 115

E

� �19
30

ð12Þ

where �X is the mean fragment size (cm), Fr is rock factor

(considered 8 for the Anguran mine; see Table 6), q is the

powder factor (kg/m3), Qb is the explosive weight in each

hole (kg), and E is the strength of explosive material

(assigned a value of 100 for ANFO). In order to evaluate

the results of the optimization part, the mean fragment size

in the Anguran mine was predicted by the Kuz-Ram model.

Input parameter values used in the Kuz-Ram model can be

seen in Table 7. By using Eq. 12, the result of the Kuz-

Ram model ( �X = 33.5 cm) is in good agreement with the

optimized result of the ABC algorithmm (29 cm). The

result obtained from the Kuz-Ram model showed the

accuracy level of the ABC algorithm.

Discussion and conclusion

In this study an attempt has been made to minimize rock

fragmentation and back-break resulting from blasting by

optimization of blasting pattern parameters. In this regard,

blasting parameters of 34 blasting operations as well as

back-break and rock fragmentation were collected at the

Anguran mine in Iran. In this study, burden, spacing,

stemming length, hole length and powder factor were

considered as network inputs to predict fragmentation and

back-break. Fragmentation and back-break values were

predicted by an ANN using the blasting parameters mea-

sured in the mine. R2 values of 0.78 and 0.77 for frag-

mentation and back-break, respectively, suggest superior

prediction capabilities of the ANN technique. In addition,

the computed values of the models’ performance indices

indicate that the ANN approach can predict fragmentation

and back-break values with a high degree of accuracy.

Furthermore, in order to optimize the blasting pattern, an

ABC algorithm is utilized. According to the ABC algo-

rithm results, values of 29 cm and 3.25 m for fragmenta-

tion and back-break, respectively, were recommended. For

the sake of evaluation, an empirical model (Kuz-Ram) was

applied to predict the mean fragment size in the Anguran

mine. A mean fragment size of 33.5 cm reveals the ABC

algorithm can optimize rock fragmentation with acceptable

accuracy.
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