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Abstract Estimation of rock mass deformation modulus

is the subject of many studies in rock engineering research

work. Although numerous predictive models have been

developed for the estimation of the deformation modulus,

they cannot be generalized for other sites because of

inadequate accuracy. Furthermore, it is very valuable that

the predictive models involve some accessible input

parameters. The rock mass rating (RMR) is a well-known

geomechanical parameter, which is usually determined to

describe the quality of rock mass in rock engineering

projects. In this study, five parameter ratings of the RMR

classification system are used to predict the deformation

modulus of rock mass in the abutment of the Gotvand earth

dam. Statistical analysis and an artificial neural network are

employed to present two new predictive models. Finally,

probabilistic analysis is used to predict the rock mass

deformation modulus, which overcomes the low accuracy

caused by the inherent uncertainty in prediction. The

results indicated that the parameter ratings used in the

RMR classification system can predict the rock mass

deformation modulus with a satisfactory correlation.

However, the parameters don’t have the same influence on

the rock mass deformability with the joint condition and

the groundwater as the major and minor influencing

parameters, respectively.

Keywords Deformation modulus � Statistical

analysis � Neural network � Probabilistic analysis �
Gotvand earth dam

Introduction

The deformation modulus of rock masses is one of the most

critical parameters used in the design stage of engineering

structures such as dams, tunnels and slopes. By definition,

the deformation modulus is the rock mass tendency to be

deformed permanently and non-permanently. Thus, the

deformation modulus has an inverse relationship with the

deformation level of the rock mass. Although there are

some in situ tests to determine the rock mass deformation

modulus, many researches (Bieniawski 1978; Serafim and

Pereira 1983; Nicholson and Bieniawski 1990; Mitri et al.

1994. Palmstrom and Singh 2001; Barton 2002 Kayabasi

et al. 2003; Gokceoglu et al. 2003; Zhang and Einstein

2004; Sonmez et al. 2004, 2006) have been performed to

present an indirect method for estimation of rock mass

deformability. This is due to the limitations of the in situ

tests, e.g., the test procedures are usually difficult, expen-

sive and time consuming.

In previous studies, many empirical equations have been

suggested using parameters, which describe the quality of

the rock mass, such as rock mass rating (RMR), tunnelling

quality index (Q), rock quality designation (RQD), geo-

logical strength index (GSI), etc. In other words, at least one

of the rock mass classification indices may be used in the

empirical equations (Sonmez et al. 2006). This is because
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the joints and their particular properties, such as weathering,

infilling material, roughness and aperture have considerable

effect on the deformation of a rock mass. The RMR as one

of the preferred classification systems has been used in

many research works to describe rock mass quality.

Bieniawski (1978) suggested the first empirical equation

for estimation of deformation modulus which considers

only RMR as an input parameter. However, Bieniawski’s

model has a fundamental limitation and applies to rock

masses with RMR \ 50. For RMR [ 50, Serafim and

Pereira (1983) proposed another empirical equation.

Nicholson and Bieniawski (1990) and Mitri et al. (1994)

then used the RMR value and presented a ratio of rock

mass modulus to the intact modulus which is varied from 0

to 1. Finally, Sonmez et al. (2006) suggested an empirical

equation, which considers RMR and the elastic modulus of

intact rock using worldwide data. Table 1 lists some of the

empirical equations which are based on the RMR system

for estimation of rock mass deformation modulus.

The proposed equations in previous studies cannot be

generalized to obtain a realistic result on the estimation of

rock mass deformation modulus for other sites. In this

study, prediction of the rock mass deformation modulus

with RMR parameters and their ratings is evaluated in the

abutment of the Gotvand earth dam. Statistical analysis and

an Artificial Neural Network (ANA) were used to propose

two new predictive models with a more practical perfor-

mance than previous models. Furthermore, a probabilistic

approach is applied to determine the impact of geome-

chanical characteristics of rock mass on the rock mass

deformation modulus.

Case study on Gotvand earth dam abutments

The Gotvand Olia hydroelectric power plant project is

located at 48�, 560 and 1000 of east and 32�, 160 and 800 of

north. It is situated 380 km of the Karun river mouth and is

distanced 10 km to north-east of Gotvand city in Khuze-

stan province, Iran (Fig. 1). Bakhtiary and Aghajari are two

predominant formations in the bed rock and abutments of

the Gotvand dam. Conglomerate, cherty lime-stone and

interbedded mudstones and sandstone are found in the

Bakhtiary formation; and the Aghajari formation contains

of gray and greenish gray sandstones, interbeded clay-

stone, siltstone and brow reddish marlstone. The Gotvand

Dam is an earthen dam and will have an installed gener-

ating capability of 2,000 MW which is divided into two

Table 1 Some empirical equations suggested for estimation of rock mass deformation modulus based on the RMR system

Equation Required parameters Limitation References

Erm = 2 RMR - 100 RMR RMR [ 50 Bieniawski (1978)

Erm ¼ 10ðRMR�10Þ=40 RMR RMR B 50 Serafim and Pereira (1983)

Erm ¼ Ei

100
0:0028RMR2 þ 0:9 expðRMR=22:82Þ
� �

Ei and RMR – Nicholson and Bieniawski (1990)

Erm ¼ 0:1ðRMR=10Þ3 RMR – Read et al. (1999)

Erm ¼ Ei½0:5ð1� cosðp� RMR=100ÞÞ� Ei and RMR – Mitri et al. (1994)

Erm ¼ Ei10½ððRMR�100Þð100�RMRÞ=4;000 exp 9�RMR=100ÞÞ� Ei and RMR – Sonmez et al. (2006)

Fig. 1 Gotvand dam location in

Khuzestan province, Iran
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1,000 MW phases. It is estimated to be complete in 2015

and is going to become one of Iran’s largest power stations

(IWPCO 2005).

In-situ test

For this study, data were gathered from some in situ tests

conducted at the Gotvand earth dam. Two types of in situ

tests (plate bearing test and dilatometer test) have been

performed to measure the modulus of rock mass at various

locations of the site.

Eight plate bearing tests have been planned in the

exploration galleries and deviation tunnels on the sandy

siltstone, and conglomerate. The tests have been performed

in the large scale (plate diameter is 1 meter) with five

loading–unloading cycles. The maximum pressure applied

in the two last cycles was 6 MPa. Five tests were per-

formed horizontally and three tests vertically.

Forty four dilatometer tests have been carried out using

flexible packers inside some boreholes excavated in silt-

stone, sandstone, conglomerate, mudstone, faulted rock

mass and the shear zone. Dilatometer tests have been done

in four cycles of loading–unloading upon 6 MPa pressure

in the three dimensions (IWPCO 2005).

Site investigation

For description of the rock mass quality and gathering of

information about the studied abutments, a site investiga-

tion has been carried out. Generally, the quality of rock

mass in the site is variable. The average value of RMR is

presented in Table 2 in different formations and rock

masses.

The RMR values vary in the range of 30–76. Thus, the

rock masses are situated in the poor, fair and good rock

classes, based on Bieniawski’s geomechanics classification

(Bieniawski 1989). Figure 2 depicts distribution of RMR

values in the abutments of the Gotvand site.

Correlation of rock mass deformation modulus

and RMR value

Rock mass classification can provide a global insight

about the project site and its geomechanical characteris-

tics even if detailed information is not available during

the feasibility and preliminary design stages of a project.

The deformation modulus is site specific and depends

strongly on the quality of rock mass. The RMR system as

one of the preferred classification systems has been uti-

lized in numerous rock engineering projects for different

applications. For example, estimation of effective porosity

and hydraulic conductivity of rock masses (Liu et al.

1999), modification of rock mass failure criteria (Gon-

zález Nicieza et al. 2006), and prediction of TBM per-

formance (Khademi Hamidi et al. 2010), are some of

derivative application of the RMR system in rock engi-

neering projects.

Figure 3 depicts variation of the rock mass deformability

versus the RMR values of the Gotvand dam abutments,

where the data is approximated by exponential and linear

correlation trends depicted through Fig. 3a, b, respectively.

Although the results reveal that there is a significant cor-

relation between the rock deformation modulus and RMR,

the correlation coefficient, R-square, achieved for expo-

nential trend is 0.64 and for that of the linear trend is 0.67

which are not sufficiently adequate for estimation of rock

mass deformability.
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Fig. 2 Probabilistic distribution of RMR values in the Gotvand dam

abutments

Table 2 The average value of RMR in different formations and rock

masses of the Gotvand dam (IWPCO 2005)

Formation Rock mass RMR

Aghajari Sandy siltstone 55

Mudstone 48

Bakhtiary Conglomerate 76

Mud stone 55

Sandstone 72

Transition Conglomerate 55

Mud stone 50

Dislocated and faulted rock

mass

Dislocated rock mass (right

beach)

47

Dislocated rock mass (left

beach)

40

Faulted rock mass 39

Shear zone 39
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Statistical analysis

In-situ tests determine the value of rock mass deformability

in various locations of the site. The site investigation

quantifies the rating of classification parameters applied in

Bieniawski’s classification (Bieniawski 1989). Table 3

presents a quantitative description of the site’s geome-

chanical condition, namely, the value of rock mass defor-

mability and the classification parameter ratings.

In other words, the values given in Table 3, except for

the rock mass deformability, are the allocated ratings for

the RMR classification parameters. Mean, standard devia-

tion, Minimum, First quartile (Q1), median or second

quartile, Third quartile (Q3), and maximum value of

parameters and parameter ratings are presented in Table 3.

The Q1 and Q3 represent the values that 25 and 75 % of the

data are less than or equal to them, respectively.

Multiple linear regressions

Multiple linear regression (MLR) is a multivariate statis-

tical technique used to examine the linear correlations

between two or more independent variables and a single

dependent variable. The deformation modulus of rock and

the rating of the classification parameters were considered

as dependent and independent variables, respectively. The

regression analysis was performed using MINITAB 15

statistical software and the detailed results are summarized

in Table 4.

The coefficient of independent variables along with its

standard error is shown in Table 4. Based on this coeffi-

cient, a linear equation for prediction of dependent variable

(Erm) is presented;

Erm ¼ �7:192þ 0:06469R1 þ 0:20481R2 þ 0:30974R3

þ 0:38384R4 þ 0:01716R5: ð1Þ

According to Eq. 1, rock mass deformability is estimated

as R2 = 0.84 % (Fig. 4). Furthermore, the T statistic and

the P value of the correlation between dependent and

independent variables are given in Table 4. The P value,

which varies from 0 to 1, determines the appropriateness of

Table 3 Description of the geomechanical condition of the Gotvand site

Parameters Symbol Mean SD Min. Q1 Median (Q2) Q3 Max.

Erm (GPa) Erm 3.11 2.28 0.67 1.4 2.28 4.18 9.968

UCS rating R1 9.21 2.51 7.00 7.0 7.0 12.0 12.0

RQD rating R2 9.89 3.98 3.00 8.0 8.0 13.0 17.0

Joint spacing rating R3 8.79 2.99 5.00 5.75 8.0 10.0 15.0

Joint condition rating R4 12.48 2.56 9.0 10.0 12.0 14.0 19.0

Ground water rating R5 9.54 4.42 0.0 7.0 10.0 15.0 15.0

Table 4 Results of regression analysis for prediction of deformation

modulus

Predictor Coefficient SE coefficient T P

Constant -7.192 0.7471 -9.63 0.000

R1 0.06469 0.06806 0.95 0.347

R2 0.20481 0.04419 4.64 0.000

R3 0.30974 0.05349 5.79 0.000

R4 0.38384 0.05141 7.47 0.000

R5 0.01716 0.03544 0.48 0.631

y = 0.2057e 0.0495x
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rejecting the null hypothesis in a hypothesis test. The

probability of a mistake in rejecting the null hypothesis is

decreased with smaller P values.

The correlations between R1 and R5 with Erm are not

considerably appropriate. Hence, it is implied that the

allocated ratings to the two parameters (R1 and R5) are not

balanced for estimation of the rock mass deformation

modulus. Although UCS has a strong influence on defor-

mability of intact rocks, rock mass deformability is sub-

stantially affected by the deformation modulus of rock

joints and discontinuities that is significantly less than the

intact rock modulus.

Regression analysis presents a new equation with com-

binations of parameter ratings used in the RMR system

with an R square of 0.84 % while the exponential and

linear trends estimate a rock deformation modulus with

0.64 and 0.67 % r-squares, respectively (see Fig. 3a, b).

Thus, the proposed equation using linear regression is more

accurate than the RMR based equation (Fig. 3a, b). This is

because the five parameter ratings used in the RMR system

do not have a similar influence on the deformation modu-

lus. In other words, the weights of each parameter in the

proposed statistical model are not the same value. How-

ever, each parameter should be properly weighted to pre-

cisely predict the output. One of the best-known methods

for weighting adjustment is the artificial neural network

(ANN). Numerous studies have been conducted to predict

rock properties using ANNs (Meulenkamp and Grima

1999; Kim et al. 2001; Singh et al. 2001, 2007; Gokceoglu

et al. 2004; Monjezi el al. 2010). Although the values of the

allocated weights are not visible in ANN, the resulting

models provide the adjustment of the weights by a training

process in order to minimize the error between the desired

target and the estimated output. In the next section, an

ANN model is presented for prediction of rock mass

deformability based on the five rating parameters of the

RMR system (Fig. 4).

Artificial neural networks (ANNs)

Artificial neural networks (ANNs) simulate human brain

performance by training data for applications where formal

analysis is difficult or impossible. The network could be
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Fig. 4 Comparison of the real and the predicted rock modulus for the

Gotvand earth dam

Fig. 5 Schematic view of a

neural network operation

Fig. 6 Structure of the developed network
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defined using combinations of simple elements known as

neurons. Neurons in ANNs are a computational model

inspired in biological neurons so as to perform certain

computations. The main inspiration of ANNs is to adjust

the values of the connection or weights between the neu-

rons (Fig. 5). As shown in Fig. 5, weights are continuously

modified and adjusted by a training process to minimize the

error between the desired target and the estimated output.

Multi-layer feed forward network

A wide range of problems are solved through the appli-

cation of ANNs. The Multi-Layer Feed Forward Network

(MLFF) is one of the frequently used networks proposed by

Rumelhart (1986) and is used here as the neural network.

The MLFFs are organized in layers including input, output

and hidden layers. The number of neurons in input and

output layers is equal to the size of input and output data

arrays, respectively.

In this section, the purpose is to estimate the rock mass

deformability using five parameters including allocated

ratings to the UCS, RQD, joint spacing, joint condition and

groundwater. The input and target values are first mapped

into the interval [-1, 1] and, after the training process; the

outputs are inversely mapped to the real values. The

mapping formula is defined as,

y ¼ �1þ 2

xmax � xminð Þ x� xminð Þ; ð2Þ

where y is the mapped value of x and xmax, and xmin are the

maximum and minimum values of x, respectively.

Figure 6 depicts the structure of the model used in this

study. Two hidden layers with 11 neurons in the first layer

and three neurons in the second are adopted in the MLFF

model. Furthermore, sigmoidal transfer functions are

implemented in hidden layer neurons. Table 5 lists the

specifications of the developed network.

Fig. 7 Performance of model prediction during the training process

Table 5 The adopted MLFF network parameters for the present

study

Parameters

Training function TRAINGDM

Learning function LEARNGD

Number of neurons/transfer function (1st hidden

layer)

11/TANSIG

Number of neurons/transfer function (2nd hidden

layer)

3/TANSIG

Number of neurons/transfer function (output layer) 1/SATLINS

Performance function MSC

TRAINGDM = Gradient descent with momentum backpropagation

training algorithm; LEARNGD = Gradient descent weight and bias

learning function; TANSIG = Hyperbolic tangent sigmoid transfer

function; SATLINS = Symmetric saturating linear transfer function

Target = 0.98Output + 0.055
R² = 0.98 
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Among 52 available data, 32 random data are selected to

train the network. In addition, ten data are separately

selected for each of the validation and test operations.

Performance of the training data set is measured in terms of

the mean squared error (MSE) and rapidly decreases as the

network is trained (Fig. 7). After 100,000 epochs of

training, the network performance will be satisfactory

based on the MSE of the validation data. Figure 8 depicts

the correlation between the simulated and real rock mass

deformation modulus for the training and test data sets. As

shown in Fig. 8b, there is a fair correlation between the

output and target values for the test data set (0.95 %).

A comparison of the regression analysis results with those

of the neural network shows that the developed model using

neural network predicts the rock mass deformation modulus

more accurately. Therefore, it can be concluded that the
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considered parameters in the RMR classification provide a

capable system for prediction of rock mass deformability,

though the parameters don’t have the same influence on the

result. Nevertheless, the neural network is stronger than the

statistical analysis in adjusting the weight of the parameters,

and; thus, the correlation between the neural network output

and the target values is highly satisfactory.

One of the most important disadvantages of neural net-

works is that the model obtained with the neural network is not

understandable and does not use a parametric approach, unlike

the statistical methods. Therefore, the effect of each input

parameter on the value of the output cannot be considered.

On the other hand, uncertainty and variability of rock

properties are inevitable due to some features including

(a) measurement errors, (b) data inconsistency and non-

homogeneity and (c) data handling (Malkawi et al. 2000).

Furthermore, in the geotechnical design, interpretation of

geological characteristics is sometimes inevitable and is

based on personal judgment, previous knowledge and

experience of the experts related to the scenarios (Polson

and Curtis 2010), while in a deterministic analysis; it is

assumed that all input parameters are exactly known.

Therefore, a deterministic approach, which results only in a

unique value, does not present a sufficient accuracy for

calculation of rock properties. On the contrary, probability

analysis gives both the range of values that the variable can

take and the relative frequency of each value within the

range (Evans et al. 1993). Thus, the problem can be solved

using probability analysis in this study case.

Probabilistic sensitivity analysis

Probabilistic analysis provides a reasonable tool to quantify

the variability and uncertainty of predictions. In particular,

the probabilistic approach to rock mass classifications

makes it possible to consider uncertainty and variability in

rating allocation.

The Monte Carlo Simulation (MCS) is one of the most

preferred approaches for probabilistic analysis, which is

based on the generation of multiple trials to determine the

expected values of a random variable (Rubinstein and

Kroese 2007). Then input(s) and output(s) of the probabi-

listic analysis are denoted by distribution functions. It is

worth mentioning that the input distribution functions are

obtained based on the variation of parameters whereas the

output distribution is calculated by MCS. Figure 9 depicts

the Probability Density Function (PDF) of input parameters

based on their variation on the abutments of the Gotvand

dam.

Sensitivity analysis can provide a comprehensive insight

to help engineers gain knowledge of complex model

behaviors and make informed decisions regarding where to

spend engineering effort. In an uncertain design, probabi-

listic sensitivity analysis is performed to quantify the

impact of uncertainties in random variables on the uncer-

tainty in model outputs (Nejati et al. 2012). In other words,

probabilistic sensitivity analysis is used to rank the sig-

nificance of input parameters.

The output of probabilistic analysis is calculated using

MCS on the basis of Eq. 1. In MCS randomness is intro-

duced into simulation models via independent distributed

random variables. Figure 10a shows the distribution of

deformation modulus in the abutment of the Gotvand earth

dam. Furthermore, probabilistic sensitivity analysis is

performed to quantify the impact of uncertainties in ran-

dom variables on the uncertainty in model outputs. Fig-

ure 10b depicts the impact of input parameters on the

deformation modulus of rock mass using a Tornado

diagram.
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As shown in Fig. 10a, the value of the deformation

modulus is in the range of 1.38–6.07 GPa with a proba-

bility of 90 %. In other words, the value of rock mass

deformation modulus is less than 6.07 GPa or more than

1.38 with 95 % probability.

Furthermore, Fig. 10b indicates that all parameter rat-

ings used in the RMR system have a direct and different,

influence on the value of the rock mass deformation. Joint

condition has the most, and groundwater has the least,

effect on the deformation of rock mass.

Deformation modulus of rock masses is made up of two

components: one due to deformation of the intact rock; the

other due to the deformability of the joints and disconti-

nuities (Hudson and Harrison 1997). Whereas deformation

modulus of rock joints is considerably less than the intact

rock deformation modulus, the predominant factor on rock

mass deformability is rock joint condition.

Conclusion

In this study, parameter ratings of the RMR classification

system were used to predict rock mass deformation mod-

ulus of Gotvand earth dam. The parameter ratings were

discussed and investigated and it was shown that they can

precisely describe the quality of rock mass, especially rock

mass deformability, though all these parameters may have

different influences on the rock mass deformability. In

other words, the value of rating for the RMR parameters is

not allocated accurately; and it may be modified.

Rock mass rating (RMR), which is a combination of five

parameter ratings, affects the rock deformation modulus

with a rather satisfactory correlation. Exponential and lin-

ear trend lines were presented which showed a correlation

coefficient of 0.64 and 0.67 %, respectively. These coef-

ficients are obtained with the assumption that the RMR

parameter ratings have identical influence on the rock mass

deformability.

The equation obtained by multiple linear regressions

predicts rock mass deformability with a correlation coef-

ficient of 0.84 %, which is more appropriate than the latter

correlations.

The artificial neural network (ANN) is a useful means to

enhance the prediction efficiency and is also used in this

study. In this case, a multi-layer feed forward network

(MLFF) with five inputs is developed and used for pre-

diction of rock mass deformability. The optimum ANN

architecture is found to be five neurons in the input layer,

one neuron in the output layer and two hidden layers with

11 and three neurons, respectively.

The correlation between the neural network output and

target values is 0.95 % which is highly satisfactory com-

pared to statistical analysis.

On the basis of probabilistic analysis, the value of

deformation modulus is in the range of 1.38–6.07 GPa with

90 % probability; specifically it is more than 1.38 GPa

with 95 % probability; and a probability of 5 % can be

expected for a modulus of more than 6.07 GPa.

Probabilistic sensitivity analysis indicates that all

parameter ratings used in RMR system have a direct and

different influence on the value of the rock mass defor-

mation. Joint condition has the most and groundwater has

the least effect on the deformation of rock mass.
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