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Autophagy degrades toxic materials and old organelles, 
and recycles nutrients in eukaryotic cells. Whereas the 
studies on autophagy have been reported in other eu-
karyotic cells, its functioning in plants has not been well 
elucidated. We analyzed the roles of lë q̂dNM genes, 
which are autophagy-related. Two rice q̂dNM= genes - 
lë q̂dNM~ and lë q̂dNMÄ= - share significant sequence 
homology (about 75%), and were ubiquitously expressed 
in all organs examined here. GUS assay indicated that 
lë q̂dNMÄ= was highly expressed in the mesophyll cells 
and vascular tissue of younger leaves, but its level of ex-
pression decreased in older leaves. We identified T-DNA 
insertional mutants in that gene. Those çë~íÖNMÄ mutants 
were sensitive to treatments with high salt and methyl 
viologen (MV). Monodansylcadaverine-staining experiments 
showed that the number of autophagosomes was signifi-
cantly decreased in the mutants compared with the WT. 
Furthermore, the amount of oxidized proteins increased in 
MV-treated mutant seedlings. These results demonstrate 
that OsATG10b plays an important role in the survival of 
rice cells against oxidative stresses. 
 
 
INTRODUCTION 
 
Ubiquitination and autophagy are two separate mechanisms 
that degrade components, e.g., proteins and organelles, in 
eukaryotic cells. Whereas the former process breaks down a 
specific component that is tagged with ubiquitin, the latter is 
non-specific, causing bulk degradation (Kopitz et al., 1990). 
Autophagy transports aged organelles such as mitochondria 
and wastes generated by various metabolisms into the vacuole 
and lysosome for their degradation and re-use (Baba et al., 
1994; Kwon and Park, 2008). 

The autophagy-mediated degradation process has been well 
elucidated in yeast (Takeshige et al., 1992). Various waste 
products or aged organelles begin to be surrounded by a dou-
ble-membrane pre-autophagosomal structure (PAS), which 

then expands to form an autophagosome. After maturation the 
autophagosome attaches to the vacuole and fuses with the 
vacuolar membrane. The internal materials are delivered and 
broken down by acid hydrolases; eventually, those degradation 
products are presumably transported back to the cytoplasm 
(Bassham et al., 2006; Schworer and Mortimore, 1979). It is 
thought that autophagy plays important roles in the survival of 
an organism by recycling and redistributing degraded materials, 
especially under conditions of nutrient starvation. 

The autophagosome is formed by various autophagy-related 
proteins (ATGs) (Kametaka et al., 1996; Matsuura et al., 1997; 
Mizushima et al., 1998). Two conjugation pathways are in-
volved during membrane expansion, a procedure similar to that 
of ubiquitin (Mizushima et al., 1998). ATG7 functions as an E1-
like enzyme, and ATG3 and ATG10 as E2-like enzymes to 
deliver ATG8 and ATG12 to phosphatidyl-ethanolamine (PE) 
and ATG5, respectively. Both the ATG8-PE dimer and ATG12-
ATG5 dimer are required for PAS formation (Tanida et al., 
1999; Thompson et al., 2005). Although the ATG12-ATG5 
conjugate functions as an E3-like enzyme that directly pro-
motes ATG8-PE formation (Hanada et al., 2007), the detailed 
functions of that conjugation reaction remain veiled (Shao et al., 
2007). Shintani et al. (1999) have observed in yeast that after 
ATG12 is activated by ATG7, the former is transferred to the 
Cys-133 residue of ATG10 to form an ATG12-ATG10 thioester, 
and then ATG12 is conjugated with ATG5. Phillips et al. (2008) 
also have reported that ATG10 is essential for ATG12-ATG5 
conjugation in ^ê~ÄáÇçéëáë. In rice, Su et al. (2006) have found 
that OsATG8 interacts with OsATG4, which functions as cys-
teine protease to cleave the C-terminal region of OsATG8.  

Functional studies of autophagy under nutrient starvation 
have been performed in yeast, mammals, and plants (Doelling 
et al., 2002; Funakoshi et al., 1997; Hanaoka et al., 2002; Mori-
yasu and Ohsumi, 1996; Mortimore et al., 1983; Tsukda and 
Ohsumi, 1993). Additional roles have also now been proposed 
(Fujiki et al., 2007; Liu et al., 2005). Xiong et al. (2007a) have 
shown that RNAi transgenic plants of ^í q̂dNU~ are hypersen-
sitive to hydrogen peroxide and methyl viologen (MV), and 
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accumulate more oxidized proteins, hence suggesting that 
autophagy helps to remove oxidized proteins that form under 
conditions of oxidative stress. 

Here, we show differential expression patterns of rice 
q̂dNM~ and q̂dNMÄK In addition, we present a functional 

study of the q̂dNMÄ gene.  
 
MATERIALS AND METHODS 
 
Plant materials and growing conditions 
A japonica cultivar, ‘Dongjin’, of rice (lêóò~=ë~íáî~) was used in 
this study. Seeds of çë~íÖNM and sibling WT plants were steril-
ized with 50% hypo-chlorite for 30 min, washed three times with 
sterile distilled water, and placed on an MS medium (Murashige 
and Skoog, 1962). One-week-old seedlings were acclimated for 
1 d by opening the Petri dish lids. 
 

Screening of çë~íÖNMÄ=mutants from T-DNA tagging lines 
T-DNA insertional mutants in the lë q̂dNMÄ gene were obtained 
by searching the TES database (http://signal.salk.edu/cgi-bin/ 
RiceGE) (An et al., 2003; Jeong et al., 2006). Homozygous prog-
eny were identified by genotyping the seedlings, using gene-
specific primers and a primer located in the inserted T-DNA.  
  

Oxidative stress treatments  
One-week-old seedlings grown on a solid MS medium were 
exposed to our stress treatments. For high salt, the seedlings 
were placed for 12 h on an MS medium containing 250 mM 
NaCl. Afterward, they were allowed to recover at room tem-
perature. For the MV treatment, seedling roots were sub-
merged into a 20 μM paraquat solution. After 1 day, those 
seedlings were transferred to distilled water for recovery. Dur-
ing all these treatments, seedlings were harvested at 3-h inter-
vals for RNA isolation and real-time PCR analysis. 
 
RT-PCR and quantitative real-time PCR  
Samples were homogenized in a milling machine (Retsch, 
Germany), and total RNA was extracted with trizol reagent 
(Invitrogen, USA). First-strand cDNA synthesis and 33 reaction 
cycles of RT-PCR were conducted as described previously 
(Han et al., 2006). Primers were designed at different exons, 
enabling us to differentiate those cDNA products from genomic 
DNA contamination. Real-time PCR was performed in a Roche 
LightCycler II as previously described (Han et al., 2006), using 
a 20-μl solution containing 1 μl cDNA solution, 20 pmole of 
gene-specific primers, and 1× SYBR premix Ex Taq (Takara 
Shuzo, Japan). lë^ÅíáåN mRNA served to normalize the rela-
tive expression levels of lë q̂dNM~=and=lë q̂dNMÄ.  
 
Vector construction for localization and transient 
expression of the lë q̂dNMÄWWëdcm gene  
To construct the localization vector, we obtained the full-length 
cDNA clone of lë q̂dNMÄ by PCR, using two primers: 5′- 
ggatccTTGTGATGGGAG GCTCCTCA-3′ and 5′- actagtCTCC-
TGTGTTTTCAGTCCAG-3′ (small letters indicate _~ãHI- and 
péÉI-recognized sequences, respectively). This amplified cDNA 
clone was inserted into the pBluescripts SK vector (Stratagene, 
USA), which was digested with bÅçRV. The subclone was 
double-digested with _~ãHI and péÉI, then introduced into the 
_~ãHI/péÉI site in pGA3452, which contains the ëdcm gene 
driven by the maize ìÄáèìáíáå promoter. Protoplasts derived 
from the rice Oc cell line were used for our experiments on 
transient expression (Hattori et al., 1994). Protoplast prepara-
tion and transformation procedures were performed via the 
methods described by Woo et al. (2007) and Han et al. (2006). 

Gus assay and microscopic analysis  

Histochemical GUS staining was carried out according to the 
method of Jeon et al. (2000b). After staining, samples were 
washed and fixed with 70% ethanol. They were then observed 
with the naked eye and photographed. The procedure for 
histological observation was performed as described by Jung et 
al. (2006). 
 
Monodansylcadaverine staining and microscopy 
Root tissues from MV-treated seedlings were stained with 0.75 
mM monodansylcadaverine (MDC) as previously described 
(Contento et al., 2005). They were observed under a Zeiss 
Axioplan II compound microscope equipped with an AxioCam 
HRC digital imaging system (Carl Zeiss, Germany). MDC-
stained tissues were visualized with a DAPI-specific filter. Auto-
phagosomes were counted as described by Xiong et al. 
(2007a).  
 
Measurement of oxidized proteins  
The aboveground (shoots) and underground (roots) tissues 
were collected from MV-treated seedlings to determine their 
amounts of oxidized proteins. Samples were homogenized in 
a Retsch milling machine, and total protein was obtained with 
an extraction buffer of 10 mM NaCl, 10 mM MgCl2, 5 mM 
EDTA, 10 mM β-mercaptoethanol, 1 mM PMSF, and 25 mM 
Tris-HCl (pH 7.5). After the extracted protein was quantified 
with a Bradford (1976) assay, 500 μg of total protein was 
transferred into two new tubes. To one of those tubes, 100 ml 
of 2 M HCl containing 10 mM 2,4-Dinitrophenylhydrazine 
(DNPH) was added, while 1 ml of 2 M HCl was added to the 
other tube. Following incubation for 1 h at room temperature, 
the protein was precipitated with 10% TCA (final concentra-
tion) for 20 min on ice. After centrifugation at 13,000 rpm for 
15 min, the pellets were washed with 1:1 ethanol:ethyl ace-
tate, then dissolved in 20 mM sodium phosphate buffer (pH 
6.5) containing 6 M guanidine-HCl. The difference in spec-
trums between the DNPH-treated sample and the HCl control 
was measured as described previously (Kim et al., 2005; 
Levine et al., 1990; Oliver et al., 1987). 
 
RESULTS 
 
Isolation of lë q̂dNMÄ full-length cDNA  
Two q̂dNM-like genes are located on rice Chromosomes 4 
and 12. This occurrence is different from yeast and ^ê~ÄáÇçéëáë, 
where q̂dNM is a single-copy gene (Fig. 1). We named these 
rice genes lë q̂dNM~ and lë q̂dNMÄ. Comparison of their 
full-length cDNA clones with genomic DNA sequences re-
vealed that lë q̂dNM~ is composed of five exons while 
lë q̂dNMÄ comprises seven (Fig. 1A). Exon 3 in l~ q̂dNMÄ 
encodes 20 amino acid residues but is not present in 
lë q̂dNM~. These amino acids are also found in the ^ê~ÄáÇçéJ
ëáë ATG10 but not in yeast ATG10. Whether the two proteins 
are functionally different is unknown. The last two exons of 
lë q̂dNMÄ appear to be derived from a single exon by the 
addition of a 441-bp intron. That last intron is not present in the 
genome of ^ê~ÄáÇçéëáë or humans. 
lë q̂dNM~ and lë q̂dNMÄ encode for a protein of 198 and 

222 amino acid residues, respectively, and are 75% identical 
(Fig. 1C). OsATG10s are moderately homologous (39-43%) to 
^ê~ÄáÇçéëáë AtATG10. However, the C domain among them is 
more conserved, especially the cysteine residue, which is nec-
essary for binding to ATG12 (Shintani et al., 1999). In contrast, 
the rice ATG10s have significantly diverged from yeast ATG10 
(11-13%). 
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Expression patterns of lë q̂dNM~ and lë q̂dNMÄ  
Expression profiles for lë q̂dNM~ and lë q̂dNMÄ were stud-
ied by quantitative RT-PCR, using gene-specific primers. Pat-
terns for those genes in 7-d-old seedlings were somewhat dis-
similar (Fig. 2A). Although both were expressed in all samples 
examined, transcript of lë q̂dNMÄ was more abundant in the 
leaves and maturation zone of the roots, whereas the level of 
lë q̂dNM~ transcript was higher in the leaf blades compared 
with other tissues. Because autophagy is known to play roles in 
degrading cellular components in old cells, we expected that 
the autophagous genes would be more actively expressed in 
the mature tissues compared with young cells. However, in 3-
week-old plants, lë q̂dNMÄ transcript levels were higher in the 
younger leaf blades, whereas lë q̂dNM~ expression was more 
or less similar regardless of tissue age (Fig. 2B). 
 
Sub-cellular localization of OsATG10b 
To locate it within a cell, OsATG10b protein was fused to the N-
terminal region of sGFP and introduced into protoplasts iso-
lated from Oc cells. We found that this fusion protein was local-
ized in the cytosol (Fig. 3A), which was merged with that of 
mRFP (Figs. 3B and 3C). Our result is consistent with a previ-
ous report that ATG10 in yeast plays a role in the cytosol (Phil-
lips et al., 2008).  
 
Identification of T-DNA insertional mutants in the  
lë q̂dNMÄ gene  
To study the functional roles of lë q̂dNMÄ, we obtained two 
mutant lines from T-DNA insertional populations (An et al., 
2003; Jeon et al., 2000a; Jeong et al., 2006; Ryu et al., 2004). 
These alleles were designated çë~íÖNMÄJN=and çë~íÖNMÄJO=(Fig. 
4A). T-DNA was introduced into the sixth intron in both alleles. 
Using RT-PCR, we demonstrated that the two are null alleles 
(Fig. 4B). 

Because the direction of the drp reporter gene within the T-
DNA was the same as the direction of transcription in çë~íÖNMÄJN, 
we examined whether the two genes form a translational fusion. 
During construction of the binary vector for T-DNA tagging, we 
included multiple splice acceptor sites in front of the drp gene, 
allowing transcriptional and translational fusions regardless of the 

A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

B 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. Quantitative RT-PCR analyses of lë q̂dNM~ and 

lë q̂dNMÄ=transcripts. (A) Expression patterns in 1-week-old seed-

lings. Roots were dissected into division zone (DZ), elongation zone 

(EZ), and maturation zone (MZ). Shoots were separated into basal 

part (BP), leaf sheath (LS), and leaf blade (LB). (B) Expression 

patterns in 3-week-old seedlings. Blades were collected from 1
st
 

(oldest), 2
nd

, and 3
rd 

(youngest) leaves. Relative transcript ratio 

implies lë q̂dNM transcript levels normalized by lë^ÅíáåN mRNA 

level.

Fig. 1. (A) Comparison of genomic

structures among lë q̂dNM~, lë q̂d

NMÄ, and í̂̂ qdNM. Boxes are exons

and lines between boxes are introns.

Black boxes are coding regions; white

boxes indicate untranslated regions.

Numerals in black boxes and under

lines indicate number of nucleotides in

each exon and intron. (B) Phylogenic

tree. (C) Alignment of amino acid se-

quences. Black boxes indicate identical

amino acids; shaded regions are similar

residues. Conserved cysteine residues

required for binding to ATG12 are indi-

cated by *. 
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Fig. 4. T-DNA insertional mutants in lë q̂dNMÄ. (A) Insertion posi-

tions within gene. T-DNA was inserted into 6th intron in both 

çë~íÖNMÄJN and çë~íÖNMÄJO=alleles. Boxes indicate exons; lines are 

introns. Dotted arrows (F/R) indicate positions of primers used for 

RT-PCR. Arrows above triangles are drp reporter. (B) RT-PCR 

analyses of lë q̂dNMÄ=expression. lë^ÅíáåN=was used to monitor 

equal loading. t/t = homozygous plant. w/w = sibling wild type. 

 
 
insertion position (Jeon et al., 2000a). GUS analysis showed that 
the reporter gene was expressed in the çë~íÖNMÄJN=line (Fig. 5). 
Similar to our real-time PCR observations, GUS activity was 
detected in almost all the tissues from 7-d-old seedlings (Fig. 5A). 
In the roots, activity was higher in the tips (Figs. 5B and 5C). 
Among the three types of leaf samples, GUS intensity was similar 
(Fig. 5D). In 3-week-old plants, lë q̂dNMÄ promoter-driven GUS 
activity was higher in the youngest leaf and very low in the oldest 
one, also consistent with our real time RT-PCR results (Fig. 5E). 
A cross section of the basal part of the plant showed that activity 
was strongly detected in both the young leaf and the phloem of 
the old leaf (Fig. 5F). In the former, GUS activity was observed in 
the mesophyll and phloem cells (Figs. 5G and 5H). These results 
indicate that the lë q̂dNMÄ promoter is more active in young 
and active cells. 
 
The çë~íÖNMÄJN mutants are sensitive to stresses  
Mutations of an autophagy component can cause senescence to 
accelerate under stress conditions (Xiong et al., 2007a; 2007b). 
Therefore, we examined whether our çë~íÖNMÄ mutants also had 
hypersensitive responses to stresses, such as from treatment 
with high salt or methyl viologen. Wild type and çë~íÖNMÄ mutants 
were germinated and grown on MS media. Under the normal 
conditions, the mutants were not different from WT (Figs. 6A and 
6B). Seven-day-old seedlings were exposed to 250 mM NaCl 
and incubated at 30°C for 12 h. Afterward, they were displaced 
into distilled water for recovery. Compared with their wild-type 
siblings, the mutant seedlings recovered more slowly and some 
died (Figs. 6C and 6D). We also examined the effect of MV, an 
herbicide widely used for inducing oxidative stress. Seven-day-
old seedlings were treated with 20 µM MV for 1 d, followed by 

recovery for 4 to 5 d. Whereas most wild-type siblings recovered 
after the treatment, none of the mutants recovered and all 
showed severe growth retardation and defects (Figs. 6E and 6F). 
These results indicate that the lë q̂dNMÄ gene is necessary for 
conferring tolerance to such stresses.  

Transcript levels for lë q̂dNM~ and lë q̂dNMÄ in the leaf 
sheaths were not altered by MV (Fig. 6G). However, in the 
blades, expression was reduced by that treatment (Fig. 6H-6J). 
In the first (oldest) leaves, transcript levels of both genes were 
decreased; expression of lë q̂dNMÄ slowly declined while that 
of lë q̂dNM~ was rapidly diminished (Fig. 6H). The lë q̂dNM~ 
transcript level was reduced to about one-half within 3 h of 
treatment. Transcript levels of lë q̂dNM~ also were rapidly 
decreased by MV in the second and third leaves, whereas 
those of lë q̂dNMÄ were unaffected (Figs. 6I and 6J). 

GUS analyses of the çë~íÖNMÄJN plants produced similar re-
sults (Fig. 7). Staining intensity in the leaf blades slowly de-
clined during MV exposure (Fig. 7A). In the roots, GUS activity 
remained only in the tips after that treatment (Fig. 7B). 
 
The number of autophagosomes is decreased by MV  
treatment in çë~íÖNMÄ mutants  
Most ATG proteins, including ATG10, function in the formation 
of autophagosomes (Patel et al., 2006; Shintani et al., 1999). 
Therefore, mutations in ATG genes should lead to a failure of 
autophagy generation. We counted the autophagosomes in 
root cells of 7-d-old seedlings via MDC-staining, which is rou-
tinely used for observing autophagy in plants and mammals 
(Biederbick et al., 1995; Contento et al., 2005). Autophagy was 
rare in either the WT plants or çë~íÖNM mutants before stress 
was applied (data not shown). After MV treatment, however, 
the number of autophagosomes rose significantly in both geno-
types (Fig. 8A). However, the number in both mutant cells was 
only 30-35% of the amount found in WT (Fig. 8B). 
 
Oxidized proteins are accumulated in MV-treated çë~íÖNMÄ 
mutants 
Autophagy functions to transfer oxidized or modified proteins  
and organelles into the vacuole or lysosome (Bassham, 2007).  
Xiong et al. (2007a) have reported that more oxidized proteins  
are accumulated in ^í^qdNU~-RNAi transgenic plants. We  
examined whether our mutations in lë q̂dNMÄ also altered  
their ability to remove oxidized proteins. The 7-d-old seedlings  
of çë~íÖNMÄJN and WT were treated with 20 µM MV and sam- 
pled at 12-h intervals to quantify oxidized proteins. For shoots  
of mutant plants, the amount of such proteins gradually in- 
creased up to 1.5 times in 12 h and about 2 times in 24 h. On  
the other hand, the amount of oxidized proteins in WT was  
slightly increased (about 1.2 times) in 12 h, but did not further  
increased in 24 h (Fig. 8C). Similar induction patterns were  
observed from the mutant roots (Fig. 8D). The MV treatment  
also increased the level of oxidized proteins in the çë~íÖNMÄJO  
mutant (data not shown). This result indicates that the retarda- 
tion of autophagosome formation in the çë~íÖNMÄ mutant 

Fig. 3. Sub-cellular localization of

OsATG10b::sGFP fusion protein. Pro-

toplasts were derived from rice Oc

cells and transfected with (A) érÄáèJ

ìáíáåWWlë q̂dNMÄJëdcm or (B) érÄáèJ

ìáíáåWWãocmK (C) Merged image of A

and B. (D) Image in bright field.  



 Jun-Hye Shin et al. 71 

 

 

 

 

A            B        D         E 
 
 
 
 
 
 

C 
 
 
 
 
 
 

F                G                        H 
 
 
 
 
 
 
 
 
 

A          C          D         E            F 
 
 
 
 

B 
 
 
 
 

G                            H 
 
 
 
 
 
 
 
 
 

I                             J 
 
 
 
 
 
 
 
 
 
 
 
causes a decrease in the removal of oxidized proteins. 
 
DISCUSSION 
 
Until recently, autophagy has been mainly reported to function 
under starvation and stress. However, Slavikova et al. (2005) 
first observed autophagosome accumulation under normal 
growing conditions. Inoue et al. (2006) also reported that  
autophagy is constitutively present in ^ê~ÄáÇçéëáë root tip cells. 

Similarly, we found here that lë q̂dNM genes are ubiquitously  
expressed in rice. GUS analyses with çë~íÖNMÄJN seedlings  
showed that lë q̂dNMÄ is expressed during normal growth.  
Shao et al. (2007) have reported that no free ATG5 occurs in  
cells because it rapidly binds with ATG12 right after its  
translation. Phillips et al. (2008) also have noted that almost all  
ATG5 is present in the conjugated form regardless of plant age or 
nutritional status. This ATG12-ATG5 conjugation is caused by 
the action of ATG7 and ATG10, which indicates that the latter is

Fig. 5. GUS assay of çë~íÖNMÄJN plants. (A)

1-week-old seedling. (B) Root tip (RT) and

elongation zone (EZ) of (A) were magnified.

(C) Maturation zone (MZ) of root in (A) was

magnified. (D) Leaf blades of 1
st
, 2

nd
, and 3

rd

leaves from 1-week-old plant. (E) Leaf

blades from 3-week-old seedling. (F) Cross

section of basal part from 1-week-old seed-

ling. (G) Cross section of leaf blade from 1-

week-old seedling. (H) Magnification of

vascular bundle region in (G). MP, meso-

phyll cells; PH, phloem. 

Fig. 6. Effect of high salt or methyl viologen

on WT and mutants. Leaves of one-week-

old çë~íÖNMÄ seedlings and wild-type sib-

lings (A, B) were treated with 250 mM NaCl

(C, D) or 20 µM MV (E, F). (G-J) Quantita-

tive RT-PCR analyses of lë q̂dNM~ and

lë q̂dNMÄ transcript levels in leaf sheath

(G) and leaf blades from 1
st
 (H), 2

nd
 (I), and

3
rd
 (J) leaves during MV treatment. Samples

were collected at 3-h intervals. Transcript

levels were normalized by lë^ÅíáåN mRNA

level. 



72 lë q̂dNMÄ Is Needed against Oxidative Stresses 

 

 

 

 

A 
 
 
 
 
 
 
 
 

 

 

B  
 
 
 
 
 
 

 

 

A 
 
 
 
 
 
 
 
 
 
 
 

B 
 
 
 
 
 
 
 
 
 
 

C                      D 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
constitutively present for the rapid formation of that conjugate. 

The lë q̂dNMÄ gene is more active in young tissues, implying 
that plants prepare ATG10 in the young cells in order to readily 
form autophagy. Thompson et al. (2005) have observed that 
autophagy functions as a regulator for maintaining cell homeo-

stasis. Defects in autophagy can trigger programmed cell death, 
or PCD (Phillips et al., 2008). Our histological analyses showed 
that lë q̂dNMÄ is strongly expressed in the phloem tissue of old 
leaves. Organic molecules, such as sugars, amino acids, and 
certain hormones (Durrant and Dong, 2004; Kramer and Bennett, 

Fig. 7. Gus assay of çë~íÖNMÄJN seedlings during MV treat-

ment. (A) Whole seedlings stained for GUS activity at 3-h

intervals. (B) Activity in mature zone of seedling roots. 

Fig. 8. Autophagy formation and oxidized protein levels.

(A) Monodansylcadaverine staining of root tips from 1-

week-old çë~íÖNMÄJN and WT seedlings after treatment 

with 20 µM MV for 12 h. Stained samples were observed 

under fluorescent light (left) or visible light (right). Arrow-

heads indicate autophagosome. (B) Number of auto-

phagosomes per root section. Average numbers were

determined from 6 samples. (C, D) Levels of oxidized 

proteins in shoots (C) and roots (D). Seedlings treated with 

20 µM MV were sampled at 12-h intervals and divided into 

shoots and roots. Five hundred micrograms of protein was 

used for measuring amount of oxidized proteins.  
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2006), and even mRNAs and proteins (Banergee et al., 2006; 
Huang et al., 2005) are transported in the phloem through sieve 
tube elements. This re-mobilization is important for plant survival, 
especially under severe environmental conditions, including nu-
trient starvation and oxidative stresses. Therefore, OsATG10b 
may play essential roles in phloem cells by delaying PCD, allow-
ing the effective movement of degraded materials such as amino 
acids, sugars, and hormones. 

Our çë~íÖNMÄ=mutants were hypersensitive to high salt and MV. 
Xiong et al. (2007b) have reported that ^í^qdNU~=RNAi plants 
accumulate hydrogen peroxide, even under normal conditions. 
We also observed that, even before MV treatment began, hydro-
gen peroxide and MDA levels were higher in the çë~íÖNMÄJN 
mutants compared with the WT (data not shown). To examine 
whether those hypersensitive phenotypes are caused by a failure 
in autophagosome formation, we conducted MDC staining. The 
number of autophagosomes was remarkably decreased in the 
mutants, similar to that previously reported (Xiong et al., 2007a). 
However, about 30% of the autophagosomes still remained. 
Autophagosome formation in those çë~íÖNMÄ mutants is likely 
due to lë^qdNM~. The fact that knocking out lë^qdNMÄ re-
duced such formation demonstrates that those two genes are not 
functionally redundant. Although both were expressed in all or-
gans examined, their expression patterns differed somewhat. For 
example, lë^qdNM~ was rapidly decreased in the leaf blades 
during MV treatment compared with a slower decline for 
lë^qdNMÄ. Likewise, the two proteins might be functionally di-
vergent. The 20 extra amino acid residues in OsATG10b may 
have additional functions not present in OsATG10a. Yoshimoto 
et al. (2004) have found that single mutants of ^í^qdQ that exist 
as two copies in ^ê~ÄáÇçéëáë do not cause phenotype alterations. 
Therefore, it is possible that OsATG10b is functionally different 
from OsATG10a.  
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