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Abstract The compression index is used to estimate the

consolidation settlement of clay-bearing soils. As the

determination of compression index from oedometer tests

is relatively time-consuming, empirical equations based on

index properties can be useful. In this study the perfor-

mance of widely used single and multi-variable empirical

equations was evaluated using a database consisting of

135 test data. New empirical equations were developed

utilizing least square regression analysis. In addition, an

artificial neural network (ANN) with eight input variables

was also developed to estimate the compression index. It

was concluded that ANN provides the best results.

Keywords Artificial neural networks � Clay soils �
Compression index � Regression analysis

Résumé L’indice de compression est utilisé pour estimer

le tassement de consolidation des sols argileux. Comme la

détermination de cet indice à partir des essais oedométri-

ques prend quelque temps, des équations empiriques basées

sur des indices géotechniques peuvent être utiles. Dans

cette étude, l’intérêt d’équations empiriques à une ou plu-

sieurs variables a été évalué à partir d’une base de données

comportant 135 résultats d’essais. De nouvelles équations

empiriques ont été développées à partir d’une analyse de

régression par la méthode des moindres carrés. De plus, un

réseau de neurones artificiel (ANN) avec huit variables

d’entrée a été développé pour estimer l’indice de com-

pression. La conclusion est que l’ANN donne les meilleurs

résultats.

Mots clés Réseaux de neurones artificiels � Sols argileux �
Indice de compression � Analyse de régression

Introduction

The compression index represents the slope of the curve of

void ratio versus logarithm of effective pressure and is

conventionally determined by oedometer tests. Used for the

calculation of consolidation settlement of clayey soils, this

parameter directly affects the type and dimensions of the

foundation system hence the cost of the construction.

The amount of consolidation settlement of fine grained

soils depends on the fabric of the soil, the water absorption

capacity of the clay sized particles, the existing stress state,

the pre-consolidation pressure of the soil sample, and to

some extent the compressibility of the soil grains. There-

fore, it would be assumed that any direct or indirect

parameters which define these conditions should be related

to the compression index. Atterberg limits reflect the rel-

ative amount of clay sized particles and their mineralogy;

the initial void ratio of the soil is an indication of the

existing stress state and the pre-consolidation pressure; the

natural water content is a measure of the water attracted to

the clay particles and free water present within the voids;

and dry unit weight may to some degree be an indication of

the compressibility of soil grains. Other weight–volume

relationship parameters, such as specific gravity and natural

unit weight, are physically related to dry unit weight,
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natural water content and the void ratio of the soil. For this

reason, it seems logical to estimate the compression index

from the above mentioned parameters.

As the oedometer test is relatively time-consuming

compared with standard index tests, various attempts have

been made to estimate the compression index from tests

more easily carried out. Empirical equations relating vari-

ous parameters to the compression index have been

presented by many researchers, e.g. for local clays (Hele-

nelund 1951; Cozzolino 1961; Bowles 1989; Yin 1999;

Yoon et al. 2004); organic soils (Bowles 1989); low plas-

ticity clays (Sowers 1970; Nakase et al. 1988); and

remolded soils (Skempton 1944; Wroth and Wood 1978;

Carrier 1985; Nagaraj and Murthy 1986; Sridharan and

Nagaraj 2000; Giasi et al. 2003). In addition to these par-

ticular conditions, a large number of empirical equations

have been published which are applicable to all clays.

Many researchers have used single parameter models for

the estimation of compression index, such as liquid limit,

natural water content or in-situ void ratio, although others

recommend multiple soil parameter models for the esti-

mation of the compression index.

Some widely used equations for the estimation of

compression index which are valid for all clays are pre-

sented in Table 1. It should be noted that the majority of

these equations are linear in form.

This study compares the performance of some widely

used empirical compression index equations applicable to

all clays. New empirical equations relating the compression

index with other parameters of fine grained soil are pro-

posed using the least squares regression technique. In

addition to empirical equations, a neural network model is

also developed for the estimation of compression index.

Database compilation

The data includes tests undertaken specifically for this

research (77) and 58 results from Herrero (1980). In

addition to the oedometer tests, natural water content (wn),

initial void ratio (eo), liquid limit (wL), plastic limit (wp),

plasticity index (Ip), specific gravity of soil particles (Gs),

dry unit weight (cd) and natural unit weight (cn) were used.

Whilst the new results are from different parts of Turkey,

those from Herrero (1980) were obtained on undisturbed

soil samples from different parts of America. Although

Herrero (1980) presented results from 90 samples, as some

physical-index properties were not reported, only 58 were

used in this study. The conventional oedometer tests in

both studies were undertaken following ASTM D 2435

(1996) and the other tests according to the relevant ASTM

standards.

The oedometer test requires undisturbed soil samples.

Clearly, some degree of disturbance is unavoidable, which

causes deviation on the e–log p plot. Schmertmann (1953)

described a procedure to obtain the equivalent of a field

Table 1 Some widely used

compression index equations

applicable to all clays

Cc compression index,

wn natural water content (%),

eo initial void ratio, wL liquid

limit (%), Gs specific gravity

of soil particles, cw unit weight

of water (g/cm3), cd dry

unit weight (g/cm3)
a This equation originally

suggested by Skempton (1944)

as Cc = 0.007 (wL - 10) for

remoulded soils. Terzaghi and

Peck (1967) extended the

applicability of this equation for

undisturbed normally loaded

clays

Independent variable Equation Reference

Single variable equations

wn Cc = 0.01 (wn - 5) Azzouz et al. (1976)

Cc = 0.01wn Koppula (1981)

Cc = 0.01 (wn - 7.549) Herrero (1983b)

eo Cc = 0.40 (eo - 0.25) Azzouz et al. (1976)

Cc = 0.30 (eo - 0.27) Hough (1957)

Cc = 0.54 (eo - 0.35) Nishida (1956)

wL Cc = 0.006 (wL - 9) Azzouz et al. (1976)

Cc = (wL - 13)/109 Mayne (1980)

Cc = 0.009 (wL - 10)a Terzaghi and Peck (1967)

Multi-variable equations

Cc = 0.40 (eo ? 0.001wn - 0.25) Azzouz et al. 1(1976)

Cc = 0.37 (eo ? 0.003wL - 0.34) Azzouz et al. 2 (1976)

Cc = 0.37 (eo ? 0.003wL ? 0.0004wn - 0.34) Azzouz et al. 3 (1976)

Cc = 0.009wn ? 0.002wL - 0.10 Azzouz et al. 4 (1976)

Cc = 0.141 Gs
1.2 [(1 ? eo)/Gs]

2.38 Herrero 1 (1983a)

Cc = 0.185[Gs (cw/cd)2 - 0.144] Herrero 2 (1983b)

Cc = 0.141 Gs (cw/cd)12/5 Herrero 3 (1983b)

Cc = – 0.156 ? 0.411eo ? 0.00058wL Al-Khafaji and Andersland (1992)

Cc = 0.2343(wL/100) Gs Nagaraj and Murty (1985)

Cc = 0.009wn ? 0.005wL Koppula (1981)

538 M. Ozer et al.

123



(virgin) consolidation curve from the laboratory consoli-

dation curve. This was followed in both the present study

and by Herrero (1980).

In order to obtain an empirical equation which is valid

for all clays, the database must include a sufficiently wide

range of data. In order to assess the adequacy of the

database, descriptive statistics and the frequency distribu-

tion of each data set were determined. Table 2 displays the

descriptive statistics and Fig. 1 represents the histogram of

each variable.

Comparison of existing equations

In order to evaluate the performance of empirical equa-

tions, root mean square error (RMSE) indices (Eq. 1)

was used, following for example Alvarez Grima and

Babuska 1999; Finol et al. 2001; Gokceoglu 2002;

Yılmaz 2006).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

1

Ccest
� Cclab

ð Þ2
s

ð1Þ

Table 2 Descriptive statistics of variables used in the database

Variable Minimum Maximum Mean Standard deviation

wn 12.0 62.0 27.7 10.2

eo 0.365 1.780 0.806 0.276

wL 23.9 112.9 52.3 18.9

wp 0 (N.P.) 45.3 23.7 6.8

Ip 0 (N.P.) 82.4 28.7 14.3

Gs 2.51 2.82 2.68 0.063

cd 1.105 2.025 1.557 0.207

cn 1.593 2.650 1.970 0.148

Cc 0.041 0.567 0.218 0.101

wn natural water content (%), eo initial void ratio, wL liquid limit (%),

wp plastic limit (%), Ip plasticity index (%), Gs specific gravity of soil

particles, cd dry unit weight (g/cm3), cn natural unit weight (g/cm3),

Cc compression index

Fig. 1 Histograms of a natural water content, b initial void ratio, c liquid limit, d plastic limit, e plasticity index, f specific gravity of soil

particles, g dry unit weight, h natural unit weight and i compression index
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Where, n is the number of data points, Ccest is the com-

pression index estimated from empirical equations, Cclab is

the compression index determined in laboratory. The lower

the RMSE value, the better the model performance.

Figures 2, 3, 4 illustrate the performance of the single

variable equations listed in Table 1; the RMSE are pre-

sented in Table 3. It can be seen that the performance of

the three equations utilizing wn as the predictor is very

similar (Fig. 2). The equation with the lowest RMSE value

(0.077) was that proposed by Azzouz et al. (1976) (Eq. 1 in

Table 3). Nevertheless, as can be seen from Fig. 2, it still

results in a considerable under-estimate of the compression

index for some of the soil samples.

Among the single variable empirical equations utilizing

eo as the predictor, Azzouz et al. (1976)’s equation (Eq. 4

in Table 3) again shows the best performance with the

lowest RMSE index. It is clear from Fig. 3 that the Hough

(1957) equation generally under-estimates the compression

index, while Nishida’s (1956) equation generally gives an

over-estimate.

As can be seen from Fig. 4, the general performance of

single variable equations based on wL are not as good as

those based on wn and eo. All the wL based single variable

equations over-estimate the compression index.

As noted above, some researchers recommended mul-

tiple soil parameter models for the estimation of the

compression index. This is very logical as a number of

different factors control the amount of consolidation

settlement of fine grained soils. The performance of the

multi-variable equations proposed by Azzouz et al. (1976)

are presented in Fig. 5, those proposed by Herrero (1983a,

b) in Fig. 6 and those by Al-Khafaji and Andersland

(1992), Nagaraj and Murty (1985), and Koppula (1981) in

Fig. 7.

All the multi-variable equations proposed by Azzouz et al.

(1976) gave good results (Fig. 5); the best using eo and wn

(Eq. 10 in Table 3). This is consistent with the results

obtained using their single variable equation, when that using

wL was found to be less accurate than those using eo and wn.

Figure 6 shows that the Herrero 2 (1983b) and Herrero 3

(1983b) equations generally under-estimate the compres-

sion index, with the lowest RMSE recorded for Herrero 1

(1983a).

Fig 2 Comparison of single variable equations dependent on wn Fig 3 Comparison of single variable equations dependent on eo

Fig 4 Comparison of single variable equations dependent on wL
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Figure 7 clearly demonstrates that the Koppula (1981)

and Nagaraj and Murty (1985) multi-variable equations

significantly over-estimate the compression index, with

relatively high RMSE indices (Table 3). The equation from

Al-Khafaji and Andersland (1992) gives a relatively lower

RMSE.

Development of new empirical equations

Using the same database, a correlation matrix was gener-

ated (Table 4) to identify the relationship between the

parameters. This indicates a strong positive relationship

between wn, eo, wL and Cc, and a strong negative

Fig. 5 Comparison of multi-variable equations proposed by Azzouz

et al. (1976)
Fig. 6 Comparison of multi-variable equations proposed by Herrero

(1983a, b)

Table 3 RMSE indices of the

assessed equations
Eq. No. Equation Reference RMSE

One variable equations

1 Cc = 0.01 (wn - 5) Azzouz et al. (1976) 0.0777

2 Cc = 0.01wn Koppula (1981) 0.0972

3 Cc = 0.01 (wn - 7.549) Herrero (1983b) 0.0788

4 Cc = 0.40 (eo - 0.25) Azzouz et al. (1976) 0.0768

5 Cc = 0.30 (eo - 0.27) Hough (1957) 0.0888

6 Cc = 0.54 (eo - 0.35) Nishida (1956) 0.1046

7 Cc = 0.006 (wL - 9) Azzouz et al. (1976) 0.1187

8 Cc = (wL - 13)/109 Mayne (1980) 0.2104

9 Cc = 0.009 (wL - 10) Terzaghi and Peck (1967) 0.2228

Multi–variable equations

10 Cc = 0.40(eo ? 0.001wn - 0.25) Azzouz et al. 1 (1976) 0.0799

11 Cc = 0.37(eo ? 0.003wL - 0.34) Azzouz et al. 2 (1976) 0.0822

12 Cc = 0.37(eo ? 0.003wL ? 0.0004wn - 0.34) Azzouz et al. 3 (1976) 0.0837

13 Cc = 0.009wn ? 0.002wL - 0.10 Azzouz et al. 4 (1976) 0.0956

14 Cc = 0.141 Gs
1.2[(1 ? eo)/Gs]

2.38 Herrero 1 (1983a) 0.0740

15 Cc = 0.185[Gs (cw/cd)2 - 0.144] Herrero 2 (1983b) 0.0756

16 Cc = 0.141 Gs (cw/cd)12/5 Herrero 3 (1983b) 0.1058

17 Cc = –0.156 ? 0.411eo ? 0.00058wL Al-Khafaji and Andersland (1992) 0.0833

18 Cc = 0.2343(wL/100) Gs Nagaraj and Murty (1985) 0.1583

19 Cc = 0.009wn ? 0.005wL Koppula (1981) 0.3204
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relationship between cd, cn and Cc. Both multiple linear and

multiple non-linear regression analyses were performed

utilizing the variables with good correlation with the

compression index. After trying numerous combinations

with all parameters, one linear and one non-linear equation

with the highest regression coefficient and lowest RMSE

index were determined. These equations and their RMSE

indices are given in Table 5 and their performance com-

pared in Fig. 8.

It can be seen that the proposed non-linear equation

(Eq. 1) is slightly better than the linear one. However, the

RMSE indices of both are lower than those achieved using

the single and multi-variable equations previously pro-

posed. The non-linear equation developed in this study is

compared with the equations proposed by Herrero 1

(1983a) and Azzouz et al. 1 (1976) in Fig. 9, where it can

be seen that the proposed non-linear equation results in

points more closely located around the 1:1 line.

Artificial neural network-based compression index

estimation

In recent times, artificial neural networks (ANNs) have

been applied to many geotechnical engineering tasks and

Fig. 7 Comparison of multi-variable equations proposed by Koppula

(1981), Nagaraj and Murty (1985), and Al-Khafaji and Andersland

(1992)

Table 4 Correlation matrix of

parameters

Bold values indicates relatively

high correlations

Parameters wn eo wL wp Ip Gs cd cn Cc

wn 1.00 0.93 0.65 0.31 0.52 -0.04 -0.89 -0.60 0.71

eo 0.93 1.00 0.65 0.37 0.50 -0.05 -0.89 -0.67 0.74

wL 0.65 0.65 1.00 0.47 0.81 -0.14 -0.63 -0.45 0.47

wp 0.31 0.37 0.47 1.00 0.64 -0.22 -0.31 -0.24 0.16

Ip 0.52 0.50 0.81 0.64 1.00 0.00 -0.50 -0.37 0.37

Gs -0.04 -0.05 -0.14 -0.22 0.00 1.00 0.11 0.13 -0.08

cd -0.89 -0.89 -0.63 -0.31 -0.50 0.11 1.00 0.89 20.70

cn -0.60 -0.67 -0.45 -0.24 -0.37 0.13 0.89 1.00 20.54

Cc 0.71 0.74 0.47 0.16 0.37 -0.08 -0.70 -0.54 1.00

Table 5 Suggested empirical equations for the estimation of compression index

Equation No. Equation Correlation coefficient, r RMSE

1 Cc = 0.1597 (wn
-0.0187) (1 ? eo)1.592 (wL

-0.0638) (cd
-0.8276) 0.754 0.0661

2 Cc = 0.151 ? (0.001225 wn) ? (0.193 eo) - (0.000258 wL) – (0.0699 cd) 0.746 0.0671

Fig. 8 Comparison of new suggested empirical equations
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have demonstrated some degree of success (Shahin et al.

2002). They are a form of artificial intelligence which tries

to simulate the human brain in a very crude way. The

purpose of ANNs is to set a relationship between model

inputs and outputs by continuously updating connection

weights according to inputs–outputs. The main advantage

of ANNs is that they are very flexible, and complex rela-

tionships between inputs and outputs can be discovered by

changing the model structure and connection weights. In

addition, a previously developed (trained) network can

easily be updated when new datasets become available.

However, ANNs have an important disadvantage in not

being transparent as a closed form equation.

Neural network model development involves six main

stages: determination of input and output variables;

grouping of database as training and validating datasets;

determination of network structure; optimization of con-

nection weights, stopping criteria; and validation of the

neural network. In order to obtain good predictions from an

ANN, a large set of data is needed which must be diverse

as ANNs are unable to extrapolate beyond the range of the

training data. As described previously the database used in

this study covered a wide range. All the available param-

eters (wn, eo, wL, wp, Ip, Gs, cd, cn) were used as input

variables, scaled between 0 and 1 as recommended by

Masters (1993).

It is common practice to divide the available data into

two subsets; a training set to construct the neural network

model and an independent validation set to estimate model

performance (Twomey and Smith 1997). Approximately

80% of the data were used for training and 20% for

validation. The validation data were selected to cover a

wide range of compression index values.

Determination of a network structure involves the

selection of the number of hidden layer nodes. Hornik et al.

(1989) showed that a network with one hidden layer can

approximate any continuous function provided that suffi-

cient connection weights are used; therefore, in this study a

network with one hidden layer is used and the number of

hidden layer nodes was increased until a good model was

achieved. During the training stage (i.e. optimization of

connection weights) the aim is to find a global solution to

what is typically a highly non-linear optimization problem

(Shahin et al. 2002). Feed-forward neural networks with

back propagation algorithms are the most widely used

method (Rumelhart et al. 1986). Therefore, in this study a

back propagation algorithm was used during training with a

0.6 momentum and 0.8 learning rate. Stopping criteria are

used to decide whether to stop the training process or not;

in this study the training process was stopped when the

average error was below 0.02.

Figure 10 displays the architecture of the neural network

for prediction of the compression index and the relative

connection weights. Figure 11 shows the laboratory-

determined scaled compression index values versus the

ANN estimated scaled compression index values of train-

ing data. The RMSE of the validation data was calculated

as 0.051, which is considerably better than the RMSE of

0.0661 (Eq. 1 in Table 5) achieved by the best empirical

equation. In addition to the lower RMSE of the ANN

estimations, laboratory determined versus ANN estimated

compression index values are more closely spread around

the 1:1 line (Fig. 11).

Summary and conclusions

In this study, the performances of widely used single and

multi-variable empirical equations for the estimation of the

compression index were evaluated using a database con-

sisting of 135 wide-ranging test data. The results indicate

that the single variable model of Azzouz et al. (1976),

utilizing initial void ratio as the predictor, has the lowest

RMSE index while for the multi-variable models, Herre-

ro’s (1983a) equation gave the best performance (RMSE

0.0740) using initial void ratio and specific gravity of soil

particles as predictor variables.

Using the same database, new multi-variable empirical

equations (both linear and non-linear) were developed

using least square regression analysis. In these equations

natural water content, initial void ratio, liquid limit and dry

unit weight were used as the predictor variables as a cor-

relation matrix indicated these have a strong relationship

with compression index. The new equations gave a slightly

Fig. 9 Comparison of new suggested empirical equation and previ-

ously proposed multi-variable equation showing the best performance
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lower RMSE index than the existing single or multi-vari-

able empirical equations.

In addition, an ANN was developed using all the

parameters in the compiled database as predictor variables.

The network had one hidden layer and eight hidden layer

nodes. Back propagation algorithm was used to train the

network. Approximately 80% of the data were used for

training and 20% for validation. The RMSE of the vali-

dation data was calculated as 0.051, which is significantly

lower than that for of the empirical equations obtained

from regression analysis.

It should always be kept in mind that some environ-

mental factors such as fabric and cementation could not be

considered in any of the empirical equations. In view of

this, it must be pointed out that these equations may be

useful only for the preliminary estimation of the com-

pression index. In order to improve the usefulness of the

equations, the procedure suggested by Bowles (1996) can

be applied, i.e. at least one oedometer test should be per-

formed on a sample taken from the area of interest and an

empirical equation which gives the closest estimate

selected.
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