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Abstract The natural variation of the fracture/joint
network geometry and limited data access are the
main sources of uncertainties in key block predic-
tions. To make the uncertainties easily quantifiable
the predicting variables should be presented as
probability density functions. This paper illustrates
the implementation of a stochastic discrete fracture
network to predict the amount and size of key
blocks around the rock cavern of the Centralt Stor-
age Facility for Spent Nuclear Fuel (CLAB-2, Central
Lager Använt Bränsle) in south-eastern Sweden. The
data used in the study were effectively limited to
fracture mapping in boreholes. The stochastic frac-
ture model was generated with a FracMan discrete
fracture simulator by adopting random fracture lo-
cations. Subsequently, the key block statistics along
a simulated tunnel positioned inside the fracture
model were generated. To illustrate the value of the
predictions made, block statistics were undertaken
for two different tunnel orientations. The method-
ology presented offers the potential to optimize the
excavation design.

Résumé La variabilité naturelle de la géométrie des
réseaux de fractures et l�accès limité aux données
sont les principales sources d�incertitudes dans
l�identification des blocs clés. Afin de rendre ces
incertitudes aisément quantifiables, les paramètres
du modèle devraient être représentés par des vari-
ables aléatoires. Cet article illustre la simulation d�un
réseau stochastique de fractures destiné à prévoir le

nombre et la taille des blocs clés autour de la cavité
souterraine de l�installation CLAB-2 dans le sud-
ouest de la Suède. Les données utilisées dans l�étude
furent effectivement limitées à des données de
fractures en sondage. Le modèle stochastique de
fractures a été obtenu à partir du simulateur Frac-
Man en générant une localisation aléatoire des
fractures. Par la suite les données statistiques rela-
tives aux blocs clés le long d�un tunnel fictif placé à
l�intérieur du modèle de fractures ont été obtenues.
Pour illustrer la valeur des prévisions faites, les
données statistiques sur les blocs clés ont été rech-
erchées pour deux orientations de tunnel. La
méthodologie présentée permet d�optimiser la con-
ception des cavités souterraines.
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Introduction

Stability problems in underground facilities sited in frac-
tured rocks are categorized in regard to the type of geo-
logical/physical phenomena causing unfavourable
conditions and to the mechanical/structural properties of
the excavated medium. One of the major threats to the
proper functioning of an underground space is related to
the sliding of rigid rock blocks formed by intersecting rock
discontinuities.
Studies undertaken by Warburton (1981) and Goodman
and Shi (1985) are among the most important contribu-
tions in the identification of unstable rock blocks with
given orientations of fractures with respect to the dimen-
sions, shape and orientation of an underground facility.
One severe limitation of the Block Theory proposed by
Goodman and Shi (1985) is the assumption of infinite
length of discontinuities intersecting the excavation plane.
Whilst this assumption makes the block stability analysis
straightforward, in fact it results in a rather unrealistic
conceptual fracture network. In effect, both under- and
overestimation of the amount and size of unstable blocks
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is possible. A remedy to this ‘‘imperfection’’ may be
integration of a stochastic discrete fracture network (DFN)
with finite fracture sizes.
The rationale of adopting a stochastic DFN approach is
that statistics from one- and two-dimensional fracture
data can be used for estimating the three-dimensional
properties of the fracture network in a rock volume. The
fracture statistics in the simulated network follow the
observed statistics, but the locations of individual frac-
tures are random. The DFN concept has been imple-
mented among others as a descriptive tool for fracture
characterization (Baecher et al. 1977), in fluid flow
modelling (Dershowitz 1984; Andersson and Dverstorp
1987; Chilés and de Marsily 1993) and in modelling the
performance of geothermal reservoirs (Castaing et al.
1998). Several authors (Hoerger and Young 1990; Shapiro
and Delport 1991; Priest 1993; Jakubowski and Tajdus
1995; Dershowitz and Carvalho 1996) advocate the
application of DFN for stability assessment of under-
ground spaces, but there are relatively few reported
studies on predictions of the occurrence and size of key
blocks based on a stochastic three-dimensional fracture
network. Verification of such predictions with field
observations has attracted growing attention over the
past few years, especially for risk assessment for the
underground storage of nuclear waste.
As a reliable prediction of unstable rock blocks is directly
dependent on the quality of the DFN model, a careful es-
timation of fracture data and their statistics becomes
critical. Fracture network geometry manifests a natural
variation and both spatial non-stationarity and trends in
data are often observed. This may be a result of tectonic or
lithological inhomogeneity at a site. Whether or not there
is geological evidence of spatial variability of fracture/joint
properties, studies on data homogeneity should always be
undertaken prior to evaluation of input parameters for a
stochastic fracture network.
This paper presents a statistical evaluation of fracture
network properties from a limited amount of data for an
area close to Oskarshamn in south-east Sweden with a
crystalline rock basement. In addition, an application of
the DFN concept for the prediction of key block occur-
rence in an underground facility for interim storage of
spent nuclear fuel CLAB-2, presently being excavated by
the Swedish Nuclear Fuel and Waste Management Co., is
presented.
The main purpose of the study reported here was to ex-
plore means of estimating fracture statistics based on
fracture data from only a few boreholes, to derive a sto-
chastic replica of the fracture field at the site and to use the
fracture model for estimating the number and size of po-
tential key blocks in an underground cavern. The study
involved the following steps:

1. evaluation of the spatial homogeneity of fracture oc-
currence and intensity by different statistical tests,

2. building a stochastic fracture network model,
3. deriving a probabilistic prediction of the amount and

size of potentially unstable rock blocks for the CLAB-2
facility.

Fundamentals of DFN generation

Basic concept of DFN
DFN models belong to the so-called discontinuum model
family, i.e. models that represent a body of rock as an
assembly of rock blocks separated by discontinuities. As
discontinuities occur at a variety of scales, discontinuum
models must account for these complexities. The basic
principle of stochastic discrete fracture models is that
spatial statistics associated with a fracture network can be
measured and used to generate fracture networks with the
same spatial properties. Application of the DFN concept
requires the measurement of fracture geometry in order to
construct models that reproduce the observed statistics of
the fracture network. This involves specifying a stochastic
procedure for generating fractures centred in space, to-
gether with their orientations, sizes and other properties.
Many fracture/joint system models have been developed
and are continually being improved. Dershowitz and
Einstein (1988) summarized the development of the joint
system models reported in the literature up to the late
1980s. In spite of the latest progress in the development of
the discrete fracture models, the main principles regarding
the model input parameters and stochastic generation
process remain similar to the early models of Veneziano
and Baecher followed by the Dershowitz model (1984); for
a description see Dershowitz and Einstein (1988). The
fracture network properties of particular engineering sig-
nificance considered in a discrete fracture network are:
fracture size, shape, planarity, relative locations of frac-
tures, spacing between fractures, intensity, orientation,
aperture, nature and thickness of the fracture fill material
and the genesis of the fractures.

DFN generation procedure
In a stochastic fracture network most characteristic vari-
ables are represented as probability distribution functions.
The choice of input variables necessary for generating a
DFN model depends on both the complexity of the geo-
logical conceptual model of the area investigated and the
primary purpose and expected results of the modelling. In
general, both the fracture network properties discussed in
the previous section and the lithology and tectonic history
of the area will put constraints on the stochastic fracture
field generation.
Based on the field data (fracture mapping on rock expo-
sures and/or borehole logging), fracture network proper-
ties are approximated by the best-fit theoretical statistical
distributions. Each generated fracture is a product of one
Monte Carlo sampling from a number of statistical dis-
tributions, each representing a certain fracture property.
The combination of all fractures generated in such a
manner results in a three-dimensional discrete fracture
field. Figure 1 presents one possible three-dimensional
fracture network model where fractures are approximated
with five- and six-sided polygons with their centres ran-
domly located in space.
In this study, the FracMan stochastic fracture simulator
was used for generating the DFN models (Dershowitz et al.
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1998). The FracMan code enables generation of a wide
spectrum of different conceptual fracture networks, e.g.
fracture locations can be random in space or spatially
correlated according to fractal scaling, covariance function
or other processes. Fracture sizes and orientations can be
represented by a number of theoretical probability distri-
butions and fracture shape can be approximated by a
variety of geometrical features such as discs, polygons
or undulating planes. Finally, the code makes it possible
to verify the fracture network model by synthetic line
or surface fracture sampling and comparing it with the
observed field data.

Statistical stationarity of fracture
network properties

Geological homogeneity
The complexity of a DFN model is directly related to the
spatial variation of its components, i.e. the variation of the
fracture properties. When a modelled area is structurally
and/or lithologically heterogeneous, either non-stationary
or so-called multidomain DFN models may represent the
rock volume in question. Such models demand more
extensive field data cover as well as a substantial computer
power for the stochastic generation process. If the
evidence can be found that the investigated area is
geologically/structurally homogenous, a single domain,
stationary DFN model can be generated; i.e. a model in
which the statistical moments describing fracture network
properties (variables) are spatially independent. It appears
logical to assume that a geologically homogenous domain
will have stationary fracture network variables. However,

due mainly to sampling limitations, it is difficult to find
sufficient evidence to fully confirm this statement.
Several authors have studied statistical stationarity prior
to deriving a conceptual model of a fracture network
(Follin and Hermanson 1996; Dershowitz and Ushida
1999). In general, fracture intensity and fracture spacing
were taken as the test variables, but stationarity of direc-
tional data was also investigated (Geier et al. 1992).
The choice of the procedure for a stationarity test depends
on the type and amount of data analysed and on what the
results might indicate in terms of geology and fracture
occurrence within a studied rock volume. In a classic case
there will be a number of boreholes with fracture data or a
number of surface mappings within an area and the sta-
tistical moments computed at different locations are
compared to see if they exhibit spatial variation or not. In
cases where the data are sparse, a null hypothesis test may
be used instead, i.e. a hypothesis of no difference among
sample population mean or median values or the distri-
bution shape for the data sampled at different locations is
tested.
As neither the probability distribution the fracture net-
work properties (variables in statistical meaning) actually
follow nor the distribution’s parameters are known, the
most suitable tests for analysing homogeneity/stationarity
are non-parametric tests, such as the Kolmogorov-Smir-
nov (K-S) and Chi-2 tests (Davis 1986; Swan and Sandi-
lands 1995). Comparing K-S and Chi-2, the former can be
used for testing both empirical data sets with each other
and empirical sets with hypothetical distributions, while
Chi-2 is better suited to testing empirical sets against
theoretical distributions. Another useful test may be the
Mann-Whitney (M-W) test, which is a median value
equivalency test (a non-parametric equivalent to the
ANOVA test for testing two empirical data sets). The
Kruskal-Wallis (K-W) test makes use of the same proce-
dure as the Mann-Whitney test but can be used for testing
more than two data sets together (Davis 1986).

Null hypothesis test on fracture intensities
at the CLAB site

The CLAB site includes two main underground storage
caverns and a system of smaller transport tunnels. The
CLAB-1 storage facility is located in south-eastern Sweden
and serves as an interim storage for spent nuclear fuel. A
new underground cavern known as CLAB-2 is being ex-
cavated close to the existing facility, in order to increase
the storage capacity. Lithologically, the CLAB area consists
of intrusive rocks of granitic composition intersected by
aplite and pegmatite dykes (Eriksson 1982). Figure 2
presents a simplified view over the site and the location of
both caverns. The positions of the observation boreholes
with their azimuths and inclinations are also shown, as
well as the locations of the zones of weakness.
One minor and three major weakness zones were identi-
fied from surface mapping, refraction seismics and control
drilling (Stanfors et al. 1995). In Fig. 2 the major zones are
labelled as SZ1, SZ3 and SZ6 and the minor one as SZ7.
These zones form an isolated rock block embracing both
CLAB-1 and CLAB-2.

Fig. 1.
Example of a three-dimensional stochastic fracture network generated
within the 200 m cube. Fractures are assumed to be five- and six-
sided polygons and are randomly located in space
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It could be suggested that the rock volume bounded by the
weakness zones is structurally homogenous in terms of the
occurrence of discontinuities. In such a case, only rather
weak spatial variations in fracture spacing or intensity
would be anticipated within the area. This judgment,
however, is based on the assumption that the rock volume
delimited by the zones displayed in Fig. 2 is not inter-
sected by any other weakness zones beyond those identi-
fied and that the rock mass within the block volume is
lithologically homogenous.
In order to support or reject the statement on the
homogenous distribution of small-scale discontinuities,
non-parametric statistical procedures were applied and the
following null hypothesis (H0) formulated and tested:

fracture occurrence, expressed either by fracture spacings
or intensities sampled at different locations within the
rock volume delineated by the weakness zones SZ1, SZ3,
SZ6 and SZ7 do not manifest significant differences. On
the basis of the outcome from the H0 test, some inferences
about the statistical stationarity of fracture occurrence and
in turn about geological/structural homogeneity can be
made.
Fracture data for testing the null hypothesis were obtained
from the fracture mapping summarized in Table 1. All
fractures belonging to the identified cross or weakness
zones were discarded from the analysis as these zones had
a known orientation and width and hence could be con-
sidered as deterministic structures and not as the basic
components of the stochastic fracture field it was intended
to generate.
With regard to fracture occurrence, only two boreholes
(KSI31 and KSI32) provided a complete data record, i.e.
the absolute fracture positions along the borehole, orien-
tations, aperture, genetic type and mineral infill. For the
other boreholes in Table 1 the spacing data were missing;
only fracture intensities measured for each 1 m depth in-
terval were available. For that reason it was not possible to
use fracture spacings in the boreholes as the input vari-
ables for the null hypothesis test and hence fracture in-
tensities were selected for the H0 test.
The H0 test was performed separately for the vertical and
inclined boreholes. Additionally, the inclined boreholes
were divided into three sub-groups having similar azi-
muths. All the vertical boreholes (D5, D10, D11 and KSI32)
together with KSI31, which deviated from the vertical but
had fracture strike and dip data, were corrected for ori-
entation sampling bias following the Terzhagi procedure
(Terzhagi 1965) which compensates for fractures sub-
parallel to the sampling line. As the probability of de-
tecting such fractures in the borehole (assuming the
borehole is the sampling line) is low compared with the
probability of detecting fractures intersecting the borehole
at high angles, the data were corrected by increasing the
number of fractures that were nearly parallel to the sam-

Fig. 2.
Simplified view over the CLAB site

Table 1.
Summary of fracture mapping from direct core observations and borehole camera for the CLAB site. Fractures belonging to the identified
weakness zones are not considered. (Source data: Moberg 1995a, 1995b; Gustafsson and Stråhle 1997)

Borehole (ID/azimuth/inclination) Length Average fracture intensity Type of data and measurement method
(m) (m–1)

D1/N20�W/40 81 7.59 Fracture intensity (direct core mapping)
D2/N110�W/45 72 6.46
D3/N160�E/45 82 8.28
D4/N0/75 67 6.94
D6/N180�E/45 86 6.58
D7/N0/60 72 7.43
D8/N90�W/30 73 5.38
D10/90 50 7.62a Fracture intensity, fracture dip (direct

core mapping)D11/90 52 7.45a

D5/90 58 7.62a

KSI31/N102�W/44 78 4.46a Fracture positions along borehole, strike,
dip, aperture and mineral infill, genetic
type (borehole camera)

KSI32/90 61 4.0a

aCorrected for orientation sampling bias
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pling line. The new, corrected data resulted from multi-
plying each fracture detected in the borehole by the cor-
rection factor w:

w ¼ 1

cos a
ð1Þ

where a is the acute angle between sampling line (bore-
hole) and normal to the fracture plane.
As the inverse of the cosine function for angles close to
90� approaches infinity (i.e. where a fracture is almost
parallel to the sampling line), the correction factor w
must be assigned an upper limit. Priest (1993) addressed
this problem and pointed out that when setting up the
limit for the correction factor it is preferable to compare
fracture data sampled with differently oriented sampling
lines, if possible, mutually orthogonal. He also presented
a practical example for correcting for orientation sam-
pling bias with the maximum correction factor close to
10. Genter et al. (1995) applied a maximum factor of 5
for correcting fracture data mapped in nearly vertical
boreholes in a granitic massif at Rhein Graben, Alsace,
France. Dershowitz et al. (1998) suggest a maximum
factor of 7, while La Pointe et al. (1995) used a factor of 5
to correct fracture sampling from the Äspö site (north of
CLAB).
In the work reported here a correction factor of 6 was
used, which implied that all fractures that had an orien-
tation of more than 77� relative to the sampling line were
multiplied by 6 and the rest of the fractures were multi-
plied by the integer from the ratio 1/cosa. At this stage, the
advantage of correcting for orientation sampling bias was
that fractures belonging to differently oriented boreholes
could be considered for the null hypothesis testing.
The H0 test on fracture intensities using the Kruskal-
Wallis (K-W) procedure was undertaken on more than two
data sets/boreholes, while the Mann-Whitney (M-W) test
was carried out on two data sets. Table 2 presents the
results from the K-W and M-W tests for all twelve bore-
holes shown in Table 1. The K-W test on the sample
populations in boreholes D1, D4 and D7 and D5, D10 and
D11 showed that within each tested group the median
fracture intensities were not significantly different. Similar
results were obtained from the M-W test for KSI31 and
KSI32. The results of both tests were obtained for 5% level
of significance. Summarizing the results outlined in

Table 2, it was found that there was no statistical evidence
on which to reject the hypothesis that:

1. fracture intensities along north-dipping boreholes be-
long to a statistical population with the same median
value,

2. fracture intensities along vertical boreholes belong to a
statistical population with the same median value,

3. fracture intensities measured with a borehole camera
belong to a statistical population with the same median
value.

For the boreholes dipping to the west and south, however,
the null hypothesis was rejected.
It should be noted that fracture data from all boreholes
suffixed ‘‘D’’ (Fig. 2) were collected from direct core ob-
servations, while data from KSI31 and KSI32 were ob-
tained from a borehole camera. In practice, this may mean
that some fractures identified from core observations may
not be found using a borehole camera and vice versa, and
it is important to appreciate that interpretation of the re-
sults from statistical tests on data obtained by applying
different measurement methods might be ambiguous.
In order to complement the median value test, another
null hypothesis test based on Kolmogorov-Smirnov (K-S)
statistics was undertaken. When using K-S statistics the
overall shape of the cumulative frequency plots of sample
data sets can be compared. In this study the K-S test was
designed following the procedure outlined in Gibbons and
Chakraborti (1992). The K-S test derives the largest dif-
ference in cumulative frequency histograms between
sample distributions and relates this difference to some
tabulated critical values (Davis 1986).
Table 3 presents the results from the K-S test on fracture
intensities for pairs of boreholes having similar orienta-
tions and for which the same fracture detection method-
ology was applied. If the K-S statistics depicted as K-Sstat

exceed the critical value statistics K-Scrit, the null hypoth-
esis stating that the two tested sample sets belong to the
same statistical population is rejected. The K-S test was
run for a 10% significance level. Except for two pairs of
boreholes (D6-D3 and D2-D8), the K-Sstat was lower than
the critical value K-Scrit (see Table 3), hence the null
hypothesis could not be rejected. Indeed, even for the

Table 2.
Kruskal-Wallis (K-W) and Mann-Whitney (M-W) non-parametric
null hypothesis (H0) tests on fracture intensities for groups of bore-
holes exhibiting similar orientations and the same fracture mea-
surement methods. Null hypothesis assumes that fractures in a
specific group belong to the same statistical population

Boreholes tested Test type Testing results

D1-D4-D7 (dipping to N) K-W H0 not rejected
D6-D3 (dipping to S) M-W H0 rejected
D2-D8 (dipping to W) M-W H0 rejected
D5-D10-D11 (vertical)a K-W H0 not rejected
KSI31-KSI32a M-W H0 not rejected

aCorrected for orientation sampling bias

Table 3.
Kolmogorov-Smirnov (K-S) test of a hypothesis that fracture inten-
sities along tested boreholes belong to the same statistical population.
If K-Sstat exceeds the critical value K-Scrit, the null hypothesis is
rejected at 10% significance level

Boreholes tested K-Sstat K-Scrit

D1-D4 0.16 0.20
D1-D7 0.03 0.20
D4-D7 0.14 0.21
D6-D3 0.23 0.19
D2-D8 0.22 0.20
D5-D10a 0.11 0.25
D5-D11a 0.07 0.25
KSI31-KSI32a 0.12 0.21
KSI31-D5a 0.17 0.21

aCorrected for orientation sampling bias
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fracture intensities sampled with two different measure-
ment methods (e.g. KSI31and D5), the null hypothesis
could not be rejected.
Summarizing the H0 testing, more evidence was found to
accept the hypothesis that fracture intensities recorded
within the investigated area/volume do not significantly
differ than to reject it. The results for the boreholes
dipping to the west and south could be explained by an
increased sensitivity to orientation sampling bias or by the
fact that some of the boreholes were intersected by a minor
weakness zone/zones which were not verified with
refraction seismics, surface mapping or control drilling.
Such zones could substantially increase fracture intensities
in some boreholes and significantly influence the test
results. In general, it is considered that where fracture
intensities were corrected for orientation sampling bias,
the results were more reliable and that the investigated
area is homogenous as regards fracture intensity. Never-
theless, further tests were carried out to investigate
whether fracture intensity follows any vertical trend, using
the moving average of fracture intensities for 1, 3 and 5 m
windows along the boreholes, correlated for sampling bias.
The results showed no evidence that fracture intensities
are depth-dependent.
From both geological judgment and statistical tests of
homogeneity/stationarity, therefore, it was concluded that
fracture occurrence at the CLAB site is spatially indepen-
dent but that the hypothesis that the discontinuities within
the considered rock volume belong to the same structural
unit had not been disproved.

Input variables for discrete
fracture model at the CLAB site

It was further postulated that the fracture parameters
evaluated from KSI31 and KSI32 would be representative
for the whole modelled rock volume. The prime reason for
selecting these two boreholes as the major source data for
the stochastic fracture field generation was the fact that
they provide the most complete data record (fracture
orientations, spacing, aperture and genetic type), while the
data from the other boreholes were limited to only fracture
intensity.

Type of discontinuities
The selection of the appropriate discontinuities to form
the basis for a stochastic fracture network was contingent
at first on their ability to act as sliding planes for poten-
tially unstable rock blocks. Not all discontinuities detected
in the boreholes KSI31 and KSI32 were equally important
for block stability calculations, due to their genetic char-
acter, size and/or fracture roughness.
According to Gustafsson and Stråhle (1997), who analysed
fracture data from borehole camera images in boreholes
KSI31 and KSI32, it was possible to distinguish three main
types of discontinuities: fractures filled with minerals,
open fractures and veins filled with pegmatite or fine

granite. Some mineral-filled fractures contained small
cavities, but it was difficult to assess if the presence of the
cavities would eventually contribute to either reduction or
increase in friction along fracture planes. With only six
open fractures in the 592 discontinuities detected in the
two boreholes, the amount of open fractures found was too
low to consider them as a statistically relevant group for
stochastic network modelling.
An appropriate selection of the type of discontinuities for
model generation was important not only from the rock
engineering point of view but also because the generation
of a DFN model representing all the types of disconti-
nuities detected with a corresponding fracture intensity
of about 4 m–1 (see KSI31 and KSI32 in Table 1) would
make considerable demands on computer power and
time.
Field observations from several underground projects in
Sweden carried out in similar geological environments to
the CLAB site have shown that some discontinuities can
be more sensitive than others in terms of block sliding
(U. Lindblom, personal communication, 2000). As any
selection of discontinuities based on their mechanical
properties (e.g. friction or shear strength) was difficult on
the information available from the boreholes, a discon-
tinuity size criterion was adopted and referred to the
empirical relationship between joint size and aperture
observed by Vermilye and Scholz (1995) on granodiorite
outcrops at Florence Lake, USA. In other words, the
discontinuity aperture data valid for the CLAB site
obtained from borehole camera measurements in KSI31
and KSI32 together with the mentioned joint length to
aperture ratio were used as the basis for classifying the
discontinuities in accordance with the inferred joint/dis-
continuity length. For this study it was decided that all
discontinuities with an aperture equal to and larger than
5 mm would constitute the statistical grounds for the
DFN model generation. It should be pointed out that
according to Gustafsson and Stråhle (1997), the aperture
is defined as the thickness of the altered zone and not as
the width of the opening available for fluid flow, except
for the open fractures where the hydraulic definition of
the aperture was applied.
The majority of the discontinuities selected for the further
stochastic generation procedure were veins filled with fine-
grained granite or pegmatite, some of which were tecton-
ized. The rest were fractures filled with chlorite or calcite.
In addition, all the open fractures found in the boreholes,
irrespective of their aperture size, were assigned to this
group due to the anticipated relatively low shear strength
on their planes and higher potential to trigger block slid-
ing.
Although the adopted size criterion and especially the cut-
off range for apertures was to some degree arbitrary, it was
considered that larger discontinuities were more impor-
tant for block stability analysis than small ones. In sum-
mary, 87 veins and fractures from boreholes KSI31 and
KSI32 were chosen. Henceforth for brevity the term frac-
tures will be used as the collective name for the selected
discontinuities.
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Fracture orientation
When the number of observed fractures with a known
orientation is large and the fractures exhibit signs of
clustering on a stereoplot, the separation of the fractures
into distinct orientation sets can improve the reliability of
a DFN model. In practice, the separation into orientation
sets and clustering of fractures relies both on studies of the
tectonic history of a site, rock stress distribution and the
mechanical properties of rocks and on statistical separa-
tion algorithms. Interested readers are referred to Priest
(1993) who presents basic principles and some practical
examples for identification and delimiting orientation
fracture sets. In addition, the work of Mardia (1981) and
Herda et al. (1991) present some interesting aspects of the
analysis of directional data. A purely statistical separation
into orientation sets minimises subjective bias when at-
tempting to infer orientation of clusters from a study of
the tectonic history of the area, yet the outcome from such
an analysis should always be complemented with the ex-
isting geological information.
Figure 3 presents the lower hemisphere projection of poles
to fractures that were selected for the stochastic DFN
model generation, i.e. the fractures from boreholes KSI31
and KSI32 that fulfilled the size criterion referred to above.
The data were corrected for orientation sampling bias
using a correction factor of 6. This correction resulted in
the increase of the originally observed number of fractures
from 87 to 112.

In order to separate fractures into orientation sets, the
Interactive Set Identification System (ISIS) of Dershowitz
et al. (1998) was used. In short, the essence of ISIS is that
the statistical properties of each set are first derived from
the statistical properties of the fractures assigned to the
set, then those fractures that have a low probability of
being part of that set are removed and reassigned. The set
separation procedure begins with visual identification of
all possible sets, then each set is approximated with a
number of hypothetical statistical distributions until the
best-fit probability function is found.
Four different orientation sets were at first determined
visually from Fig. 3. For each set a number of hypothetical
distributions were tested to find the best-fit probability
distribution function (pdf). The best match was found with
Fisher’s pdf (Davis 1986), which is an equivalent to normal
distribution for oriented data on a sphere. Table 4 sum-
marizes the set separation analysis performed with the ISIS
algorithm and provides K-S ‘‘goodness-of-fit’’ statistics
between the observed and corrected orientation data
classified into each set and the theoretical statistical dis-
tributions.
Each orientation set in Table 4 was characterized by its
mean pole trend (azimuth) and plunge (inclination) vec-
tors, a dispersion coefficient j, K-S ‘‘goodness-of-fit’’ sta-
tistics and the amount of fractures expressed as a
percentage of the previously selected and corrected total,
i.e. 112 fractures. The dispersion coefficient is a measure of
a sample population scatter about the mean pole vector
representative for the whole set. Higher values of j imply
less scatter. Regarding K-S statistics, following the proce-
dures adopted in FracMan, a significance higher than 95%
indicates the statistically satisfactory fit of the theoretical
pdf with the observed data.
Of the identified orientation sets, only set 2 satisfied the
last criterion, i.e. the theoretical Fisher’s distribution with
j=17.1 fitted to the observed data with a high enough
statistical confidence. The rest of the best-fit pdf ’s showed
too low a statistical significance to be considered reliable
probabilistic estimates of the observed data.
When fracture orientation data are scarce, as they were for
the CLAB site, and satisfactory fitting between possible
orientation clusters and theoretical probability distribu-
tions cannot be obtained, ‘‘bootstrap’’ sampling (Efron
1982) might be a better alternative (Hermanson et al.
1999). ‘‘Bootstrapping’’ implies that fractures that are to be
generated in a stochastic DFN model have the same

Fig. 3.
Poles to fractures (veins and discontinuities with apertures equal to
and larger than 5 mm) detected by borehole camera in boreholes
KSI31 and KSI32. Lower hemisphere projection. Fractures correlated
for orientation sampling bias with a correction factor of 6. Number of
fractures after correction: 112. (Source data in Gustafsson and Stråhle
1997)

Table 4.
Summary of orientation set identification based on ISIS procedure
(Dershowitz et al. 1998) Number of fractures n=112. All sets were best
fitted to Fisher’s probability distribution

Orientation set:
mean pole
(trend, plunge)

Dispersion
coefficient, j

K-S statistics,
statistical
confidence, %

Fracture
percentage of the
observed total

Set 1 (68, 6) 8.8 0.173, 37.2 24.8
Set 2 (69, 79) 17.1 0.108, 96.6 18.6
Set 3 (162, 27) 7.2 0.183, 54.5 16.8
Set 4 (318, 36) 15.4 0.126, 44.6 39.8
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orientations as observed in the field and no set separation
is performed. The dispersion coefficient for ‘‘bootstrap-
ping’’ can be estimated by using the formulae for disper-
sion coefficient for Fisher’s distribution (see Priest 1993
for detailed explanation).
Even if previous field investigations in the areas proximal
to the CLAB site had indicated that discontinuities follow
distinct orientation sets and hence clustered around up to
six major orientation vectors (Ericsson 1987), it was dif-
ficult to find such a tendency for the fractures in KSI31 and
KSI32, relying on the performed ISIS analysis. Addition-
ally, due to the small amount of data, the visual identifi-
cation of clusters from the stereoplot in Fig. 3 might be
severely biased due to the subjectivity of individual in-
terpretation. In view of these concerns, the orientation
input data for the stochastic DFN model generation were
derived as ‘‘bootstrap’’ sampling directly from the orien-
tations of the 112 selected fractures, applying a dispersion
coefficient of 50.

Spatial model
Inasmuch as technical and economic limitations did not
allow a complete investigation of the relative positions of
fractures everywhere within the modelled rock, finding a
representative pattern of spatial distribution for fracture
locations was not an easy task. Spatial distribution of
fractures is usually inferred from fracture positions/spac-
ing measurements along sampling lines or from two-
dimensional rock exposure mapping. However, the
orientations of discontinuities and their sizes also have a
bearing on the spatial pattern.
Priest (1993) presents a more in-depth study of these
topics and, in the absence of clear evidence for fracture
clustering, proposes the adoption of random fracture lo-
cation models based on a Poisson process. Random loca-
tions of fractures were discussed in the early work of Priest
and Hudson (1976), Baecher et al. (1977) and Wallis and
King (1980) who observed that fracture spacing tends to
follow exponential distributions, suggesting the random
location of fracture centres in space.
Although the assumption of random fracture locations
considerably simplifies fracture network generation pro-
cedures, there is still some incentive to investigate spatial
relationships among fractures before setting up a DFN
model. For example, Geier and Thomas (1996) found that
the Levy–Lee and Nearest-Neighbour fracture locations
models provided a better fit with observed data than a
random locations model for the Äspö area located close to
the CLAB site. Chilés (1988) reported that fractures map-
ped in the Fanay-Augéres (France) uranium mine were not
purely randomly located. Barton and La Pointe (1995)
summarized the work of several authors on fractal patterns
in geology and presented examples for fractal scaling of
fracture spacing. This would suggest that there is field
evidence that fractures may be spatially organized
according to some other processes and may not be purely
random.
In the authors’ opinion the analysis of spatial patterns
makes more sense if fractures are separated into

orientation sets (assuming such sets exist), rather than
analyzing all mapped fractures together. Priest (1993)
pointed out that in some cases fractures are spatially or-
ganized within orientation sets but demonstrate random
location patterns when all the sets are grouped together. It
is considered that the opposite would also be possible,
hence the analysis of fracture location patterns for the
CLAB data was first undertaken separately on each ori-
entation set identified within each borehole by the ISIS
procedure (even if they were not found to be statistically
significant). Subsequently, the same analysis was carried
out on all fractures within each borehole without set sep-
aration. The location patterns were analysed by means of
power spectrum density and power semivariogram func-
tions.
The analysis of fracture spatial patterns for the CLAB site
was performed on fracture spacing data obtained from
boreholes KSI31 and KSI32. These were the same data as
used previously for the ISIS set separation analysis, i.e. 112
fractures corrected for orientation sampling bias. Input
data for spectral density and power semivariogram anal-
ysis were computed from fracture intensities within a 1 m
window along the boreholes.
The interpretation of power density plots and power
semivariograms relies on similar principles, yet subtle
differences exist. A power density function was computed
by breaking the profile with calculated fracture intensities
along the borehole into a sum of sinusoidal components,
each with its own wavelength, amplitude and phase. The
individual variance of each component is related to the
amplitude of the waveform. The power spectrum is cal-
culated as the sum of the squared amplitudes of each si-
nusoidal component, that is the sum of individual
variances of all the sinusoidal components. By plotting the
power spectrum versus the inverse of the wavelength it is
possible to determine whether fracture intensities are
spatially variant and, if so, which components (short or
long wavelengths) contribute to the largest variability.
The slope of the spectral density plot can be used to assess
different possible spatial models. If the spectrum is fractal
(self-similar) it will plot approximately along a straight
line. Consequently, the slope of the straight line relates to
the fractal dimension. A slope of zero implies that frac-
tures in the borehole are located according to the Poisson
process. The steeper the slope, the higher the variance in
fracture intensities for long-wavelength components as
compared to the variance for short-wavelength compo-
nents. This would indicate that fractures tend to form
tighter clusters. For more details on spectral analysis
readers are referred to Båth (1974) who outlined the fun-
damentals of the spectral methods and their application in
signal analysis. An interesting summary on the imple-
mentation of power spectrum in characterizing fracture
roughness was presented by Brown (1995).
The semivariogram function for fracture intensities relates
the sum of the squared differences between fracture
intensities at two different locations along the sampling
line to the locations’ separation distance. When plotting
semivariogram versus increasing separation distance,
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inferences can be drawn regarding spatial correlation
pattern and in some instances, the size of fracture clusters
or the distance between clusters may be estimated. There
are extensive literature reviews on semivariogram analysis
and its application in the earth sciences; for a good in-
troduction to the subject with practical examples, see
Isaaks and Srivastava (1989).
When the semivariogram plotted on double logarithmic
scale results in an approximately straight line, it is consid-
ered to be fractal. The fractal dimension D is given by the
formula D=2–a/2, where a is the slope of the semivariogram
(P. La Pointe, personal communication, 1999). Values of D
can range from 1.0 to 2.0. The fractal dimension D=1.5
implies no spatial correlation, i.e. Poisson process.
From the analysis with orientation set separation, only set
4 in borehole KSI32 showed some indication of weak
fracture clustering (Table 4). Figure 4 depicts the spectral
density and Fig. 5 the power semivariogram, i.e. the
semivariogram with double logarithmic scales for the
fracture intensities belonging to this set. The power
spectrum in Fig. 4 was fitted with a straight line with the
regression coefficient R=0.7. The fractal dimension esti-
mated from the slope of the regression line was D=2.05
[see Turcotte and Huang (1995) for the computation for-
mula]. The fractal dimension estimated from the semi-
variogram slope in Fig. 5 was D=1.98.
The spatial pattern analysis without set separation showed
that fractures in borehole KSI32 exhibited some ‘‘delicate’’
indications of clustering, while the power spectrum and
power semivariogram for KSI31 were nearly flat, i.e. the
fractures were most probably randomly located in the
borehole. The fractal dimension estimated from the spec-
tral density plot for KSI32 was found to be D=1.96
(R=0.87). The fractal dimension found from the power
semivariogram was nearly the same: D=1.98.

The fracture location pattern for set 4 and for the whole of
borehole KSI32 showed very similar trends. It is consid-
ered likely that the spatial pattern of set 4 dominated the
spatial pattern in the whole of KSI32 as this set was found
to constitute the majority of the fracture population in the
boreholes (see Table 4). The fact that the fractal dimen-
sions identified from both the spectral and semivariogram
analyses oscillated around 2.0 implies that the fracture
system as inferred from the two boreholes was negatively
correlated, i.e. fractures may form very weak, non-isolated
clusters and tend to form one big network. On the con-
trary, if the fractal dimension approached 1.0, the system
would be positively correlated with very pronounced iso-
lated fracture clusters.
The results from the fracture location patterns analysis did
not provide enough confidence to state that the fractures
would form any apparent isolated clusters. Thus, in the
absence of clear evidence of spatial correlation, it was
assumed that the fracture location pattern at the CLAB site
was random.

Fracture size
It is nearly impossible to determine the correct fracture
size without dismantling a rock volume of interest and
measuring the size directly. Alternatively, by approxi-
mating fractures using geometrically regular objects/sur-
faces such as disks or polygons and with access to trace
length data from planar exposures, reasonable estimates of
fracture size can be made (Baecher et al. 1977; Warburton
1980; Priest 1993).
It is noteworthy that veins constituted the vast majority of
the discontinuities selected for stochastic DFN generation
at the CLAB site. However, no vein trace length data were
available, hence the fracture size was estimated using the
empirical relationship between joint length and aperture.

Fig. 5.
Power semivariogram for fracture intensities for orientation set 4 in
borehole KSI32. Units on vertical axis are the squared fracture
intensity in (m–1)2 at 1 m intervals along the borehole; units on
horizontal axis express the separation distance in m. Slope of the
fitted straight line a=0.04

Fig. 4.
Spectral density plot of fracture intensities for orientation set 4 in
borehole KSI32. Units on vertical axis express the squared amplitude
of fracture intensity in (m–1)2 at 1 m intervals along the borehole;
units on horizontal axis are in m–1. Wave number k=2p/k, where k is
wavelength (in m). Spectral density plot was fitted with regression line
with the slope a=0.91 and regression coefficient R=0.7
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In this study, fracture size estimation was based on the
work of Vermilye and Scholz (1995) who derived an em-
pirical relationship between aperture and joint length for
veins mapped on granodiorite outcrops at Florence Lake
district, USA. They found the average aspect ratio between
aperture and length to be 1.9·10–3.
It should be stressed that the decision to adopt this aspect
ratio in the present study was based on the lithological
similarities between the CLAB and Florence Lake sites;
other aspects of vein formation such as the tectonic history
of both sites were not considered. For this reason, the
estimated fracture sizes for the CLAB data should be
considered as very approximate. Nevertheless, as the
fracture apertures were known from the borehole camera
studies in KSI31 and KSI32, it was considered reasonable
to estimate fracture size using measured apertures rather
than base it on any generic assumptions from general
knowledge of the Swedish crystalline bedrock.
Initially, for each of the 112 fractures from KSI31 and
KSI32 the representative fracture radius was calculated
from the known aperture and the adopted aspect ratio of
1.9·10–3. It was assumed that the fractures had the shape
of circular discs. In the next step, the obtained fracture
radii were fitted with a number of theoretical probability
density functions. The best fit was found for log-normal
distribution with a mean of 11.9 m and standard deviation
of 26.5 m. Figure 6 presents the best-fit pdf and the esti-
mated fracture radii data.

Volumetric fracture intensity and termination type
There are two ways in which fracture intensity can be
generated in the FracMan code: (1) by specifying the total
number of fractures within a generation region, and (2) by
specifying a volumetric intensity measure termed the P32

parameter. P32 is the ratio between the total area of all
fractures and the total volume of the material in which the
fractures are generated. Although P32 cannot be measured
in situ, this parameter is linearly correlated to fracture
intensity, which can be measured along a borehole or on a
rock exposure. The proportionality constant depends on
the fracture orientation and distribution of the fracture
size (Dershowitz and Herda 1992).
In the current study, P32 was used to build the stochastic
DFN model for the CLAB site. Using P32 as the fracture

intensity measure rather than the total number of fractures
generated in the model makes the verification of the model
with the field data more straightforward. As mentioned
above, P32 is related to the observed fracture intensity. As
fracture intensity from outcrop mapping at the CLAB site
was not available, the estimation of P32 was based on the
observed fracture intensity in boreholes KSI31 and KSI32.
For convenience and following the FracMan nomenclature,
in the remainder of this paper the one-dimensional fracture
intensity will be expressed using the parameter P10. The
observed P10 for KSI31 and KSI32 for the previously selected
fractures was found to be 0.62 and 0.64 fractures m–1 re-
spectively. The procedure for assessing the correct P32, i.e.
the one reflecting the real fracture intensity in the modelled
rock volume, is given under the heading ‘‘Stochastic fracture
network generation for the CLAB site’’ as this procedure is,
in fact, a part of the model-generating process itself.
Another important component to be considered in dis-
crete fracture modelling is the connectivity of the fracture
network. This is a crucial aspect in DFN models for flow
simulation but also of great importance in rock mechanics
where rock volume is treated as an assembly of rock blocks
isolated by the discontinuities and the perimeter of an
underground opening. When fractures cease in a rock
matrix without intersecting other fractures, the rock is
potentially less blocky and bridges between discontinuities
will contribute to a higher stability of the excavation. In
contrast, when fractures constitute densely interconnected
complexes, there is a higher tendency for development of
rock blocks, which, depending on the fracture orientations
and size, may jeopardize the safety of the underground
space. The tendency of blocks to slide under gravity forces,
as well as their shape and volume, also depends on the way
fractures terminate, i.e. whether the fractures terminate at
one end or are entirely bounded by neighbouring dis-
continuities. Depending on the spatial model chosen, the
FracMan code allows either a total percentage of termi-
nations or a termination probability to be specified.
For the purpose of this study the only available fracture
termination data in areas close to the CLAB site comprised
a total of 63,000 mapped discontinuities from the Äspö
area located several kilometres north of the CLAB site
(S. Tirén, personal communication, 2000). According to
Tirén, about 20% of the mapped discontinuities terminate
against other fractures at one end and in the rock mass at
the other. However, these findings had still not been fully
verified when this paper was completed. In addition,
Tirén’s study involved interpretation of all types of dis-
continuities and did not take into account fracture genesis,
hence the 20% termination should be considered as a
tentative assessment and not as a definitive result.

Stochastic fracture network
generation for the CLAB site

The aim of the initial fracture network generation was to
determine the real fracture intensity (expressed with P32)

Fig. 6.
Cumulative log-normal probability best-fit plot (thick line) to fracture
radii in m (vertical bars) estimated from the aperture data for
fractures selected from boreholes KSI31 and KSI32
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and in turn correlate the stochastic fracture field with the
observed fracture data. To reflect the observed fracture
spatial location pattern, the ‘‘BART’’ conceptual model was
adopted (Dershowitz et al. 1998). In the BART model,
fracture centres are located uniformly in space, following
the Poisson process. However, fracture termination
modes which result in non-uniform fracture locations are
allowed. Fracture termination was assigned by the termi-
nation percentage T%. At first 1–T% fractures were gen-
erated based upon uniformly located fracture centres. T%

fractures terminating at intersections were then generated
from locations uniformly positioned on the surface of
existing fractures. These positions were not the fracture
centres, but rather the locations at which the fracture
termination occurred. The fractures generated from these
locations were defined with centres at a distance away
from the termination locations such that the fracture
surface area distribution for the generated fractures was
preserved.
The generated fracture shapes were approximated with
eight-sided polygons. The representative fracture radii
were generated from a log-normal probability distribution
with a mean of R ¼ 11:9 m and a standard deviation
rR=26.5 m (see Fig. 6). The orientations of fractures were
‘‘bootstrapped’’ directly from the 112 fractures selected
from boreholes KSI31 and KSI32 and correlated for ori-
entation bias. The fracture termination percentage T% was
set at 20%. The generation region for the fracture field was
a cube with dimensions 180·180·180 m. The model size
exceeded the volume actually needed for further tunnel
stability simulations but was kept oversized to minimize
edge effects.
As the first step, three DFN models with different initial
P32 were generated. Each DFN generation process included
10 Monte Carlo realizations. Accordingly, eight synthetic
boreholes were positioned within the generation region;
half of the boreholes had exactly the same length, radius
and orientation as the KSI31 borehole but were located at
different places inside the model and the other half of the
boreholes reflected the characteristics of KSI32. After
generating each of the three DFN models, synthetic sam-
pling with eight boreholes was carried out and the linear
fracture intensity (P10) for each borehole was calculated.
This procedure identifies the best initial P32 to guarantee a
similar number of fracture intersections in the synthetic
sampling and the observed samples. The model for which
the P10 was found to be closest to the observed fracture
intensity was used for the estimation of the ‘‘true’’ value of
P32. Using the relationship between P32 and P10 mentioned
earlier, following Dershowitz and Herda (1992):

P32True ¼ P32Simulated�P10True=P10Simulated ð2Þ

where P32True is the real fracture intensity to be estimated,
P32Simulated is the initial (guessed) intensity, P10True is the
observed fracture intensity and P10simulated is the fracture
intensity obtained from synthetic sampling in the model.
Applying Eq. (2) and averaging the P10Simulated from 80
synthetic samplings (ten Monte Carlo realizations multi-
plied by eight synthetic boreholes), using the initial

P32Simulated=1.2 m2/m3, it was found that P32True=1.05 m2/m3.
To verify the DFN model, ten additional Monte Carlo re-
alizations were run with P32=1.05 m2/m3 as the ‘‘true’’
intensity and keeping all other model parameters the
same. From the synthetic sampling averages of P10=0.6
and 0.66 m–1 for KSI31 and KSI32 respectively were ob-
tained. It will be appreciated that the observed fracture
intensity was P10=0.62 m–1 for KSI31 and P10=0.64 m–1 for
KSI32. Thus, there were almost negligible discrepancies
between the simulated and observed fracture intensities –
only 0.02 m–1.
It was concluded that the DFN model generated with
P32=1.05 m2/m3 satisfactorily represented the fracture
network at the CLAB site. Table 5 summarizes the input
variables for the generation of the final DFN model.

Analysis of block stability
for the CLAB facility

This section presents the results from the numerical iden-
tification of potentially unstable blocks for the CLAB-2
excavation, which is proposed to serve as an interim storage
facility for spent nuclear fuel. The CLAB-2 cavern has the
shape of a horseshoe tunnel about 115 m long, 21 m wide
and 27 m high. The tunnel is located about 30 m under the
ground surface and its long axis strikes N–S (see Fig. 2).
The key blocks statistics were performed by using the
RockBlock computer code developed by Golder Assoc.,
Seattle (Dershowitz et al. 1995). After entering the sto-
chastic DFN model, the RockBlock code performs five
consecutive operations:

1. Fracture intersections are computed.
2. Trace maps defined by fracture intersections with the

tunnel structure are built.
3. Rock blocks for the entire interior of the tunnel are

identified.
4. The volume and mass of rock blocks are determined.
5. Stability analysis is performed.

This study focused exclusively on potentially unstable
blocks, i.e. friction along fracture planes and the distri-
bution of rock stress around the tunnel perimeter were

Table 5.
Components of the discrete fracture model for the CLAB site

Type of discontinuities All veins, open and filled fractures
with apertures equal to and
larger than 5 mm

Spatial model BART (Poisson process)
Fracture orientations Bootstrap, dispersion j=50
Fracture shapes Eight-sided equilateral polygons
Fracture size (representative

radii)
Log-normal distribution,

R ¼ 11:9 m, standard deviation
rR=26.5 m

Volumetric fracture intensity P32=1.05 m2/m3

Fracture terminations T%=20%
Model size 180·180·180 m3
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ignored. The last step in the RockBlock procedure was
therefore valid for the conditions at which only gravity
forces act on the rock blocks. For block weight calculation
the rock mass density q=2.6 g/m3 was applied (Eriksson
1982). For the rock block simulations, a synthetic six-panel
horseshoe tunnel with the same dimensions as the real
CLAB-2 facility was sited inside the stochastic DFN model
generated according to Table 5.
The initial simulations with RockBlock showed that the
computation of rock blocks for the 180 m DFN cube was
severely restricted by the available computer power and
time. As a consequence, the size of the model was reduced
to a slab with dimensions of 140 m long, 50 m wide and
50 m high. It was believed that the edge effects would not
adversely affect the block analysis as the model dimen-
sions along each co-ordinate exceeded the dimensions of
the tunnel by a length larger than the mean of the gener-
ated fracture radii.
The block analysis was carried out for 30 Monte Carlo
realizations of the stochastic DFN model. For each real-
ization, the number of blocks formed in the tunnel roof
and walls was obtained together with their mass and sta-
bility status. Figure 7 presents the visual outcome of the
block analysis for one Monte Carlo DFN realization for a
10 m section of the tunnel. The key blocks are marked
with arrows.
Although the visual effect and the block characteristics
derived from the block analysis may look impressive, the
interpretation of the results is not easy. It should be kept
in mind that the rock block calculations presented here are
based on the stochastic fracture model; consequently, the
derived block locations along the tunnel cannot be con-
sidered as the real block positions; the number of blocks
and their size must be related to the actual length of the
excavation.
The block analysis was undertaken for two distinct tunnel
orientations: N–S and E–W. The first orientation agreed
with the real tunnel trends for both the CLAB-1 and CLAB-2

facilities. Predictions for each orientation should be inter-
preted separately, but comparison of the results from dis-
tinct orientations illustrated one way of utilizing such
predictions in a decision-making process where more than
one option for the location of a tunnel/underground space
would be possible.

Block simulations for N–S tunnel orientation
After combining all Monte Carlo simulations it was found
that the majority of blocks had a very small mass. Con-
sequently, all blocks of less than 10 tonnes (t) in weight
were arbitrarily discarded from the further analysis as they
were considered to be of limited importance as regards the
stability of the cavern. Assuming a regular geometric
shape, a 10 t block is equivalent to a cube with sides of
1.6 m. The amount of key blocks N in the cavern’s walls
and roof was best fitted with a log-normal probability
density function with the expected mean MN=123 and the
standard deviation dN=14 (Fig. 8).
The probability density distribution and the predicted
block mass are depicted in Fig. 9. From this plot the
proportion of the blocks within a specified weight range
can be estimated in respect of the total number of unstable
blocks. It is also possible to estimate a probability for
finding blocks with a mass above or below a certain critical
threshold. The predictions regarding a block mass M were

Fig. 7.
Visualization of key block analysis for a randomly chosen 10 m
interval in the CLAB-2 facility undertaken using the RockBlock
computer code. Arrows point at potential key blocks

Fig. 8.
Simulated number of key blocks (vertical bars) for the CLAB-2 facility
for the N–S tunnel and best-fit log-normal probability plot (thick
line). Population mean MN=123, population standard deviation
dN=14

Fig. 9.
Simulated block weights in tonnes (vertical bars) and the best-fit log-
normal pdf plot (thick line) for the CLAB-2 N–S tunnel. Population
mean MW=235 t, population standard deviation dW=638 t
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approximated with a log-normal probability distribution
with the expected mean MW=235 t and the standard de-
viation dM=627 t. Despite excluding all blocks with a mass
of less than 10 t, the majority of the identified blocks were
still relatively small. For the benefit of clarity of the plot,
the horizontal scale in Fig. 9 was shrunk to about 1,000 t
as the amount of blocks beyond this range was very low,
making plotting and interpretation of such data difficult.
The largest block predicted from all 30 Monte Carlo sim-
ulations had the mass of 63,000 t; however, the probability
of finding such a block was extremely low.

Block stability for the E–W tunnel
The same type of predictions presented for the N–S tunnel
were also made for the E–W direction. To make the results
comparable between both directions, the same 10 t lower
cut-off for a block mass was used consistently. The amount
of key blocks was best fitted with a log-normal probability
density function with the expected mean MN=125 and the
standard deviation dN=16 (Fig. 10).
While there were no significant differences in probability
density functions for the amount of blocks in the N–S and
E–W tunnels, the predictions regarding block weights
showed more variation. On average, the predicted block
weights for the E–W tunnel had a mean of 307 t and
standard deviation of 977 t, although the best-fit theoret-
ical density function was log-normal (Fig. 11).

Discussion

The study attempted to predict the number and size of
potential key blocks for the CLAB-2 tunnel by using a
discrete fracture network model inferred from very limited
data.

Geological/structural homogeneity
The geological homogeneity at the CLAB site was assessed
by the non-parametric null hypothesis tests with fracture
intensity as the test parameter. The fact that the H0 tests
failed for boreholes D6-D3 and for D2-D8 could mean that
the fracture intensities within these two groups did not

belong to the same statistical population. It could, be
possible however, that the fracture intensities from D6 or
D2 belonged to the same population as the fracture in-
tensities found within the group D1-D4-D7. The different
orientation of the boreholes, however, meant this could
not be confirmed. The rejection of the null hypothesis test
might also be due to the existence of undetected weakness
zones intersecting one borehole but not the other. Con-
sequently, one borehole might include fracture clusters of
high intensity forming rather distinct deterministic
structures, while the other could have only ‘‘background’’
fracturing, i.e. fractures considered as crucial for the sto-
chastic network.
Caution must also be exercised when considering data sets
obtained from different measurement methods. The ac-
ceptance of the null hypothesis for the K-S test on bore-
holes KSI31 (borehole camera fracture data) and D5
(direct core observations) could be attributed to spatial
homogeneity of fracture intensities within the area em-
bracing both boreholes (Table 3). On the other hand, the
rejection of the null hypothesis in such a case does not
necessarily mean that the fractures belong to two different
populations.
It is not possible to provide a complete list of conditions
that have to be fulfilled in order to obtain reliable results
when performing statistical null hypothesis tests. Never-
theless, with the support from the homogeneity study of
fracture intensities at the CLAB site, it is considered that
the greatest reliability from testing will be obtained when:

1. Fracture data are derived using the same detection
method,

2. Tested data are taken from boreholes with the same
orientation and diameter,

3. Fractures are corrected for orientation sampling bias,
4. Fractures belonging to weakness zones are discarded.

The population tests using M-W and K-W procedures
were performed with 5% significance level and for K-S
methods, 10% significance level. There are no strict rules
as to the choice of significance level. In some circum-
stances it might be advisable to decrease the significance
level, e.g. where there are no data from outcrop mapping
and/or seismic survey and consequently any speculation of
the presence of different tectonic/lithological units would

Fig. 10.
Simulated number of key blocks (vertical bars) and the best-fit pdf
(thick line) for the E–W tunnel. Population mean MN=125, population
standard deviation dN=16

Fig. 11.
Simulated block weights (vertical bars) and the best-fit log-normal
pdf (thick line) for the E–W tunnel. Population mean MW=307 t,
population standard deviation dW=977 t
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be very tentative. In such a case it may be decided to make
the population tests more robust, i.e. less sensitive to
spatial variability of fracture intensities, and to decrease
the significance level of the test. By so doing, the influence
of undetected but theoretically existing fracture zones on
the structural/geological homogeneity is reduced.

Uncertainties of the DFN model
The discrete fracture network model for the CLAB site
summarized in Table 5 is the product of a stochastic
generation process and as such relies on many assump-
tions, each having its own uncertainty. The accuracy of the
final block analysis depends on the validity of the fracture
network model. The main sources of errors influencing the
reliability of the DFN model are: conceptual uncertainty,
the accuracy and precision of field measurements and
statistical uncertainty due to deviations of the theoretical
probability distributions from the observed data. In this
work no attempt was made to treat the uncertainty issue in
detail, but the model sensitivity analysis is worth consid-
ering in further studies. The conceptual model of the
CLAB site was derived from the interpretation of the ge-
ology at the site, refraction seismics and borehole mea-
surements.

Validation of the DFN model
Validation of the DFN model was one of the crucial aspects
in evaluating the appropriateness of the generated sto-
chastic fracture network. Albeit the applied computer code
allows very sophisticated mathematical models to be set
up, the interpretation of the final product must be followed
by critical verification. It would be naı̈ve to believe that
even with carefully evaluated input variables, one set of
Monte Carlo simulations would provide a reliable out-
come. Modelling is a trial and error process, conditioned
on resetting and refining input parameters until an ac-
ceptable agreement with field observations is reached. For
example, after finding the ‘‘true’’ P32, the synthetic sam-
pling resulted in a P10 higher for KSI31 than for KSI32,
while the observed fracture intensities showed the con-
trary. This discrepancy was probably caused by applying
too low a Terzhagi correction factor to reduce orientation
sampling bias. As a consequence, there was insufficient
compensation made for the subvertical fractures in vertical
borehole KS132. To correct for this, the correction factor
was increased from 5 to 6, which provided an appropriate
P10 in KSI31 and KSI32 for the synthetic sampling and field
observations. This operation did not make any substantial
changes to the estimated fracture radii or the spatial
fracture pattern. The new fracture orientation input data
were then ‘‘bootstrapped’’ and incorporated in the DFN
model.

Rock block analysis
The results from key block studies showed a relatively
large variation both in respect of the number of blocks and
their weights. This variation was mainly caused by the
observed natural scatter of the input parameters for the
DFN model, such as fracture radii variation (Fig. 6) or

fracture orientation. Expanding the size of the DFN model
and running more Monte Carlo realizations would prob-
ably make the pdf’s from the block stability analysis more
representative. In this study, however, it was decided to
focus on demonstrating the application of the DFN model
for predicting key blocks rather than embarking on a
quantification of the accuracy of the predictions.
It should be pointed out that a block stability analysis for
the CLAB-2 site was previously undertaken by Stille and
Fredriksson (1996). They used the computer code Un-
wedge (developed by J. Carvalho, E. Hoek and B. Li from
Rock Engineering Group, University of Toronto) and in
contrast to the analysis presented in this study, they took
into consideration friction along fracture planes and dis-
tribution of rock stress around the tunnel perimeter. Stille
and Fredriksson derived the mass and shape of key blocks
by studying ten combinations, each with three fracture
orientation sets, where six orientation sets were applied in
total. For each combination the potentially largest key
block was found. Stille and Fredriksson found the maxi-
mum weight of key block to be about 178,000 t, which is
three times larger that the outcome from this study. As
their analysis was based on different constraints, however,
there were considerable problems in comparing the two
approaches. However, the results from the present study
suggest that the DFN approach is likely to reduce the
overestimation of block sizes resulting from their study as
the fractures used here were of finite size and hence more
realistic. However, in further studies, it would be inter-
esting to compare the two methods using identical input
fracture variables.
By relating rock block statistics for the N–S and E–W
oriented tunnels, it was concluded that the differences
were not very significant but sufficient to clearly link the
prediction outcome with the direction of the long axes of
the tunnels. The amount of unstable blocks for the N–S
and E–W tunnels approximated with log-normal pdf had
almost the same means (see Figs. 8 and 10). It was pre-
dicted that on the whole, a greater number of larger blocks
would form around the E–W tunnel perimeter than
around the N–S tunnel, as the mean of the pdf for the E–W
tunnel was 307 t (Fig. 11) compared with the mean pdf of
235 t for the N–S tunnel (Fig. 9).
As an alternative to the predictions of the number of
blocks and block weights inferred directly from the best-fit
probability density functions, a simpler option is pro-
posed. The number of unstable blocks within a specific
weight interval found from the experimental frequency
plot could be used, i.e. not approximated by any contin-
uous statistical distribution but taken directly from block
statistics. Table 6 presents the number of unstable blocks
corresponding to several arbitrary weight ranges for the
two tunnel directions.
The examination of the pdf’s for the prediction of the
number of blocks/weights for both tunnel orientations
suggests that the N–S direction is possibly a better alter-
native than the E–W direction. Both the amount of un-
stable blocks larger than 1,000 t and their average weight
were lower for the N–S tunnel.
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The study at the CLAB site illustrated the applicability of
discrete fracture network modelling for rock block analy-
sis. These kinds of predictions appear to have the greatest
value in the early stages of an excavation project when
different excavation scenarios are being considered. By
testing how the orientation of the tunnel affects the block
statistics, an optimal tunnel direction (and also its di-
mensions and shape) can be found in which the amount
and size of key blocks will be minimal.
It is intended to carry out further studies to examine how
additional fracture data will influence stability predictions
for the CLAB-2 facility and how the block statistics re-
spond to individual variations in the input parameters
used for the DFN model generation.

Conclusions

A stochastic discrete fracture network model for the
CLAB site located in crystalline basement on the south-
east coast of Sweden was built. Prior to model genera-
tion a study of the geological/structural homogeneity
was undertaken by carrying out null hypothesis tests on
fracture intensities. Non-parametric Kolmogorov-Smir-
nov, Mann-Whitney and Kruskal-Wallis statistics and
the moving average procedure carried out on fracture
intensities from 12 boreholes provided results that
supported the hypothesis of geological/structural homo-
geneity of the modelled rock volume. For the generation
of a stochastic fracture model, fracture centres were
assigned random positions, their orientations were
directly ‘‘bootstrapped’’ from the observed field data and
their size was inferred from aperture measurements and
empirical relationship to the joint length.
The modelled fracture network was used for predicting the
key blocks for two different orientations of the 115 m long
tunnel: one actually existing – the CLAB-2 facility striking
N–S – and another postulated tunnel oriented E–W.
Comparison of the results for block predictions for the two
tunnel directions showed small but distinct differences in
probability density distributions for the amount of un-
stable blocks and their weights. The predictions presented
may be valuable for the design of tunnel support and in
decision-making on the optimal positioning of an under-
ground cavern.
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