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Abstract This paper presents an overview of the use of
lineaments in landslide hazard mapping. The lineaments are
normally derived either from aerial photographs or satellite
imagery. The relative advantages and disadvantages of
digital image processing and manual (visual) lineament
interpretation are discussed. Most researchers prefer the
manual technique, despite the fact it is more time-consum-
ing and subjective, as it allows a higher degree of operator
control. Ways of increasing objectivity in the interpretation
are suggested. It is hoped that lineament mapping will
increasingly be incorporated in landslide hazard assessment
hence the paper emphasizes the need for care and a proper
understanding of these methods and their limitations.

Keywords Landslide hazard - Lineament - Subjectivity -
Remote sensing imagery

Résumé L’article présente une revue sur 1’utilisation des
linéaments pour la cartographie de 1’aléa de glissement de
terrain. Les linéaments sont normalement obtenus a partir
de photographies aériennes ou d’images satellitaires. Les
avantages et inconvénients des traitements numériques des
images et des interprétations manuelles (visuelles) des
linéaments sont discutés. La plupart des chercheurs préfe-
rent les techniques manuelles, malgré le fait qu’elles sont
longues et subjectives, considérant qu’elles permettent un
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meilleur contréle par 1’opérateur. Des moyens d’améliorer
I’objectivité dans I’interprétation sont suggérés. On peut
espérer que la cartographie de linéaments sera incorporée
de fagon plus importante dans 1’évaluation des aléas de
glissement de terrain. C’est pourquoi 1’article met I’accent
sur la nécessité de bien maitriser ces méthodes et connaitre
leurs limites.

Mots clés Aléa de glissement de terrain - Linéament -
Subjectivité - Imagerie a distance

Introduction

The structural geology of the area has a significant influ-
ence on the occurrence of landslides. One way of incor-
porating structural information into the landslide hazard
assessment is by utilizing lineament mapping (Anbalagan
and Singh 1996; Atkinson and Massari 1998; Nagarajan
et al. 2000; Temesgen et al. 2001; Saha et al. 2002; Lin and
Tung 2003 and many others). Lineament mapping needs to
be undertaken with care and with a proper understanding of
its methods and limitations. Thus the main objectives of
this paper are to review the methods of lineament detection
and to suggest the best practice in lineament mapping to be
used as part of a landslide hazard assessment.

Lineaments and remote sensing

Numerous terms have been used to describe lineaments, e.g.
geologic lineaments, tectonic lineaments, photo lineaments,
fracture traces and photo linear or geophysical lineaments,
based on the assumed origin of the feature or sometimes the
data source from which it has been derived (Sander 2007).
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Hobbs (1904) originally proposed the term lineament for
significant lines of landscape caused by joints and faults,
revealing the architecture of the rock basement. The most
widely used definition is by O’Leary et al. (1976) who
described a lineament as a mappable, linear feature of a
surface whose parts are aligned in a rectilinear or slightly
curvilinear relationship and which differ from the pattern
of adjacent features and presumably reflect some sub-
surface phenomenon. Haeberlin et al. (2004) and Gomez
and Kavzoglu (2005) refer to a surface expression that may
reveal the hidden architecture of the rock basement.
Remote sensing indicates lineaments as lines or linear
formations with either lighter or darker pixels compared to
the background pixels (Vassilas et al. 2002; Kocal et al.
2004). However, sometimes a lineament is clearly shown
on the imagery but does not appear to correspond to any
observable physical feature. There are sound reasons for
assigning a geological meaning to some lineaments even if
they do not always correspond to features in the field
(Campbell 1987), as the feature may be deep seated or
partially covered by unrelated strata (Richards 2000).
Where these unrelated younger strata obscure the geolog-
ical lineaments in the deep bedrock, with reactivation they
often result in an array of brittle fractures on the surface
(Leech et al. 2003).

There are two main types of lineament—positive and
negative, referring to ridge trends and river valleys
respectively. Whilst the topographically negative straight
lineaments may represent joints, faults and shear zones, the
topographically positive straight lineaments may be inter-
preted as dykes and dyke swarms (Koch and Mather 1997;
Solomon and Ghebreab 2006). The slightly curved and
sub-parallel lineaments indicate foliation or bedding trends,
depending on rock type (crystalline or limestone) while
circular features may delineate ring dykes (Koch and
Mather 1997).

As far as landslides are concerned, negative lineaments
are more important as the fractures which produce them
cause weak lines and increase the probability that a land-
slide will occur.

Lineaments may be continuous or discontinuous and,
under certain circumstances, may be regarded as the sur-
face manifestation of fault and fracture zones (Pal et al.
2006). Furthermore, good correlation between structures
mapped in the field and lineament systems has suggested
lineaments may be regarded as representative of fracture
networks (Morelli and Piana 2006). However, the presence
of a dense vegetation canopy, extensive weathering and
recent non-consolidated deposits (fluvial terraces, pedi-
ments or alluvial sediments) may prevent the identification
of lineaments (Cortes et al. 1998; Gustafsson 1994) whilst
not all faults are expressed topographically (Novak and
Soulakellis 2000). As a consequence, the lack of expression
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of a lineament in remote-sensed imagery does not neces-
sary mean that there is no joint or fault in the particular
areas. Nevertheless, remote sensing (e.g. aerial photo or
satellite imagery) is generally better at identifying these
linear or slightly curvilinear features compared with field
inspection. The continuity of a fault may also be better
shown in satellite imagery because the “noise” caused by
the high detail offered by aerial photos disappears (Arlegui
and Soriano 1998).

Remote sensing has been widely used in lineament
studies since the introduction of Landsat MSS in 1980.
Among the types of remote sensing imagery that have been
used for landslide hazard assessment studies are Landsat,
IRS, LISS, ASTER, aerial photo, and Spot (Table 1).
Where possible, the conventional aerial photo is comple-
mented with satellite imagery as a wider synoptic view is
more likely to allow long lineaments to be detected. Cur-
rently, most researchers use middle resolution satellite
imagery which is easier to use and cheaper than aerial
photos. Unless archived aerial photos are available, it is
expected that this trend will continue, especially as the cost
of satellite imagery is expected to decrease in the future.

In addition to landslide hazard assessment, where often
the lineament mapping is only briefly referred to, in geo-
logical studies there is generally a more extensive discus-
sion of the lineaments. In economic geology, for example,
lineaments may indicate natural stopes where minerals are
found, while in structural geology they give an almost
unparalleled overview of the large structural features, the
trends of which may be difficult to identify in the field. An
indication of the kind of studies which have used lineament
mapping is given in Table 2.

Generally, Landsat is the most popular satellite imagery
(see Table 2), probably due to its relatively cheap cost;
indeed the archive of Landsat imagery may be downloaded
free from the internet. An advantage of the older archival
imagery is that it may indicate features not so obvious on
the more recent imagery, due to increasing urbanization
etc. It should be stressed, however, that where possible the
lineament should be “ground-truthed”.

Lineament interpretation

Two main types of interpretation are used: manual inter-
pretation based on visual interpretation and automatic
interpretation utilizing computer algorithms.

Manual lineament interpretation

Conventional lineament interpretation was originally

undertaken using hardcopy aerial photos under the stereo-
scope, where the visually interpreted lineaments are
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Prewitt and Sobel convolution kernels

using remote

sensing

Himalaya belt,

India
Isparta, SW Turkey) Structural geology

Northwest

Histogram equalisation

Directional filters NS, ES, NE-SW and NW-SE

Cengiz et al. (2006) Landsat ETM+

IRS-1D-LISS-III merged with PAN Satellite images

Structural geology

IRS-1D-LISS-III

Virdi et al. (2006)

draped over Digital Elevation Model (DEM)

Himalaya, India

and PAN
SRTM

Mathew et al. (2007) The LISS III

Decorrelation-stretched FCC merge with PAN from Edge-enhancement

Landside hazard
assessment

Part of Garhwal
Himalaya, India

the THS transformation

Shaded relief images were produced from the DTM

Structural geology

Chiayi-Yunlin,

1:20,000 aerial

Lin et al. (2007)

with illumination

Taiwan

photos and the

DTM

delineated on the transparent overlays and transferred to a
map. Advances in technology have allowed digital manip-
ulation of the satellite imagery and the exploitation of the 3D
environment. The basis of visual interpretation is generally
tonal contrast and/or textural pattern (Akman and Tiifekgi
2004; Gomez and Kavzoglu 2005; Sarup et al. 2006). These
patterns mainly relate to geomorphological features
(Table 3).

It is suggested that before lineament delineation is
undertaken, the general orientation of the drainage pattern
should be considered. As most drainage patterns follow the
major lineament trends (Siizen and Toprak 1998; Devi and
Singh 2006; Sarup et al. 2006), this will give some indi-
cation as to the general structural orientation.

The review of the digital processing for visual inter-
pretation summarized in Table 2 indicates that most
researchers utilize standard image processing such as
image enhancement and filtering. The techniques include:
the application of false colour (Karpuz et al. 1993; Venk-
ataraman et al. 1997; Warner 1997; Bense 1998; Moun-
trakis et al. 1998; Cortes et al. 2003; Akman and Tiifekgi
2004; Ali and Pirasteh 2004; Ricchetti and Palombella
2005; Rao 2006; Sarup et al. 2006; Solomon and Ghebreab
2006; Pradhan et al. 2006); the application of principal
component analysis in RGB (Mountrakis et al. 1998;
Solomon and Ghebreab 2006; Srivastava and Bhattacharya
2006); the combination of satellite bands and principal
component band (PC) (Venkataraman et al. 1997; Moun-
trakis et al. 1998; Novak and Soulakellis 2000). Some
researchers prefer the use of only individual bands; the
most popular bands for Landsat TM are band 4 (Sahoo
et al. 2000; Ali and Pirasteh 2004; Juhari and Ibrahim
1997; Gomez and Kavzoglu 2005; Solomon and Ghebreab
2006), band 5 (Arlegui and Soriano 1998; Kavak 2005) and
band 7 (Siizen and Toprak 1998) or band ratio (Mountrakis
et al. 1998). Other techniques include a combination of
satellite imagery draped over a digital elevation model
(DEM) (Akman and Tiifek¢i 2004); fusing of the relatively
lower multispectral resolution with the higher resolution
pan imagery (Ricchetti and Palombella 2005; Mathew
et al. 2007); the utilization of a DEM (Pena and Ab-
delsalam 2006; Lin et al. 2007); and a fusion of the rela-
tively lower multispectral resolution with the higher
resolution pan imagery draped over the DEM (Virdi et al.
2006).

Some researchers preferred the analysis to be under-
taken using an RGB environment which is in colour and
different textural information from three bands can be
simultaneously analysed (Karpuz et al. 1993; Venkatar-
aman et al. 1997; Bense 1998; Mountrakis et al. 1998;
Cortes et al. 2003; Akman and Tiifek¢i 2004; Ali and
Pirasteh 2004; Ricchetti and Palombella 2005; Rao 2006;
Sarup et al. 2006; Solomon and Ghebreab 2006; Warner
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Table 3 The geomorphologic

L . Geomorphological characteristics
characteristic of lineaments that P &

can be used in lineament
interpretation (after Akman and
Tiifek¢i 2004; Gomez and
Kavzoglu 2005; Sarup et al.
2006)

Structural alignments
Existence of fault-scarp
Straight valley

passages

Extra-ordinary straight arrangement of river

Straight arrangement of triangular surfaces
Displacement of ridge lines and river passages
Drainage anomaly

Straight arrangement of lakes, hot springs, volcanic
vents, water wells, slope failures, landslides,
alluvial fan gaps and vegetation

Straight arrangement of the conversion points on the Vertical or horizontal linear displacement drainage

inclination of sedimentary rocks where the gentle
inclination changes to a steep one

patterns and density, rock resistance, landforms and
development of bedding, and also superficial cover
such as vegetation and cultivation

Straight arrangement of the conversion points on the Topographic breaks

slope inclination

Existence of kerncol and kernbut

1997; Pradhan et al. 2006). However a number of
researchers have preferred to use the individual band in the
greyscale environment (Sahoo et al. 2000; Ali and Pirasteh
2004; Juhari and Ibrahim 1997; Gomez and Kavzoglu
2005; Kavak 2005; Solomon and Ghebreab 2006). The
main reason is probably individual preference, but it has
been shown that the human retina has a high response to
high frequency images in black and white, whereas the
retina response to colour image is poor at high frequency,
improving for broad, spatial features (Pratt 1978). This
would suggest that interpretations for structural studies
such as lineament mapping, where image features are of
relatively high spatial frequencies, are better performed on
black and white images as opposed to colour images
(Drury 1986; Rothery 1987; Greenbaum 1987).

The combination of the relatively higher resolution pan
imagery with multispectral imagery has also been under-
taken (Ricchetti and Palombella 2005; Virdi et al. 2006;
Mathew et al. 2007). This gives higher resolution data that
may improve the interpretation. DEM, from either topo-
graphical maps, SRTM or aerial photos, has also been
utilized (Pena and Abdelsalam 2006; Lin et al. 2007). The
application of DEM will undoubtedly improve the inter-
pretation because the introduction of the 3D aspect will
enhance the understanding of the topography, which is
crucial in lineament interpretation. Thus, draping the
satellite imagery over the DEM will introduce a stereo
view which may increase the interpretation capability
(Akman and Tiifek¢i 2004; Virdi et al. 2006).

Another useful application of DEM for delineating lin-
eaments is by utilizing analytical hill shading. This is a
technique for generating shaded topographic images of the
earth’s surface elevations where the reflection of artificial
light arriving from a point source of illumination from a
given altitude (inclination) and azimuth (declination) is
simulated (Masoud and Koike 2006). A DEM could be
artificially illuminated from any direction desired, which is

not possible in optical satellite imagery. This capability is
important where the lighting may be in a perpendicular
direction in order to enhance any suspected lineament.
Another advantage of the shaded-relief image is that as it
only shows bare-ground surfaces, unobscured by any
vegetation or land use, lineaments that are difficult to see
by the usual methods of aerial photo or satellite imagery
interpretation may be identified (Oguchi et al. 2003).

Lineament mapping using hillshade by DEM has been
successfully utilized by Oguchi et al. (2003), Norini et al.
(2004), Concha-Dimasa et al. (2005), and Andreas and
Allan (2007). However caution is required when utilizing
the hillshade illumination as it may general a “false line-
ament”. In addition, landforms—which are crucial in lin-
eament identification—are known to appear differently
with different solar illumination directions. Smith and
Clark (2005) noticed that a drumlin viewed side on will
appear linear, but when viewed head-on can look like a
circular hill.

Surprisingly, many of the researchers did not undertake
any spatial feature manipulation to filter the image and use
the imagery but employed only contrast stretching (Bense
1998; Mountrakis et al. 1998; Novak and Soulakellis 2000;
Cortes et al. 2003; Akman and Tiifek¢i 2004; Pena and
Abdelsalam 2006; Rao 2006; Virdi et al. 2006; Lin et al. 2007).
This is probably because they preferred to keep the image in the
original condition (rather than filtered) to avoid confusion as
the image is maintained as it is visually experienced.

Filtering can be either directional (Karpuz et al. 1993;
Venkataraman et al. 1997; Siizen and Toprak 1998; Sahoo
et al. 2000; Kocal et al. 2004: Kavak 2005; Solomon and
Ghebreab 2006; Srivastava and Bhattacharya 2006; Cengiz
et al. 2006) or non-directional (Saha et al. 2002; Sarup
et al. 2006; Mathew et al. 2007) or both (Ali and Pirasteh
2004; Juhari and Ibrahim 1997; Ricchetti and Palombella
2005; Pradhan et al. 2006). Most researchers used a high
pass filter except Siizen and Toprak (1998) and Kocal et al.
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(2004) who used a combination of low and high pass filters.
The application of the low pass filter before the high pass
filter is to filter out the noise first before the high spatial
frequency is enhanced (Avery and Berlin 1985; Siizen and
Toprak 1998). However, the user should be aware that the
application of a directional filter may introduce artefacts as
a result of the digital processing of the filter itself and it is
sometimes difficult to differentiate between the “true”
lineament trends and the artefact (Avery and Berlin 1985;
Drury 1986; Gupta 1991).

Subjectivity

The subjective nature of any visual interpretive technique,
including lineament mapping, means that the result may be
controversial (Mabee et al. 1994; Gomez and Kavzoglu
2005). To a large extent, the results cannot be reproduced
because the identification criteria are not agreed upon by
different analysts and usually cannot be expressed in
quantitative terms but rather are based on sensory
impressions (Wladis 1999). Subjectivity is involved in the
identification of the lineament itself, whether it is a linea-
ment or not, and how far the lineament extends. In par-
ticular, it may be difficult to position the lineament in a
satisfactory manner, especially in highly vegetated or wide
valley areas (Gustafsson 1994).

While most researchers are aware of this problem,
measures to minimize subjectivity are seldom employed
(Mabee et al. 1994). This was found to be generally true in
the review undertaken for landslide hazard mapping
(Table 1); although the subjectivity issue is sometimes
mentioned, the measures undertaken to overcome the
problem (if any) are not stressed.

The subjectivity can be minimized and confidence in the
lineament maps increased through the integration of results
from multiple observers (Mabee et al. 1994; Sander et al.
1997), or multiple observer trials (Mabee et al. 1994). The
latter authors suggest that several operators map the same/
similar locations and that one operator could also observe
similar imagery twice with a minimum of one week break
between the observations, and that the results are com-
pared, with only the lineaments identified by more than one
observer or at least twice by the same observer being used.
Such reproducibility tests provide confidence that the fea-
ture being mapped is “real” because it can be detected in
the repeated trial or by several observers (Mabee et al.
1994).

Automatic lineament extraction
One of the main advantages in the automatic identification

of lineaments is its objectivity as it uses computer algo-
rithms. The algorithm may be based on edge enhancement

@ Springer

and filtering techniques such as Hough and Haar transforms
(Cross 1988; Wang and Howarth 1990; Karnieli et al.
1996; Majumdar and Bhattacharya 1988; Vassilas et al.
2002). The principle of these methods is to detect adjacent
pixels which abruptly change in grey level by the use of a
differential operation (Koike et al. 1995). The Hough
Transform is a powerful tool in edge linking for line
extraction; the main advantages being its insensitivity to
noise and its capability to extract lines even in areas with
pixel absence/pixel gaps (Argialas and Mavrantza 2004).
The transform detects the collinear sets of edge pixels in an
image by mapping these pixels into a parameter space (the
Hough space) defined in such a way that collinear sets of
pixels in the image give rise to peaks in the Hough space
(Karnieli et al. 1996). The Hough Transform has been
utilized successfully in delineating lineaments in many
areas, see for example Cross 1988; Wang and Howarth
1990; Karnieli et al. 1996; Vassilas et al. 2002; Argialas
and Mavrantza 2004 (Table 4).

The Haar Transform provides a transform domain in
which differential energy is concentrated in localized
regions. It has low and high frequency components and
therefore may be used for image enhancement (Majumdar
and Bhattacharya 1988). This method was successfully
used to delineate the major drainage and lineament patterns
in part of Cambay Basin in India (Majumdar and Bhat-
tacharya 1988).

The main problems with automatic lineament extraction
procedures are that in some situations the filtering tech-
nique generates segmented images containing numerous
spurious lineament pixels that must be eliminated using
complicated edge-linking algorithms; and these lineament
extraction routines perform indiscriminate extraction of
edge pixels without considering the topographic informa-
tion inherent in remotely sensed images (Raghavan et al.
1995). In addition, these techniques cannot effectively
extract lineaments from low-contrast areas and in mountain
shadows which produce short dense lineaments that are
difficult to relate to tectonically significant structures
(Koike et al. 1995). In order to overcome these problems,
the non-filtering technique of the Segment Tracing Algo-
rithm (STA) may be utilized (Koike et al. 1995). The
principle of the STA is to detect a line of pixels as a vector
element by examining local variance of the grey level in
the digital image and to connect retained line elements
along their expected directions. The threshold values for
the extraction and linkage of line elements are direction
dependent. The advantages of the proposed method over
usual filtering methods are its capability to trace only
continuous valleys and extract more lineaments parallel to
the sun’s azimuth and located in shadow areas (Koike et al.
1995). Raghavan et al. (1995) combined the STA method
with the Hough Transform to scan a line-element image in
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order to detect continuous grey-level boundaries and gen-
erate their final lineament map. This algorithm was named
Segment Tracing And Rotation Transformation (START).

In geological studies, the most popular software is the
LINE module of the PCI Geomatica which has a similar
approach to STA and has been used in hydrogeological,
environmental, structural and mineral exploration studies
(Hung and Batelaan 2003; Kocal et al. 2004; Hung et al.
2005; Mostafa and Bishta 2005; Sarp 2005). With auto-
mated extraction, an understanding of the parameter setting
for lineament extraction optimization is crucial (Mostafa
and Bishta 2005; Sarp 2005). Sarp (2005) compared the
accuracy achieved by manual and automatic lineament
extraction and found that the reliability of the automatic
extraction in identifying faults was much lower than with
manual interpretation.

Not surprisingly, none of the landslide hazard assess-
ments reviewed utilized automatic lineament mapping;
indeed, as seen in Tables 1, 2 and 4, at present more
researchers use manual extraction and automatic extraction
is generally only used for testing purposes.

In addition to being relatively less reliable than man-
ual interpretation, another reason why automatic extrac-
tion is less frequently used is that the program for
automatic lineament mapping is still not widely embed-
ded as an option or part of the image processing in
commercial remote sensing software. Only PCI Geom-
atica bundled the automatic lineament extraction, which
is probably the reason it is so popular in automatic lin-
eament extraction. It is likely that the automatic linea-
ment program will become more popular if it is available
as an option inside general remote sensing software
packages rather just with standalone software. It is
obviously much easier for the user to just complete the
process within an already familiar remote sensing envi-
ronment and the time taken for researchers to become
familiar with a new software environment is undoubtedly
a hindrance. In addition, incorporation into general
remote sensing software would reduce the need for data
conversion as new software frequently only accepts its
own image format for a standalone software.

As noted above, automatic mapping requires an under-
standing of the complex parameter setting that needs to be
used in lineament extraction. Adjustments and proper set-
tings are essential so that the optimum parameters are
utilized in different illumination conditions and also in
different terrain (Argialas and Mavrantza 2004; Kocal et al.
2004). The variation in the parameter settings chosen by
different researchers may also reduce the objectivity of the
interpretation. Most of the previous studies utilizing auto-
matic lineament detection have considered the evaluation
of the optimum parameter to be utilised in the lineament
mapping algorithm (Table 4).

@ Springer

In summary, the automatic method seems still in its
early stages compared with the manual method and
Gustafsson (1994) found it could not identify false lineaments
related to roads, power lines and other man-made features
which are time consuming to edit.

Lineament and landslide hazard map

Landslide hazard assessment is considered as one of the
main aspects of landslide management and can assist in
proper urban development and land use planning, avoiding
or regulating development in areas which are prone to
landslides.

Only a brief discussion on landslide susceptibility or
hazard assessment is given here, as the main intention of
the paper to discuss the application of lineament mapping
and not the landslide susceptibility or hazard assessment
itself. For an excellence discussion on landslide hazard
assessment, the reader’s attention to drawn to Aleotti and
Chowdhury (1999), Dai et al. (2001), Van Westen et al.
(2006) and Chacon et al. (2006).

It is appreciated that there is a difference between haz-
ard and susceptibility maps; the term hazard including the
likelihood of the occurrence of a landslide where triggering
variables are considered, while the susceptibility map does
not includes the triggering variables (Dai et al. 2002).
Strictly following these definitions, the terms susceptibility
and hazard should not be used synonymously, as often
observed in literature (Parise 2001). However for ease of
discussion, only the term landslide hazard will be utilized
in this paper.

One of the main aspects in landslide hazard assessment
is the combination of pre-disposing factors that contribute
to landslide occurrences. The determining factors may be
grouped into two categories: (1) the intrinsic variables that
contribute to landslide susceptibility, such as geology,
slope gradient, slope aspect, elevation, soil geotechnical
properties, vegetation cover and long-term drainage pat-
terns; and (2) the extrinsic variables or triggering variables
that tend to trigger landslides in an area of given suscep-
tibility, such as heavy rainfall and earthquakes (Dai et al.
2001). It is believed that the accuracy of susceptibility
mapping increases when all determining parameters are
included in the analytical process; however, in reality this
is rarely achieved because of the difficulty of obtaining all
these data (Ayalew et al. 2004) and/or the data are avail-
able at very low resolution or at very high cost (Conoscenti
et al. 2008).

The most common factors that are incorporated to rep-
resent geology in landslide hazard assessment are litho-
logical and structural information on the study area.
Generally, a very accurate lithology map is relatively easier
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to prepare (and more commonly available) than a structural
geology map, but the structural geology of the particular
area is known to be one of the main controlling factors in
landslide occurrence (Cooke and Doornkamp 1990).
Structural discontinuities such as joints, faults, foliation
and bedding planes form the pre-existing lines of weakness
in a rock body. These lines of weakness, often in a frac-
tured zone, are likely to be areas where moisture accu-
mulates and vegetation grows. In addition to indicating
lineaments, they affect surface material structures and have
a significant influence on terrain permeability and thus
slope stability (Nagarajan et al. 1998, 2000; Gomez and
Kavzoglu 2005). The presence of moisture will also
increase the rate of weathering, further exacerbating the
problem of instability. The weak areas commonly are
opened up and enlarged by erosion and some may even
become small valleys (Ali and Pirasteh 2004). The weak-
ness of this line is demonstrated in semi- arid areas where
weathering is concentrated around the lineament (Carru-
thers et al. 1991 in Gustafsson (1994)).

It is still not common for detailed structural mapping to
be undertaken as part of a landslide hazard assessment.
Ideally this would involve a detailed survey of the orien-
tation of structural features, but the high cost and difficulty/
lack of accessibility to reasonably unweathered outcrops
(especially in tropical countries) are significant deterrents.
Many other factors, such as rainfall, land use, landslide
distribution and landform mapping should also be incor-
porated, hence landslide hazard assessment is laborious and
time-consuming, especially when manual handling and
processing of the data is required (Dai et al. 2001). As a
consequence, a pragmatic approach has to be taken, with a
certain “give and take” in balancing the parameters
incorporated and the accuracy achieved.

One way of incorporating the structural elements in
landslide hazard assessment is by lineament mapping.
Although lineament pattern has been shown to be well
correlated with landslides (e.g. Atkinson and Massari 1998;
Nagarajan and Khire 1998; Nagarajan et al. 2000;
Temesgen et al. 2001; Saha et al. 2002; Ambrosi and Crosta
2006; Lee and Lee 2006; Pradhan et al. 2006; Yilmaz and
Yildirim 2006), it is not clear whether lineaments presumed
to be of geological origin play an active or passive role in
the slope movements, i.e. whether they coincide with a zone
of stress concentration, or are simply a zone of weak rock
(Ambrosi and Crosta 2006).

It is widely observed in the Himalayas that landsliding
phenomena are particularly severe close to regional geo-
logical lineaments (Pachauri and Pant 1992; Mathew et al.
2007). However, the relationship is confusing as in some
(other) areas, lineaments do not appear to be the main
controlling factor. Dai et al. (2001) and Dai and Lee (2002)
did not use structural information in their study of hazard

assessment in Lantau Island, Hong Kong because the
spatial distribution suggested that the correlation between
landslides and mapped linear structural features is not
good. Many other landslide hazard assessments which did
not include structural information have also been reported,
e.g. Barredo et al. 2000; Dai et al. 2001; Dai and Lee 2002;
Ohlmacher and Davis 2003; Perotto-Baldiviezo et al. 2004;
Ermini et al. 2005; Ercanoglu 2005; Guzzetti et al. 2006;
Conoscenti et al. 2008; Nefeslioglu et al. 2008; Thiery
et al. 2007 (see Table 5).

In view of the complex inter-relationships involved in
landslides, it is perhaps not surprising that the causative
factors included in landslide hazard assessments are not
consistent between researchers (Rautela and Lakhera
2000). Clearly, there is no general agreement on the scope,
techniques and methodologies for landslide hazard evalu-
ation (Guzzetti et al. 1999) as in some areas a certain factor
is important while in another region it is not so significant
(Nefeslioglu et al. 2008). Thiery et al. (2007) stressed that
the inclusion of more detailed structural maps (fault and
tectonic maps) would give more accurate results. However,
where the scale is more than 1:10,000 and for large,
complex environments, structural features may be extre-
mely difficult to record because of their spatial variability.

Some of the difficulties involved in preparing detailed
structural maps may be overcome by utilising lineament
mapping. Lineament studies may help reveal generalities
that may assist in understanding the cause of landslides
(Ayalew and Yamagishi 2005); most medium to large scale
landslides studies tend to focus on general aspects of each
of the pre-disposing factors.

Where reliable published structural mapping does not
exist, large scale lineaments are commonly extracted
through visual interpretation of digital satellite imagery
(Fourniadis et al. 2007). The fault patterns provide basic
information about tectonics, because many faults and
crustal fractures correspond with lineaments (Koike et al.
1995). A review of the incorporation of lineament infor-
mation in landslide studies has shown that the most popular
representation of lineament analysis is the lineament (or
fault or structural) buffer (Table 1) with only Atkinson and
Massari (1998), and Sarkar and Kanungo (2004) utilizing
lineament density and Pachauri and Pant (1992), Pachauri
et al. (1998) and Siizen and Doyuran (2004) using both
lineament buffer and density.

The distance of the buffer zones chosen varies from as
small as 5 m (Nagarajan et al. 2000) up to 2,000 m
(Pachauri and Pant 1992). Although most researchers did
not given their reasons for selecting a particular distance
for the buffer zone, a few explained their choice (Table 1)
was based on such factors as: field evidence of the extent of
fragmented rock either side of the fracture itself (Nagarajan
et al. 2000); the maximum landslides were observed to be
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within the determined distance from a lineament (Temes-
gen et al. 2001); an average threshold based on a com-
prehensive assessment of the distance of slope failures
from mountain scarps, topographic breaks and any other
linear futures (Ayalew and Yamagishi 2005); proximity of
existing landslides to lineaments (Mathew et al. 2007);
field observation of such effects as nappes, thrusts and
strike-slip faults (Ruff and Czurda 2008). The latter authors
reported nappe thrusts were observed in the field as 10—
100 m broad thrust zones within which the bedrock was
tectonically stressed and highly unstable while minor
thrusts and strike slip faults indicate fault zones only a few
meters wide. Lee (2004) gave convenience of calculation
as the reason for choosing the buffer distance when pro-
ducing a landslide hazard assessment in Boun, Korea; this
may also be the explanation for the choice made by
researchers who did not give a reason.

Apart from the lineament buffer, lineament density is
also used in landslide hazard assessment (Atkinson and
Massari 1998; Pachauri et al. 1998; Sarkar and Kanungo
2004; Siizen and Doyuran 2004) as it is generally consid-
ered the probability of landslides occurring is greater in
highly fractured areas (often associated with thrusts and
folds; Cortes et al. 2003) compared to those with a lower
fracture density. Morelli and Piana (2006) recognized two
distinct lineament density patterns in Monferrato, Italy: a
high density of long lineaments could correspond to long
major fault zones/deep tectonic structures; and short lin-
eaments, especially if widely distributed, are likely to be
associated with poorly defined areas where movement at
various times has resulted in “overprinting”/superimposi-
tion of several structures.

Lineament density has also been used widely in
groundwater studies because of the relationship between
fractures and sub-surface permeability (Raju and Reddy
1998; Lee 2003; Andreas and Allan 2007; Miinch and
Conrad 2007; Srivastava and Bhattacharya 2006) which
will increase the probability of landslides occurring. In
groundwater studies, however, lineament density is a
positive effect because of the secondary porosity associated
with joints and fracture density (Sree Devi et al. 2001) and
the correlation between a high density of lineaments and
good groundwater potential (Raju and Reddy 1998).

It is often not clear why different researchers have used
lineament buffer, lineament density or both. This may be
simply convention in that particular area. However, it would
appear that utilizing both lineament buffer and density may
both produce a more accurate landslide hazard assessment
and also introduce more uncertainty. The significance of
using either one or both factors when undertaking hazard
mapping would be a useful topic for further study.

Apart from those reported by Atkinson and Massari
(1998), Lee (2004), Gomez and Kavzoglu (2005), Lee and
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Lee (2006) and Fourniadis et al. (2007), most of the studies
undertaken included some form of field checking to reduce
some of the “uncertainty” in lineament mapping (Table 1).
Field checking is crucial in lineament mapping as “false”
lineaments such as roads, field boundaries or other man-
made features can be mistakenly identified. Nagarajan et al.
(1998, 2000) and Rautela and Lakhera (2000) checked the
lineaments in the field. Pachauri et al. (1998) only used
lineaments which conform to major faults. Limited field
verification was also undertaken by Pachauri and Pant
(1992), Temesgen et al. (2001) and Sarkar and Kanungo
(2004). Saha et al. (2002) and Saha et al. (2005) checked
their results against major known thrusts but did not
actually check the lineaments in the field. A combination of
published maps and ASTER and DEM derived from the
1:50,000 topographical map was used by Liu et al. (2004)
while Siizen and Doyuran (2004) verified their work
against the geological map, aerial photos and field map-
ping. Aerial photos at a scale of 1:20,000 and field verifi-
cation was also used by Ayalew and Yamagishi (2005).

Perhaps the choice of different methods was related to
budget constraints and/or field conditions; some studies
only used current geological or structural maps (e.g. Pis-
tocchi et al. (2002), Lee and Jasmi (2005), Lee (2005), Van
Den Eechaut et al. (2006) and Kim et al. (2006). However
the user must aware that some of the geological maps,
especially in developing countries have not been updated.
For example in Malaysia, some of the geological maps
have not been reassessed since 1985 and the original map
was based on aerial photo interpretation which could not be
field checked due to thick vegetation. From the authors’
experience, the geological map published by the Malaysian
Mineral and Geosciences Department (1985) showed the
stretch of highway from Simpang Pulai to Pos Selim to be
on granite, but field observations after the hillslope had
been excavated for the highway construction proved some
areas of metasedimentary rock.

It is suggested that lineament mapping is updated either
by aerial photo or satellite imagery, ideally followed by
field mapping. In reality, however, cost and the lack of
availability of fresh outcrops may hinder the field verifi-
cation. If the lineament been interpreted using satellite
imagery, it is crucial that it is subjected to some form of
field verification, or at least cross-checked with the geo-
logical map in order to reduce the uncertainty, which will
affect the quality of the landslide hazard assessment.

Discussion and conclusions
Manual mapping of lineaments requires a high degree

of skill and experience in the visual interpretation process
and being to a large extent subjective, has limited
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Table 5 The application of landslide susceptibility/hazard assessment without using lineament analysis

Author Place

Comment on the geological information used

Anbalagan (1992) Himalaya

Barredo et al. (2000) Gran Canaria Island, Spain

Dai et al. (2001) Lantau Island, Hong Kong

Gritzner et al. (2001)
America

Dai and Lee (2002) Lantau Island, Hong Kong

Ohlmacher and Davis (2003)
America

Alcantara-Ayala (2004)
Ayalew et al. (2004)
Perotto-Baldiviezo et al. (2004)

Niigata prefecture, Japan

Honduras
Can et al. (2005)
Ercanoglu (2005) West Black Sea region
of Turkey
Ermini et al. (2005)
Gomes et al. (2005)
Dymond et al. (2006)
Guzzetti et al. (2006)

Conoscenti et al. (2008)

Northern Apennines, Italy
S.Miguel Island, Azores

Umbria, Italy
NW Sicily,
Italy

Coelho-Netto et al. (2007)
Dominguez-Cuesta et al. (2007)
Saldivar-Sali and Einstein (2007)
Thiery et al. (2007)

Rio De Janeiro, Brazil
Northwest Spain
Bagiou, Philippines

Barcelonnette Basin, France

Budetta et al. (2008) Cilento region, Italy

Conoscenti et al. (2008)
Nefeslioglu et al. (2008)

Northwestern Sicily, Italy

Payette River, Idaho, United States of

Northeastern Kansas, United States of

States of Puebla, Veracruz and Hidalgo

Namasigue and El Triunfo watersheds,

Western Black Sea Region of Turkey

Manawatu—Wanganui, New Zealand

Eastern Black Sea region, Turkey

Used detailed structural discontinuities within slope
Lithology is used

Only used material types which are classified into bedrock,
alluvial-colluvial deposit, residual soil and landslides
deposit

Lithology is used. Qualitative examination of spatial
distributions suggests that the correlation between
landslides and mapped linear structural features is not
good, thus the structural information is excluded in this
study

No geological information is used because the geology and
soil characteristics are relatively homogenous

Only lithology is used. The structural information is not
used because the correlation between landslides and
mapped linear structural features at the 1:20,000 scale is
not good

Only lithology is used

Only lithology is used

Only lithology is used because of lack of data

No geological information is used because of the
unavailability of the data

Only lithology is used

No geological information is used because landslides
occurred only in one lithological unit

Only lithology is used

Only lithology is used

Only lithology is used

Only bedding orientation is utilised

Only lithology is used because this study involves flow and
rotational slide landslides only, excluding falls and
translational slides that affect carbonate slopes and fluvial
scarps (i.e. these landslide typologies would require
knowledge of structural data)

Only lithology is used
Only lithology is used
Only lithology is used

Only lithological data and thickness and bedding map are
used

Attitude of bedding planes (P4) and structural jointing is
used

Only lithology is used
Only lithology is used

reproducibility (Gupta 1991; Mabee et al. 1994; Warner
1997; Hung et al. 2005; Gomez and Kavzoglu 2005). The
advancement of technology has allowed the interpretation
to be undertaken automatically and with more objectivity.
In addition it is quicker than the manual technique, which
is very time consuming especially if regional mapping is
concerned (Masoud and Koike 2006). However, the man-
ual method has the advantage of a high degree of fault

tolerance and the operator can learn to re-check and dis-
tinguish true geological lineaments from non-geological
features such as roads, railway lines, power-cables, canals
and crop-field boundaries such that, with skill and experi-
ence, these will be omitted from the interpretation (Richetti
2001; Ali and Pirasteh 2004; Kocal et al. 2004; Yassaghi
2006). A comparison between the manual process (visual
interpretation) and automatic interpretation is in Table 6.
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Table 6 Comparison between

. . Visual process
visual and the automatic P

Digital process

(digital) lineament extraction
methods after (Zlatopolsky
1997; Hung et al. 2005 and
Yassaghi 2006)

(on paper and/or screen)

Strongly dependent on human experience and ability

Takes a lot of time

Strong effect of human subjectiveness

Easy to distinguish type of lineament (tectonic origin or

man-made)
Simple but subjective method

The operator can learn

Non-uniform approach to different images

Depends on the quality of the performance of the image

Partly depends on the complexity of the research area

Depends only on the quality of the image

Totally depends on the complexity of the
research area

Totally depends on the mathematical
function of the software

Very quickly
Little effect of human subjectiveness

Cannot recognize the type of lineament, so
the result may be confused

Complex but objective
Training areas such as training for algorithms

Uniform approach to different images

It is anticipated that in the near future lineament map-
ping will be increasingly used in landslide hazard assess-
ment, especially for moderate and small scale studies. The
price of satellite imagery such as Landsat, ASTER and
SPOT, Quickbirds and Ikonos is expected to decrease
while the cost of the relevant software and easy access of
global positional system technology will definitely reduce
the cost of this form of lineament mapping.

Concurrent with this trend, it is likely that there will be
more studies utilising not only moderate resolution imag-
ery but also high resolution imagery for lineament studies.
However, until automatic lineament mapping is more
widely available as an option within the commonly used
remote sensing software, the manual technique will remain
popular. In addition, until automatic processing can take
into account such factors as texture, pattern and shape
(which may be important in lineament detection), user
observation will probably continue to provide the best
results (Sarp 2005).

Although it is understood that there are many other
factors which need to be taken into account in landslide
assessment, it is considered that lineament interpretation
has a vital role to play and is probably worth more effort
in terms of its interpretation. It is suggested that before
lineament interpretation is undertaken, the drainage pattern
is first analysed so that general lineament pattern of the
area is known. The user should also be aware of the
advantages and disadvantages of manual and automatic
lineament extraction. If manual interpretation is chosen,
efforts should be made to reduce the subjectivity inherent
in this method, while with automatic lineament mapping,
care must be taken in the selection of the parameters to be
used. In both cases, ground-truthing should be undertaken.
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