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Abstract
In this paper, we investigate whether efficiency and strategy-proofness of allocation
mechanisms defined on a “local” preference set imply dictatorship. Although there is
an extensive literature on the characterization of efficient and strategy-proof allocation
mechanisms defined on the whole preference set, little attention has been given to a
local characterization even in two-agent economies. This paper presents three results.
First, we point out that locally efficient, strategy-proof, and nondictatorial alloca-
tion mechanisms exists even in two-agent economies, when boundary allocations can
be efficient. Second, excluding such exceptional cases, we show that in economies
where the number of goods equals or exceeds the number of agents, any efficient and
strategy-proof allocation mechanism defined on any local preference domain is alter-
nately dictatorial, that is, it always allocates the total amount of goods to some single
agent, even if the receivers vary. Third, we clarify that the local characterization is
generally an open question even with allocation conditions such as the minimum con-
sumption guarantee, and show that efficiency and strategy-proofness are incompatible
with allocation conditions when all agents have the same local preference set.
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1 Introduction

Following the seminal work of Hurwicz (1972), the manipulability and efficiency of
allocation mechanisms in pure exchange economies have been studied intensively.
In particular, many studies have been stimulated by the work of Zhou (1991), who
established that any Pareto-efficient and strategy-proof allocation mechanism is dic-
tatorial in exchange economies with two agents having classical (i.e., continuous,
strictly monotonic, and strictly convex) preferences. Although the dictatorship result
has been strengthened and extended in various directions, little attention has been
paid to local characterization. Hence, in this paper, we aim to investigate this issue,
responding to the following research question: Does the dictatorship result hold if
an allocation mechanism is efficient and strategy-proof only on a local preference
domain? To ask the question positively, does local efficiency and strategy-proofness
of allocation mechanisms allow a nondictatorial allocation? This would be a natural
question to ask not only from a theoretical perspective but also from a practical per-
spective because it is quite likely that a planner will have some information about the
agents’ preferences, which allows him/her to narrow the focus to a local preference
set rather than the whole preference set.

Zhou’s (1991) dictatorship result in two-agent economies has been strengthened
by being proven in the domain of restricted preferences. See Schummer (1997), Ju
(2003), Hashimoto (2008), and Momi (2013a).1 Note that these studies restricted the
types of preferences, and we will narrow the domain of classical preferences to a
neighborhood of a given preference in this paper.

First, we emphasize that there exist Pareto-efficient, strategy-proof, and nondicta-
torial allocation mechanisms defined on a local preference domain even in the case
of two-agent economies.2 This is in sharp contrast to the abovementioned dictator-
ship result on the whole preference domain. In an economy with two agents and
two goods, consider allocation where one agent’s consumption is on the boundary of
the agent’s consumption set. For many reasonable preferences, the allocation will be
Pareto efficient despite an inequality of marginal rates of substitution. The mechanism
that always assigns this allocation is strategy-proof and nondictatorial. Furthermore, it
is locally efficient because the allocation keeps being Pareto efficient for preferences
in a neighborhood. In the Appendix, we provide an illustration of such an example.
Although the example should be noted as a positive result, it is exceptional in that it
ignores what Pareto efficiency usually imposes on allocation mechanisms, that is, the
equality of the marginal rates of substitution of goods among agents. To exclude such
cases, we assume that the upper contour set of preferences at any positive consumption
is a strictly convex set included in the interior of the consumption set.

Recently, the dictatorship result of Zhou (1991) has been extended to many-agent
economies. As pointed out by Satterthwaite and Sonnenschein (1981) and Kato and
Ohseto (2002), there exist Pareto-efficient, strategy-proof, and nondictatorial allo-
cation mechanisms in many-agent economies, but these are typically alternating

1 However, Nicolò (2004) showed a Pareto-efficient, strategy-proof, and nondictatorial mechanism in the
domain of Leontief preferences.
2 Tierney (2019) showed the possibility result with quasilinear preferences.
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dictatorships. Momi (2017) proved the alternating dictatorship result in many-agent
economies under the condition that the number of goods equals or exceeds the number
of agents, and subsequently proved the result without such a condition (Momi 2020).

In this paper, we extend Momi’s (2017) approach and show that if the number
of goods equals or exceeds the number of agents, any Pareto-efficient and strategy-
proof allocation mechanism defined on any local preference domain is alternately
dictatorial. We leave examining the issue without the condition on the numbers of
agents and goods to future research.

It is important to note that we cannot directly extend the previous studies on the
whole preference set to the local characterization problem. The difficulty is that most
studies have used specific, carefully constructed preference profiles in their proofs, and
an arbitrarily given local preference set would not include such a specific preference
profile. In particular, most of the abovementioned studies of two-agent economies used
a preference profile where both agents have the same preference. Although Hashimoto
(2008) and Momi (2013a) proved the local characterization in two-agent economies
with Cobb–Douglas preferences, an arbitrarily given local preference set of classical
preferences might not include any Cobb–Douglas preferences.3 Replacing the Cobb-
Douglas preferences used in Momi (2017) with preferences in an arbitrarily given
preference set is one of the difficulties we overcome in this paper, as we will discuss
later. We cannot apply the approach of Momi (2020) for the same reason. In the proof,
Momi (2020) replaced all but two of the agents’ preferences with a common prefer-
ence, and such replacements are not possible in an arbitrarily given local preference
set. If a local preference set includes such a specific preference profile, a local char-
acterization result might be obtained as a straight extension. We will observe this in
establishing the local incompatibility of Pareto efficiency and strategy-proofness of
allocation mechanisms when agents’ individual local preference sets are the same.

Hurwicz (1972) originally proved that, in two-agent economies, Pareto-efficient
and strategy-proof allocation mechanisms are incompatible with the individual ratio-
nality condition, where agents possess their initial endowments and a mechanism is
assumed to allocate consumption that benefits all agents. The incompatibility result
has been extended tomany-agent economies with various welfare lower bound (WLB)
condiitions. Serizawa (2002) showed the incompatibilitywith the individual rationality
condition. Serizawa andWeymark (2003) showed the incompatibility with aminimum
consumption guarantee condition, where the consumption of each agent is assumed to
be away from zero with someminimum distance.Momi (2013b) relaxed the minimum
consumption guarantee condition to a simple positive consumption condition, where
a mechanism is assumed to allocate positive consumption to all agents.4 Again, the
proofs of these papers relied on a preference profile where all agents have the same
preference, which would not be included in an arbitrarily given local preference set.
Therefore, it is an open question whether such incompatibility results hold locally.
In this paper, we extend Momi’s (2013b) proof and show that Pareto efficiency and

3 In fact, Cobb–Douglas preferences are topologically negligible.
4 Barberà and Jackson (1995) discarded Pareto efficiency and characterized strategy-proof mechanisms
that satisfied the individual rationality condition. Refer to Goswami et al. (2014) for an incompatibility
result when preferences are quasilinear.
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794 T. Momi

strategy-proofness are incompatible with the positive consumption condition when all
agents have the same local preference set

Note that the alternating dictatorship, where one agent receives all goods and the
others receive zero consumption, violates theWLB conditions. Therefore, the alternat-
ing dictatorship result in this paper establishes the incompatibility of Pareto efficiency
and strategy-proofness with theWLB conditions for any local preference set when the
number of agents does not exceed the number of goods. However, it remains an open
question whether a Pareto-efficient and strategy-proof allocation mechanism defined
on an arbitrarily given local preference set can be compatible with theWLB conditions
when the number of agents exceeds the number of goods.

The remainder of the paper is organized as follows. Section2 describes the model
and results. Section3 reviews the approach byMomi (2017) and explains the difficulty
that we face when a mechanism is defined only locally. Section4 presents some tech-
nical results. Sections5 and 6 provide the proofs of the main results. The Appendix
contains an example of the positive result and the proofs of all lemmas and corollaries
from Sects. 4 and 5.

2 Model and results

We consider an economy with N agents, indexed by N = {1, . . . , N }, where N ≥ 2,
and L goods, indexed by L = {1, . . . , L}, where L ≥ 2. The consumption set for each
agent is RL+. A consumption bundle for agent i ∈ N is a vector xi = (

xi1, . . . , x
i
L

) ∈
R

L+. The total endowment of goods for the economy is� = (�1, . . . , �L) ∈ R
L++. An

allocation is a vector x = (
x1, . . . , xN

) ∈ R
LN+ . Thus, the set of feasible allocations

for the economy with N agents and L goods is X = {
x ∈ R

LN+ : ∑
i∈N xi ≤ �

}
.

A preference R is a complete, reflexive, and transitive binary relation on R
L+. The

corresponding strict preference PR and indifference IR are defined in the usual way.
Given a preference R and a consumption bundle x ∈ R

L+, the upper contour set of
R at x is UC(x; R) = {

x ′ ∈ R
L+ : x ′Rx

}
, and the lower contour set of R at x is

LC(x; R) = {
x ′ ∈ R

L+ : x Rx ′}. We use I (x; R) = {
x ′ ∈ R

L+ : x ′ IRx
}
to denote the

indifference set of R at x , and P(x; R) = {
x ′ ∈ R

L+ : x ′PRx
}
denotes the strictly

preferred set of R at x .
A preference R is continuous if UC(x; R) and LC(x; R) are both closed for any

x ∈ R
L+. A preference R is strictly convex onRL++ ifUC(x; R) is a strictly convex set

inRL for any x ∈ R
L++. A preference R is monotonic if, for any x and x ′ inRL+, x > x ′

implies that x Rx ′.5 A preference R is strictly monotonic on RL++ if, for any x and x ′
in R

L++, x > x ′ implies that x PRx ′. Therefore, if R is continuous, strictly convex on
R

L++, and strictly monotonic on R
L++, then UC(x; R) ⊂ R

L++ for any x ∈ R
L++ and

the boundary ∂RL+ is an indifference set. Note that the definition of strict convexity
differs slightly from that of Zhou (1991), where UC(x; R), x ∈ R

L++ might have
an intersection with the boundary. As mentioned in the introduction, a mechanism
that assigns a boundary allocation could be locally Pareto efficient, strategy-proof and

5 For vectors x and x ′ in R
L , x > x ′ denotes that xl ≥ x ′

l for any l ∈ L and x �= x ′.
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nondictatorial. Therefore, the assumption that keeps the upper contour sets away from
the boundary is crucial in this paper.

A preference R is homothetic if, for any x and x ′ in R
L+ and any t > 0, x Rx ′

implies that (t x)R(t x ′). A preference R is smooth if for any x ∈ R
L++, there exists

a unique vector p ∈ SL−1+ ≡ {
x ∈ R

L+ :‖ x ‖= 1
}
such that p is the normal of a

supporting hyperplane to UC(x; R) at x . We call the vector p the gradient vector of
R at x , and write p = p(R, x). Note that if R is smooth, strictly convex on RL++, and
strictly monotonic on RL++, then the gradient vector is positive in the positive orthant:
p(R, x) ∈ SL−1++ ≡ {

x ∈ R
L++ :‖ x ‖= 1

}
for any x ∈ R

L++.
Let R denote the set of preferences that are continuous, strictly convex on R

L++,
strictly monotonic on RL++, smooth, and homothetic. A preference profile is an
N -tuple R = (

R1, . . . , RN
) ∈ RN . We write the subprofile obtained by remov-

ing Ri from R as R−i = (
R1, . . . , Ri−1, Ri+1, . . . , RN

)
and write the profile(

R1, . . . , Ri−1, R̄i , Ri+1, . . . , RN
)
as

(
R̄i ,R−i

)
. We also write R−{i, j} to denote

the subprofile obtained by removing Ri and R j from R.
A social choice function f : RN → X assigns a feasible allocation to each

preference profile in RN . For a preference profile R ∈ RN , the outcome chosen can
bewritten as f (R) = (

f 1 (R) , . . . , f N (R)
)
, where f i (R) is the consumption bundle

allocated to agent i by f . We let B ⊂ RN be a subset of RN . In this paper, we deal
with a case where a social choice function is defined on B, or it satisfies desirable
properties only on B.

The following theree deficinitons are standard.

Definition 1 A social choice function f : RN → X is strategy-proof on B ⊂ RN

if f i (R)Ri f i
(
R̄i ,R−i

)
for any i ∈ N, any R ∈ B, and any R̄i ∈ R such that(

R̄i ,R−i
) ∈ B.

Definition 2 A social choice function f : RN → X is Pareto efficient on B ⊂ RN if
f (R) is Pareto efficient for any R ∈ B.

Definition 3 A social choice function f : RN → X is dictatorial on B if there exists
i ∈ N such that f i (R) = � for any R ∈ B.

We say that a social choice function is alternately dictatorial if it always allocates
the total endowment to some single agent though not always the same agent. Note that
under an alternately dictatorial social choice function, the identity of the receiver of
the total endowment may vary depending on preference profiles.

Definition 4 A social choice function f : RN → X is alternately dictatorial on
B ⊂ RN if, for any R ∈ B, there exists iR ∈ N such that f iR (R) = �.

Taking the same approach as previous studies, including Serizawa (2002) andMomi
(2013b), we follow Kannai (1970) and introduce the Kannai metric intoR to discuss
continuity. For x ∈ RL+ \ 0, we use [x] to denote the ray starting from the origin and
passing through x : [x] = {

y ∈ R
L+ : y = t x, t ≥ 0

}
. We define 1 ≡ (1, . . . , 1) ∈ RL+
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796 T. Momi

so that [1] denotes the principal diagonal of RL+. Using these definitions, the Kannai
metric d(R, R′) for continuous and monotonic preferences R and R′ is defined as

d(R, R′) = max
x∈RL+

‖ I (x; R)
⋂[1] − I (x; R′)

⋂[1] ‖
1+ ‖ x ‖2 ,

where ‖ · ‖ denotes the Euclid norm in R
L . With the Kannai metric, R is a metric

space. See Kannai (1970) for details.6

We write Bε(R̄) ⊂ R to denote the open ball of preferences in R, with center R̄
and radius ε > 0: Bε(R̄) = {

R ∈ R : d(R, R̄) < ε
}
. For a preference profile R =(

R1, . . . , RN
)
, we write Bε(R) to denote the product set of Bε

(
Ri

)
, i = 1, . . . , N :

Bε(R) = �N
i=1Bε

(
Ri

) = Bε

(
R1

) × · · · × Bε

(
RN

)
.

We often write Bi ⊂ R to denote an open ball of agent i’s preferences without a
specified center or radius and B = �N

i=1B
i to denote the product of such open balls

over agents.
We define various open balls in a similar manner. For example, we write Bε( p̄) ⊂

SL−1++ to denote the open ball set of price vectors p: Bε( p̄) = {p ∈ SL−1++ :‖ p− p̄ ‖<
ε}. We write Bε(ȳ) ⊂ R

L to denote the open ball set of L-dimensional vectors y:
Bε(ȳ) = {

y ∈ R
L :‖ y − ȳ ‖< ε

}
.

Our main result is as follows.

Theorem 1 Assume that L ≥ N. If a social choice function f : RN → X is Pareto
efficient and strategy-proof on a product set of open balls B = �N

i=1B
i , then f is

alternately dictatorial on B.

Alternating dictatorship violates the individual rationality condition of Serizawa
(2002), the minimum consumption guarantee condition of Serizawa and Weymark
(2003), and the positive consumption condition of Momi (2013b). Therefore, the
incompatibility of the Pareto-efficient and strategy-proof mechanism with these WLB
conditions is ensured by this theorem for the case where L ≥ N . If we assume
that all agents have the same local preference sets, we can show the incompatibility
without the condition on the numbers of agents and goods. In this paper, we prove the
incompatibility with the positive consumption condition.

Theorem 2 If a social choice function f : RN → X is Pareto efficient and strategy-
proof on a product set of open balls B = �N

i=1B
i , where Bi = B for all i , then there

exist some j and R′ ∈ B such that f j (R′) = 0.

3 Preliminary results

Momi (2017) proved the alternating dictatorship result for a social choice function f
defined on the whole domain RN ; when L ≥ N , any Pareto-efficient and strategy-
proof social choice function f : RN → X is alternately dictatorial. In this section,

6 See Hildenbrand (1974) and Grodal (1974) for further information on the topology of this space.
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referring to this result, we explain the difficulties faced in the case of local preference
domains.

We consider a social choice function f that is Pareto efficient and strategy-proof
on a product set of open balls B = �N

i=1B
i .

As in Momi (2017), we define the option set as follows. For agent i , when the
other agents’ preferences R̄−i ∈ B−i ≡ � j �=i B j are fixed, we define the option set,
Gi (R̄−i ) ⊂ R

L+, as the union of the agent’s consumption bundles given by f over
his/her preferences in Bi :

Gi
(
R̄−i

)
=

⋃

Ri∈Bi

f i
(
Ri , R̄−i

)
.

The key feature of the option set is that, because of the strategy-proofness on B,
f i

(
Ri , R̄−i

)
should be the most preferred consumption bundle in Gi

(
R̄−i

)
with

respect to Ri ∈ Bi .
Because the boundary of the consumption set ∂RL+ is an indifference set of each

agent’s preferences, each agent’s consumption assigned by a Pareto-efficient social
choice function f is not on the boundary except for the origin.7 Then, because of the
Pareto efficiency, at least one agent i has positive consumption f i (R) ∈ RL++, and
the agent’s gradient vector at the consumption is well defined and p

(
Ri , f i (R)

) ∈
SL−1++ . The Pareto efficiency also implies that all agents who are assigned positive
consumption have the same gradient vector. We call the gradient vector the price
vector at the allocation and write p(R, f ). Thus, the price vector p(R, f ) ∈ SL−1++ is
well defined for the economy even if the gradient vector of an agent who is assigned
zero consumption is not well defined.

On the other hand, for a preference R ∈ R and a price vector p ∈ SL−1++ , we define
the consumption-direction vector g(R, p) ∈ SL−1++ as the normalized consumption
vector where the gradient vector of R is p. It should be noted that the consumption-
direction vector is well defined because the preference is homothetic and strictly
convex in RL++. The proof of the next lemma is provided in the Appendix.

Lemma 1 For R ∈ R and p ∈ SL−1++ , the consumption-direction vector g(R, p) ∈
SL−1++ is uniquely determined. Furthermore, g(·, p) is a continuous function.

Thus, g
(
Ri , p(R, f )

)
is agent i’s consumption-direction vector at the preference

profileR under f . Note that this is well defined even for an agent who is assigned zero
consumption. To simplify notation, we write gi (R, f ) = g

(
Ri , p(R, f )

)
. Agent i’s

consumption f i (R) assigned by f should be on the ray
[
gi (R, f )

]
, and we can write

f i (R) =‖ f i (R) ‖ gi (R, f ).
Momi (2017) focused on a preference profile R̄ ∈ B where the consumption-

direction vectors are independent. The role of this independence should be clear.
Because consumption vectors f i (R̄), i = 1, . . . , N , are on the rays

[
gi (R, f )

]
,

i = 1, . . . , N , respectively, and they sum to the total endowment �, the consump-
tion vectors should be determined uniquely if the consumption-direction vectors are

7 See Momi (2017, p. 1275) for the proof.
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798 T. Momi

Fig. 1 The option set

independent. Momi (2017) showed that in a neighborhood of f i (R̄), where the
consumption-direction vectors are independent at R̄, the option set Gi (R̄−i ) is the
L − 1-dimensional smooth surface of a strictly convex set, as drawn in Fig. 1(i).

The role of this strict convexity and smoothness is clear. If the option set satisfies
such properties, f i

(
Ri , R̄−i

)
, which is the most preferred consumption bundle in the

option set with respect to Ri , is a continuous function of Ri . Based on these topological
properties of the option set, we can prove the following proposition. See Momi (2017,
Proposition 6) for the proof.

Proposition 1 Suppose that f is a social choice function that is Pareto efficient and
strategy-proof on a product set of open balls B = �N

i=1B
i . If gi (R, f ), i = 1, . . . , N,

are independent at a preference profile R̄ = (
R̄1, . . . , R̄N

) ∈ B, then f i (R̄) ∈ {0,�}
for any i ∈ N.

This proposition ensures the alternating dictatorship at a preference profile where
the consumption-direction vectors are independent. If the consumption-direction vec-
tors are independent at a preference profile, independence holds for a preference profile
in a neighborhood because of the continuity of f , and the alternating dictatorship also
holds in the neighborhood.However, in general, it is difficult to knowwhether the inde-
pendence of the consumption-direction vectors holds for a given preference profile. It
depends not only on the preference profileR but also on the price vector p(R, f ) deter-
mined by the social choice function f , the behavior of which is unknown. Without the
independence of the consumption directions, the option set might not be either strictly
convex or smooth, and hence f might not even be a continuous function. Figure1 (ii)
depicts an example of such an option set.

A key to overcome this difficulty is that there exists a preference profile R∗ ∈ RN

that ensures the independence of the consumption-direction for any price vector.Momi
(2017) constructed such a preference profileR∗ using Cobb–Douglas utility functions.
Then, through preference exchanges between two preference profiles, the alternating
dictatorship result at R∗ was extended to any preference profile.

However, in a small local domain B, we cannot expect the existence of such a
preference profile that ensures the independence of the consumption-direction vectors
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for any price vectors. This is the difficulty that we face in this paper. In an arbitrarily
given domain B, we have to find a preference profile that satisfies the condition of
Proposition1.

4 Technical results

As mentioned in the previous section, we must deal with the case where gi (R, f ),
i = 1, . . . , N , are dependent. In the next section, starting from such a preference
profile, we construct a preference profile in any neighborhoodwhere the independence
of the consumption-direction vectors holds. In this section, we present some technical
results that we use for the proof. Throughout this section, we assume that the social
choice function f is Pareto efficient and strategy-proof on a product set B and we deal
with preference profiles in B, although we do not repeat them in each lemma. Proofs
of all lemmas and corollaries are provided in the Appendix.

For a preference R ∈ R and a consumption bundle x ∈ R
L+, a preference R̄ is called

a Maskin monotonic transformation (MMT, hereafter) of R at x if x̄ ∈ UC(x; R̄) and
x̄ �= x implies that x̄ PRx .8 It is well known that if an agent receives x at a preference
profile R, strategy-proofness implies that this agent receives the same consumption
bundle x when his/her preference is subject to an MMT at x . Note that R̄ and R share
the same price vector at x . As shown in Momi (2013b, Lemma 4), for a preference
R ∈ R and a consumption bundle x ∈ R

L++, there exists a preference that is an MMT
of R at x in any neighborhood of R.

Because f i (R) is the most preferred consumption bundle in Gi
(
R−i

)
with respect

to Ri ∈ Bi , the upper contour set UC
(
f i (R); Ri

)
intersects with the option set

Gi
(
R−i

)
at f i (R). As mentioned in the previous section, this might not be a unique

intersection, and then f i
(·,R−i

)
might not be a continuous function of Ri . Therefore,

we define F
(
Ri ;Gi

(
R−i

))
as the intersection between the upper contour set of Ri

at f i (R) and the option set: F
(
Ri ;Gi

(
R−i

)) = UC
(
f i (R); Ri

) ⋂
Gi

(
R−i

)
. It is

clear from the definition that f i (R) ∈ F
(
Ri ;Gi

(
R−i

))
and F

(
Ri ;Gi

(
R̄−i

)) ⊂
I
(
f i (R); Ri

)
.

The next lemma implies that if Ri ′ is close to Ri , then any element of
F

(
Ri ′;Gi

(
R−i

))
is close to F

(
Ri ;Gi

(
R−i

))
. For a set A ⊂ R

L , we let Bδ(A)

denote the union of open balls with radius δ and center x ∈ A: Bδ(A) = ⋃
x∈A Bδ(x).

Lemma 2 For any δ > 0, there exists ε > 0 such that if Ri ′ ∈ Bε

(
Ri

)
, then

F(Ri ′;Gi (R−i )) ⊂ Bδ(F(Ri ;Gi (R−i ))).

If the consumption f i (R) is the unique intersection between the upper contour set
and the option set, that is, if f i (R) = F

(
Ri ;Gi

(
R−i

))
, then as Ri ′ converges to

Ri , Fi
(
Ri ′;Gi

(
R−i

))
converges to f i (R) as in Lemma 2. Then, the consumption

f i
(
Ri ′,R−i

)
, which is in Fi

(
Ri ′;Gi

(
R−i

))
, also converges to f i (R), and hence the

social choice function f i
(·,R−i

)
is continuous at Ri .

8 Note that these are usually called strict MMTs, whereas standard MMTs require only x̄ Rx .
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We write p
(
Ri ;Gi

(
R−i

))
to denote the set of gradient vectors at consump-

tion bundles in F
(
Ri ;Gi

(
R−i

))
: p

(
Ri ;Gi

(
R−i

)) = {p(Ri , x) ∈ SL−1++ : x ∈
F

(
Ri ;Gi

(
R−i

))}. It is clear from the definition that p(R, f ) = p
(
Ri , f i (R)

) ∈
p

(
Ri ;Gi (R−i )

)
when f i (R) ∈ R

L++.
When R̂i is an MMT of Ri at f i (R), we have f i (R) = f i

(
R̂i ,R−i

)
=

F(R̂i ;Gi (R−i )). Therefore, F(Ri ′;Gi (R−i )) is in a neighborhood of f i (R) and
p(Ri ′;Gi (R−i )) is in a neighborhood of p(R, f ) when Ri ′ is close to R̂i . The next
lemma considers the case where the other agents’ preferences change.

Lemma 3 Suppose that R̂i is anMMTof Ri at x̄ i and the gradient vector at x̄ i is p̄. For
any ε′ > 0, there exists φ′ > 0 such that if f i (Ri ,R−i ) �= 0 and p((Ri ,R−i ), f ) ∈
Bφ′( p̄) for some R−i , then p(R̂i ;Gi (R−i )) ⊂ Bε′( p̄).

Lemma 3 implies that if R̂i is an MMT of Ri at x̄ i with price vector p̄, and if
p((Ri ,R−i ), f ) is sufficiently close to p̄, then p(R̂i ;Gi (R−i )) is close to p̄, and hence
p((R̂i ,R−i ), f ) is close to p̄. In other words, the lemma implies that if f i (Ri ,R−i )

is sufficiently close to the ray
[
x̄ i

]
, then F(R̂i ;Gi (R−i )), the intersection between the

upper contour set of R̂i and the option set, is close to
[
x̄ i

]
, and hence f i (R̂i ,R−i ) is

close to
[
x̄ i

]
.

The next lemma implies that if the consumption-direction vectors are independent
among some agents, then the independence holds after slight changes in their prefer-
ences and the price vector. Furthermore, if the total endowments are assigned among
the agents, then the positive consumption receivers remain such receivers after the
changes.

Lemma 4 Suppose that gi
(
R̄, f

)
, i = 1, . . . , K, where K < N, are independent at

R̄ = (
R̄1, . . . , R̄N

)
. There exist scalars ε̄ > 0 and ε̄ > 0 satisfying the following

properties.

(1) gi
(
Ri , p

)
, i = 1, . . . , K, are independent for any Ri ∈ Bε̄

(
R̄i

)
and p ∈

Bε̄

(
p

(
R̄, f

))
.

(2) Let R = (
R1, . . . , RN

)
be another preference profile. If f j

(
R̄

) = f j (R) = 0
for j ≥ K + 1, p(R, f ) ∈ Bε̄

(
p

(
R̄, f

))
, and Ri ∈ Bε̄

(
R̄i

)
, i = 1, . . . , K, then

f i
(
R̄

)
> 0 implies that f i (R) > 0, for any i = 1, . . . , K.

In the proof of the theorem, we change the agents’ preferences slightly and increase
the number of agents whose consumption-direction vectors are independent. In the
process, we have to change the preferences of an agent who receives positive consump-
tion. When agent i’s consumption is positive, we exchange the agent’s preference Ri

with a preference in a neighborhood of an MMT of Ri at the consumption. Then, the
price changes only slightly, as shown in Lemma 2.

The next lemma shows that if the consumption-direction vectors are independent
among some agents who are not assigned zero consumption or the total consumption,
then we can change their preferences slightly such that another agent receives neither
zero nor the total consumption and the price vector is sufficiently close to the original
price vector.
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Lemma 5 Suppose that gi
(
R̄, f

)
, i = 1, . . . , K, where K < N, are indepen-

dent and f i
(
R̄

)
/∈ {0,�} for any i = 1, . . . , K, at R̄ = (

R̄1, . . . , R̄N
)
. For

any ε > and ε > 0, there exist
(
R1, . . . , RK

) ∈ Bε

(
R̄1

) × · · · × Bε

(
R̄K

)
and

j ≥ K + 1 such that p
((
R1, . . . , RK , R̄K+1, . . . , R̄N

)
, f

) ∈ Bε

(
p

(
R̄, f

))
and

f j
(
R1, . . . , RK , R̄K+1, . . . , R̄N

)
/∈ {0,�}.

The next corollary is an immediate consequence of Lemma 5.

Corollary 1 Suppose that gi (R̄, f ), i = 1, . . . , K, where K < N, are independent
and f i (R̄) /∈ {0,�} for any i = 1, . . . , K, at R̄ = (

R̄1, . . . , R̄N
)
. There exists

j ≥ K + 1 such that for any ε > 0 and ε > 0, some
(
R1, . . . , RK

) ∈ Bε

(
R̄1

) ×
· · · × Bε

(
R̄K

)
satisfies p

((
R1, . . . , RK , R̄K+1, . . . , R̄N

)
, f

) ∈ Bε

(
p

(
R̄, f

))
and

f j
(
R1, . . . , RK , R̄K+1, . . . , R̄N

)
/∈ {0,�}.

The next lemma relaxes the condition of Lemma 5. If the consumption-direction
vectors are independent among some agents and one of them is assigned neither zero
nor the total consumption, then we can find a slight change in their preferences such
that another agent receives positive consumption and the price vector is sufficiently
close to the original price vector.

Lemma 6 Suppose that gi
(
R̄, f

)
, i = 1, . . . , K, where K < N, are indepen-

dent and f i
(
R̄

)
/∈ {0,�} for some i ≤ K at R̄ = (

R̄1, . . . , R̄N
)
. For any

ε > 0 and ε > 0, there exists
(
R1, . . . , RK

) ∈ Bε

(
R̄1

) × · · · × Bε(R̄K ) and
j ≥ K + 1 such that p

((
R1, . . . , RK , R̄K+1, . . . , R̄N

)
, f

) ∈ Bε

(
p

(
R̄, f

))
and

f j
(
R1, . . . , RK , R̄K+1, . . . , R̄N

)
/∈ {0,�}.

Finally, the next corollary is to Lemma 6 as Corollary 1 is to Lemma 5.

Corollary 2 Suppose that gi
(
R̄, f

)
, i = 1, . . . , K, where K < N, are independent

and f i
(
R̄

)
/∈ {0,�} for some i ≤ K at R̄ = (

R̄1, . . . , R̄N
)
. There exists j ≥

K + 1 such that for any ε > 0 and ε > 0, some
(
R1, . . . , RK

) ∈ Bε

(
R̄1

) ×
· · · × Bε

(
R̄K

)
satisfies p

((
R1, . . . , RK , R̄K+1, . . . , R̄N

)
, f

) ∈ Bε

(
p

(
R̄, f

))
and

f j
(
R1, . . . , RK , R̄K+1, . . . , R̄N

)
/∈ {0,�}.

5 Proof of Theorem 1

We first explain how we use constant elasticity substitution (CES) utility functions
to achieve the independence of the consumption-direction vectors and then prove the
theorem. All proofs of the lemmas are in the Appendix. In this section, we consider
preferences represented by CES utility functions. Note that the indifference curve
of CES utility functions intersects with the boundary of the consumption set, and
hence the preferences are not elements of R. It should not cause a confusion that we
sometimes extend definitions in Sect. 2 to such preferences.

Assume that a preference profile (R̄1, . . . , R̄N ) ∈ RN and a price vector p̄ ∈ SL++
are given. We write ḡi = g(R̄i , p̄) to denote agent i’s consumption-direction vector
for the price p̄ and the preference R̄i .
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(1) CES utility function: We explain the CES utility function that we use. Let
Uα,ρ : RL+ → R denote the CES utility function with parameters ρ < 1 and α =
(α1, . . . , αL) ∈ SL−1++ :

Uα,ρ(x1, . . . , xL) = (
α1(x1)

ρ + · · · + αL(xL)ρ
)1/ρ

. (1)

Abusing notation, we let Uα,ρ denote not only the utility function but also the prefer-
ence represented by the utility function. It is straightforward to calculate the gradient
vector of the utility function Uα,ρ at a consumption bundle x ∈ R

L+ and to observe
that it is parallel to

(
α1(x1)ρ−1, . . . , αL(xL)ρ−1

)
.9 That is,

∂Uα,ρ

∂x
(x) ‖

(
α1(x1)

ρ−1, . . . , αL(xL)ρ−1
)

, (2)

where y ‖ z denotes that vectors y ∈ R
L and z ∈ R

L are parallel. Therefore, we
can calculate the parameter α of the CES utility function such that the gradient vector
of the represented preference at a given consumption bundle x equals p ∈ SL++ by
solving

(
α1(x1)

ρ−1, . . . , αL(xL)ρ−1
)

‖ p, (3)

with respect to α for fixed ρ, x , and p. In addition, we can calculate the consumption-
direction vector of a given CES utility function for a price p ∈ SL++ by solving (3)
with respect to x for fixed values of α, ρ and p.

We set αi as the parameter such that the gradient vector at ḡi is parallel to p̄:
∂U

αi ,ρ
∂x

(
ḡi

) ‖ p̄.10 Then, the preferences Uαi ,ρ and R̄i have the same gradient vector
p̄ at ḡi . Note that αi thus depends on ρ.

It is well known that the CES utility function defined by (1) converges to a Leontief
utility function as ρ → −∞. Therefore, with a sufficiently small ρ, in a neighborhood
of ḡi , any consumption bundle except ḡi itself in the upper contour set of Uαi ,ρ at
ḡi is strictly preferred to ḡi with respect to R̄i . We fix ρ such that Uαi ,ρ satisfies this
property for any i = 1, . . . , N . We write the CES utility function asUi with the fixed
ρ and the αi determined by the ρ, as in the previous paragraph.

As mentioned above, for a given price vector p = (p1, . . . , pL), the consumption-
direction vector g

(
Ui , p

) ∈ SL−1++ of the CES preference is determined by

g
(
Ui , p

)
‖

((
p1/α

i
1

)1/(ρ−1)
, . . . ,

(
pL/αi

L

)1/(ρ−1)
)

, (4)

9 The gradient vector of a utility function should not be confusedwith the gradient vector of a preference that

we defined in Sect. 2.Whereas
∂Uα,ρ

∂x (x) is the gradient vector of the utility functionUα,ρ , its normalization
is the gradient vector of the preference Uα,ρ represented by the utility function.

10 In fact, αi is obtained as the normalization of

⎛

⎝ p̄1(
ḡi1

)ρ−1 , . . . ,
p̄L(

ḡiL

)ρ−1

⎞

⎠.
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by solving (3) with respect to x . Therefore, the consumption-direction vectors
among agents are independent for any price p ∈ SL−1++ if and only if the vectors((
1/αi

1

)1/(ρ−1)
, . . . ,

(
1/αi

L

)1/(ρ−1)
)
, i = 1, . . . , L , are independent.

Wemodify theCESpreferences if the independence does not hold.With a parameter
δi ≥ 0 and a vector zi ∈ R

L , we define

β i
(
δi , zi

)
=

((
1/αi

1

)1/(ρ−1)
, . . . ,

(
1/αi

L

)1/(ρ−1)
)

+ δi zi ,

for each i = 1, . . . , N . Thenext lemmashows that even if the vectors
( (

1/αi
1

)1/(ρ−1)
,

. . . ,
(
1/αi

L

)1/(ρ−1)
)
, i = 1, . . . , N , are dependent, we can find the direction vectors

z̄i , i = 1, . . . , N , with slight changes δi ≤ δ̄ to the directions in which the vectors
β i

(
δi , zi

)
, i = 1, . . . , N , are independent.

Lemma 7 There exist δ̄ > 0 and z̄i ∈ R
L , i = 1, . . . , N, such that β i (δi , z̄i ), i =

1, . . . , N, are positive and independent with any 0 < δi ≤ δ̄, i = 1, . . . , N.

We fix z̄i , i = 1, . . . , N , and δ̄ that satisfy Lemma 7. For each 0 ≤ δi ≤ δ̄, we
calculate γ̂ i = (

γ̂ i
1 , . . . , γ̂

i
L

)
by solving

((
1/γ̂ i

1

)1/(ρ−1)
, . . . ,

(
1/γ̂ i

L

)1/(ρ−1)
)

= β i
(
δi , z̄i

)
, (5)

and define γ i = (
γ i
1 , . . . , γ

i
L

)
as the normalization of γ̂ i : γ i = γ̂ i/ ‖ γ̂ i ‖. Note

therefore that γ i depends on δi .
We define the CES utility function Uγ i with γ i as the parameter by

Uγ i =
(
γ i
1 (x1)

ρ + · · · + γ i
L (xL)ρ

)1/ρ

Then, for the preferences Uγ i , i = 1, . . . , N , the consumption-direction vectors

g
(
Uγ i , p

)
, i = 1, . . . , N , each of which is parallel to

( (
p1/γ i

1

)1/(ρ−1)
, . . . ,

(
pL/

γ i
L

)1/(ρ−1)
)
, are independent for any p as long as 0 < δi ≤ δ̄. The independence of

the consumption-direction vectors holds for preference profiles in a neighborhood of(
Uγ 1 , . . . ,Uγ N

)
. Formally, this is stated in the next lemma.

Lemma 8 Let P ⊂ SL−1++ be a compact price set. There exist functions εi : (0, δ̄] →
R++, i = 1, . . . , N, such that for each δi ∈ (0, δ̄], g (

Ri , p
)
, i = 1, . . . , N, are

independent for any p ∈ P and any Ri ∈ Bεi(δi)

(
Uγ i

)
.

(2) Preference construction: Although the CES utility functions satisfy the inde-
pendence of the consumption-direction vectors for any price, they are not in a
neighborhood of the original preferences R̄i , i = 1, . . . , N . We construct a pref-
erence that is close to R̄i and is represented by Uγ i in a neighborhood of ḡi . See
Momi (2017) for more details of the preference construction.
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Fig. 2 The prefrence construction

Figure 2 depicts the preferences R̄i and Uγ i . We let t > 0 be a sufficiently
small parameter and define C as the set of consumption bundles x that are con-
nected to ḡi in UC

(
ḡi ;Uγ i

) ⋂
LC

(
ḡi + t p̄; R̄i

)
. That is, C is the crescent-shaped

set in Fig. 2 between the indifference sets I
(
ḡi ;Uγ i

)
and I

(
ḡi + t p̄; R̄i

)
. The indif-

ference set of the CES preference Uγ i intersects the boundary of the consumption
set, whereas that of R̄i is away from the boundary. Therefore, they intersect again,
although this is not depicted in Fig. 2, and the crescent-shaped set C is not equal to
UC

(
ḡi ;Uγ i

)⋂
LC

(
ḡi + t p̄; R̄i

)
.

We define

Ai
δi

(t) = co
(
C

⋃
UC

(
ḡi + t p̄; R̄i

))

where co(Y ) denotes the convex hull of a subset Y ⊂ R
L . Therefore, this is the convex

hull of the upper contour set of R̄i at ḡi + t p̄ added to the crescent-shaped set C . The
set C depends on the CES utility function Uγ i , and Uγ i depends on the parameter δi .

Because this parameter plays a role, we write it explicitly as Ai
δi

(t).

As the convex set Ai
δi

(t) is not strictly convex, it cannot be an upper contour set of

a preference in R. To modify Ai
δi

(t) into a strictly convex set, we prepare a strictly

convex set as follows. Setting the parameter t = 1 in C , we let C̄ denote the set of
consumption bundles x that are connected to ḡi inUC

(
ḡi ;Uγ i

)⋂
LC

(
ḡi + p̄; R̄i

)
.

That is, C̄ is the crescent-shaped set between the indifference sets I
(
ḡi ;Uγ i

)
and

I
(
ḡi + p̄; R̄i

)
analogous to C . We define

D̄i = C̄
⋃ (

UC
(
ḡi ;Uγ i

) ⋂
UC

(
ḡi + p̄; R̄i

))
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Note that D̄i is a strictly convex set; it does not intersect the boundary of the con-
sumption set, but its surface is not smooth. To make its surface smooth, we let Di

δi

denote the union of closed balls with a sufficiently small radius ε included in D̄i :
Di

δi
= ⋃

Bε⊂D̄i Bε. See Momi (2017, Lemma 6) for the proof that this makes a

smooth surface. We explicitly write the index δi as in the case of Ai
δi

(t).

Using Di
δi
, wemodify Ai

δi
(t) into a strictly convex set.We let s > 0 be a sufficiently

small parameter and define

Bi
δi

(t, s) =
⋃

x∈ p̄⊥

{
(1 − s)

(
∂Ai

δi
(t)

⋂
L(x)

)
+ s

((
∂Di

δi

) ⋂
L(x)

)}
,

where L(x) is the half line starting from x and extending in the direction of the vector
p̄: L(x) = {

y ∈ R
L |y = x + t p̄, t ≥ 0

}
. Note that for s > 0, Bi

δi
(t, s) is the boundary

of a strictly convex set.11 We let Ri
δi ,t,s

∈ R denote the preference that has Bi
δi

(t, s)
as its indifference set.

Note that, as long as t > 0, the boundaries of Ai
δi

(t), Di
δi

(t), and Bi
δi

(t, s) coincide in

a neighborhood of ḡi , which is defined by the indifference set of the CES preference.
That is, the indifference set of Ri

δi ,t,s
equals to that of Uγ i in a neighborhood of

ḡi . Hence, Ri
δi ,t,s

inherits the properties of Uγ i . In particular, independence of the
consumption-direction vectors holds for prices in a neighborhood of p̄. In addition,
note that, for s > 0 and t > 0, Ri

0,s,t , where δi = 0, is an MMT of R̄i at ḡi .

Lemma 9 For any ε > 0, there exist values of s > 0, t > 0, δ̄i > 0, i = 1, . . . , N,
and ε > 0 satisfying the following properties.

(1) Ri
δi ,t,s

∈ Bε

(
R̄i

)
, i = 1, . . . , N, for any 0 ≤ δi ≤ δ̄i .

(2) g
(
Ri

δi ,t,s
, p

)
, i = 1, . . . , N, are independent for any 0 < δi ≤ δ̄i and any

p ∈ Bε( p̄).

The independence of the consumption-direction vectors holds for preferences in
neighborhoods of Ri

δi ,t,s
, i = 1, . . . , N .

Lemma 10 Fix s > 0 and t > 0. There exist ε̄ > 0 and functions εi : (0, δ̄] → R++,
i = 1, . . . , N, such that g

(
Ri , p

)
, i = 1, . . . , N, are independent for any p ∈ Bε̄( p̄)

and any Ri ∈ Bεi(δi)

(
Ri

δi ,t,s

)
, i = 1, . . . , N.

Combining the preference construction with the results in the previous section, we
prove the theorem. In the proof, we repeatedly find an agent who receives neither zero
consumption nor the total consumption when increasing the number of agents whose
consumption-direction vectors are independent. Then, finally, wemake all agents have
independent consumption-direction vectors, which contradicts Proposition1.

11 See Momi (2017, Lemma 5) for the proof.
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Proof of Theorem 1 We let L ≥ N and the social choice function f be Pareto efficient
and strategy-proof on B = �N

i=1B
i . We suppose that an agent j has neither zero nor

the total consumption, f j (R̄) /∈ {0,�}, at a preference profile R̄ = (
R̄1, . . . , R̄N

) ∈
B, and we show a contradiction. If gi

(
R̄, f

)
, i = 1, . . . , N , are independent, this

immediately contradicts Proposition1.Weconsider the casewhere these consumption-
direction vectors are dependent.

We write p̄ and ḡi to denote the price vector and agent i’s consumption-direction
vector at R̄, respectively: p̄ = p

(
R̄, f

)
and ḡi = gi

(
R̄, f

) = g
(
R̄i , p

(
R̄, f

))
.

Here, we summarize our preparation for the proof. We fix a scalar ε̄ > 0 such
that Bε̄

(
R̄i

) ⊂ Bi , for any i = 1, . . . , N . For R̄i , ḡi , i = 1, . . . , N , and p̄, we
have prepared the preferences Ri

δi ,t,s
, i = 1, . . . , N . By Lemma 9, we have s, t , δ̄i ,

i = 1, . . . , N , and ε such that

Ri
δi ,t,s ∈ Bε̄

(
R̄i

)
, i = 1, . . . , N , for any 0 ≤ δi ≤ δ̄i , (6)

and

g
(
Ri

δi ,t,s, p
)

, i = 1, . . . , N , are independent for any 0 < δi ≤ δ̄i

and any p ∈ Bε( p̄). (7)

Furthermore, by Lemma 10, we have ε̄ and εi : (0, δ̄] → R++, i = 1, . . . , N , such
that

g
(
Ri , p

)
, i = 1, . . . , N , are independent for any Ri ∈ Bεi(δi)

(
Ri

δi ,t,s

)

and p ∈ Bε̄(p). (8)

We set ε̄ sufficiently small such that ε̄ < ε. we also set the function εi such that its
value is sufficiently small and Bεi(δi)(R

i
δi ,t,s

) ∈ Bε̄

(
R̄i

)
for any 0 < δi ≤ δ̄i . From

now on, parameters other than δi are fixed and we write Ri
δi

= Ri
δi ,t,s

. Figure3 depicts

the neighborhoods of R̄i and p̄. We will replace each preference R̄i with Ri
δi
and then

find a new preference in Bεi(δi)(R
i
δi

) while keeping the price vector in Bε̄( p̄) so that
the independence of the consumption vectors will be ensured by (8).

For the operation to keep the price vector in Bε̄( p̄), we prepare a function φ as
follows. For each i = 1, . . . , N , Ri

0 (that is R
i
δi
where δi = 0) is an MMT of R̄i at ḡi .

Applying Lemma 3 to these preferences, we have a positive function φ̄i : ε′ �→ φ̄i
(
ε′)

for each i = 1, . . . , N , which maps ε′ to φ′ in Lemma 3:

If f i
(
R̄i ,R−i

)
�= 0 and p

((
R̄i ,R−i

)
, f

)
∈ Bφ̄i (ε′)( p̄),

then p
(
Ri
0;Gi

(
R−i

))
⊂ Bε′( p̄)for any R−i and ε′ > 0. (9)

We select a positive function φ such that φ
(
ε′) < min

{
φ̄1

(
ε′) , . . . , φ̄N

(
ε′) , ε′} for

any ε′. We write φ(k) = φ ◦ · · · ◦ φ to denote the k-times operation of φ.
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Fig. 3 Neighborhoods of R̄i , Ri
δi
, and p̄

Without loss of generality, we assume that f 1
(
R̄

)
/∈ {0,�}. Starting from this

agent, we will increase the number of agents whose consumption-direction vectors
are independent in the following steps, and finally reach a situation contradicting
Proposition1.

Step 1: First, we modify agent 1’s preference for the later steps and show that there
exists another agent who receives neither zero consumption nor the total consumption.

Replacing R̄1 with R1
δ1

of any parameter 0 < δ1 < δ̄1, we have f 1
(
R1

δ1
, R̄−i

)
/∈

{0,�} because of the strategy-proofness of f , and there exists another agent receiving
neither zero consumption nor the total consumption because of the Pareto efficiency
of f .

Although the identity of the receiver might vary as δ1 changes, there exists an

agent j ≥ 2 such that for any δ1, there exists δ1′ < δ1 satisfying f j
(
R1

δ1′, R̄
−i

)
/∈

{0,�}. If there exists no such agent, then for each j ≥ 2 there exists δ1j such that for

any δ1 < δ1j , f j
(
R1

δ1
, R̄−i

)
∈ {0,�}. Then, for δ1 < min

{
δ12, . . . , δ

1
N

}
, we have

f j
(
R1

δ1
, R̄−i

)
∈ {0,�} for any j ≥ 2. This contradicts that f 1

(
R1

δ1
, R̄−i

)
/∈ {0,�}

for any parameter δ1.
Without loss of generality, we assume that agent 2 is such an agent. We let 
1 ={

δ1| f 2
(
R1

δ1
, R̄−i

)
/∈ {0,�}

}
denote the set of δ1 such that agent 2’s consumption is

not zero at
(
R1

δ1
, R̄−1

)
. We consider δ1 in 
1.

If δ1 in
1 is sufficiently small, then p
(
R1

δ1
;G1

(
R̄−i

))
can be arbitrarily close to p̄

because f 1
(
R̄

) = f 1
(
R1
0, R̄

−i
)
is the unique intersection betweenUC

(
f 1

(
R̄

) ; R1
0

)

and G1
(
R̄−i

)
. Hence, F

(
R1

δ1
;G1

(
R−1

))
converges to f 1

(
R1
0, R̄

−i
)
as δ1 → 0

as shown in Lemma 2. We take a value of δ1 that is sufficiently small so that

p
(
R1

δ1
;G1

(
R̄−i

)) ⊂ Bφ(N−1)(ε̄)( p̄). ��
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Step 2: Second, we modify agent 2’s preference, and then apply Corollary 2 to find
another agent j ≥ 3who receives neither zero consumption nor the total consumption.

Keeping in mind that agent 2 now receives neither zero nor the total con-

sumption at the preference profile
(
R1

δ1
, R̄−1

)
, we replace R̄2 with R2

0. Note that

p
(
R1

δ1
;G1

(
R̄−1

)) ⊂ Bφ(N−1)(ε̄)( p̄) implies that the price vector at the preference

profile is in Bφ(N−1)(ε̄)( p̄). Also note that φ(N−1)(ε̄) ≤ φ̄2
(
φ(N−2)(ε̄)

)
by the defini-

tions ofφ and φ̄i . Therefore, we have p
((

R1
δ1

, R̄2, R̄−{1,2}
)

, f
)

∈ Bφ̄2(φ(N−2)(ε̄))( p̄),

and hence, p
(
R2
0;G2

(
R1

δ1
, R̄−{1,2}

))
⊂ Bφ(N−2)(ε̄)( p̄) by (9).

Then,we replace R2
0 with R

2
δ2
.As δ2 → 0, any element in F

(
R2

δ2
;G2

(
R1

δ1
,R̄−{1,2}))

converges to a consumption bundle in F
(
R2
0;G2

(
R1

δ1
, R̄−{1,2})) as shown in Lemma

2. Then, any price vector in p
(
R2

δ2
;G2

(
R1

δ1
, R̄−{1,2}

))
converges to a price vector

in p
(
R2
0;G2

(
R1

δ1
, R̄−{1,2}

))
. Therefore, we set δ2 to be sufficiently small such that

p
(
R2

δ2
;G2

(
R1

δ1
, R̄−{1,2}

))
⊂ Bφ(N−2)(ε̄)( p̄). Of course, this implies that the price

vector at the preference profile
(
R1

δ1
, R2

δ2
, R̄−{1,2}

)
is in Bφ(N−2)(ε̄)( p̄).

We can apply Corollary 2 to agents 1 and 2 because the price vector in
Bφ(N−2)(ε̄)( p̄) ⊂ Bε̄( p̄) implies the independence of the consumption-direction vec-

tors of R1
δ1
and R2

δ2
at the preference profile

(
R1

δ1
, R2

δ2
, R̄−{1,2}

)
as in (8). Corollary 2

implies the existence of a preference subprofile
(
R1

(1), R
2
(1)

)
arbitrarily close to

(
R1

δ1
, R2

δ2

)
such that the price vector is arbitrarily close to p̄ and another agent j ≥ 3

receives neither zero consumption nor the total consumption at the preference profile(
R1

δ1
, R2

δ2
, R̄−{1,2}

)
.

We set ε̄i , i = 1, 2 to be sufficiently small such that ε̄i < εi
(
δi

)
and apply

Corollary 2. Without loss of generality, we asume agent 3 is the receiver of positive

consumption. As a result, we have
(
R1

(1), R
2
(1)

)
∈ Bε̄1

(
R1

δ1

)
× Bε̄2

(
R2

δ2

)
such that

the price vector is in Bφ(N−2)(ε̄)( p̄) and agent 3 receives neither zero nor the total

consumption at the preference profile
(
R1

(1), R
2
(1), R̄

−{1,2}
)
. ♦

Step 3: In this step, we modify agent 3’s preference, and then apply Corollary 2 to
find another agent j ≥ 4 who receives neither zero nor the total consumption.

Because agent 3 now receives neither zero consumption nor the total consump-

tion, we replace R̄3 with R3
0. By (9), we have p

(
R3
0;G3

(
R1

(1), R
2
(1), R̄

−{1,2,3}
))

⊂
Bφ(N−3)(ε̄)( p̄), as we observed for agent 2.

We replace R3
0 with R3

δ3
, where δ3 is sufficiently small such that

p
(
R3

δ3
;G3

(
R1

(1), R
2
(1), R̄

−{1,2,3}
))

⊂ Bφ(N−3)(ε̄)( p̄), as we observed for agent 2.
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We can apply Corollary 2 to agents 1,2, and 3 because R1
(1) ∈ Bε̄1

(
R1

δ1

)
⊂

Bε1(δ1)

(
R1

δ1

)
, R2

(1) ∈ Bε̄2

(
R2

δ2

)
⊂ Bε2(δ2)

(
R2

δ2

)
, and p

((
R1

(1), R
2
(1), R

3
δ3

,

R̄−{1,2,3}
)
, f

)
∈ Bφ(N−3)(ε̄)( p̄) ⊂ Bε̄( p̄) implies the independenceof the consumption-

direction vectors of R1
(1), R

2
(1), and R3

δ3
at the preference profile

(
R1

(1), R
2
(1), R

3
δ3

,

R̄−{1,2,3}
)
, as in (8).

Corollary 2 implies the existence of a preference subprofile
(
R1

(2), R
2
(2), R

3
(2)

)
arbi-

trarily close to
(
R1

(1), R
2
(1), R

3
δ3

)
such that the price vector is arbitrarily close to

p
((

R1
(1), R

2
(1), R

3
δ3

, R̄−{1,2,3}
)

, f
)
and another agent j ≥ 4 receives neither zero

nor the total consumption at the preference profile
(
R1

(2), R
2
(2), R

3
(2), R̄

−{1,2,3}
)
.

We set ε̄3 sufficiently small such that ε̄3 < ε3
(
δ3

)
and apply Corollary 2. With-

out loss of generality, we assume that agent 4 receives neither zero consumption

nor the total consumption. As a result, we have
(
R1

(2), R
2
(2), R

3
(2)

)
∈ Bε̄1

(
R1

δ1

)
×

Bε̄2

(
R2

δ2

)
× Bε̄3

(
R3

δ3

)
such that the price vector is in Bφ(N−3)(ε̄)( p̄) and agent 4

receives neither zero conusmption nor the total consumption at the preference profile(
R1

(2), R
2
(2), R

3
(2), R̄

−{1,2,3}
)
. ��

Step 4: We modify agent 4’s preference and then apply Corollary 2 to find another
agent j ≥ 5 who receives neither zero consumption nor the total consumption.

We replace R̄4 with R4
δ4
, where δ4 is sufficiently small such that p

(
R4

δ4
;G4

(
R1

(2),

R2
(2), R

3
(2), R̄

−{1,··· ,4}
))

⊂ Bφ(N−4)(ε̄)( p̄). Applying Corollary 2 to agents 1, . . . , 4,

we obtain a preference subprofile
(
R1

(3), . . . , R
4
(3)

)
∈ Bε̄1

(
R1

δ1

)
× · · · × Bε̄4

(
R4

δ4

)

where ε̄4 satisfies ε̄4 < ε4
(
δ4

)
such that the price vector is in Bφ(N−4)(ε̄)( p̄) and an

agent j ≥ 5 receives neither zero nor the total consumption at the preference profile(
R1

(3), . . . , R
4
(3), R̄

−{1,...,4}
)
. ��

We repeat this process. Finally, in Step N − 1, we have a preference pro-

file
(
R1

(N−2), . . . , R
N−1
(N−2)

)
in Bε̄1

(
R1

δ1

)
× · · · × Bε̄N−1

(
RN−1

δN−1

)
, where ε̄i , i =

1, . . . , N−1, satisfies ε̄i < εi
(
δi

)
such that the price vector is in Bφ(ε̄)( p̄) and agent N

receives neither zero consumption nor the total consumption at the preference profile(
R1

(N−2), . . . , R
N−1
(N−2), R̄

N
)
. Replacing R̄N with RN

δN
where δN is sufficiently small,

we still have the price vector in Bε̄( p̄) and agent N receives neither zero consumption

nor the total consumption at the preference profile
(
R1

(N−2), . . . , R
N−1
(N−2), R

N
δN

)
.

As in (8), the consumption-direction vectors gi
(
Ri

(N−2), p
)
, i = 1, . . . , N−1, and

g
(
RN

δN
, p

)
are independent at the price vector p = p

(
R1

(N−2), . . . , R
N−1
(N−2), R

N
δN

)
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Fig. 4 Proof of Proposition2

because Ri
(N−2) ∈ Bε̄i

(
Ri

δi

)
, i = 1, . . . , N − 1, and p ∈ Bε̄( p̄). This contradicts

Proposition1. ��

6 Proof of Theorem2

To prove the theorem, we reconstruct Momi’s (2013b) proof in a local preference set.
Proposition2 in Momi (2013b), which plays a key role in the proof, implies that if
two preferences, R and R̃, and two consumption bundles, x and x̃ , are as drawn in
Fig. 3, then there exists a preference R̄ that is an MMT of R at x and of R̃ at x̃ . We
reconstruct this proposition in a local preference set. We show that if R and R̃ are
sufficiently close, then R̄ can be selected to be close to R and R̃.

Proposition 2 For any R, R̃ ∈ R, and any x, x̃ ∈ R
L++, if x ∈ P

(
I (x; R)

⋂[x̃]; R̃
)
,

then there exists a preference R̄ ∈ R, that is an MMT of R at x and of R̃ at x̃ .
Furthermore, we can select a R̄ that is arbitrarily close to R and R̃ if R and R̃ are
sufficiently close.

Proof The first statement is proved byMomi (2013b), sowe need only show the second
statement. Also note that as shown by Momi (2013b), the general case drawn in Fig. 4
(i) turns into Fig. 4 (ii), which is the case we have to consider.

We let Ř denote the homothetic, monotonic, and continuous preference whose

indifference set is defined by ∂
(
UC(x; R)

⋂
UC

(
x̃; R̃

))
. It is clear that, following

the construction of R̄ inMomi (2013b), we can construct a R̄ arbitrarily close to Ř with
respect to the Kannai metric. It is clear from the definition of the Kannai metric that
the distance between R and Ř or between R̃ and Ř is less than the distance between
R and R̃. Therefore, as R and R̃ are closer, we can select R̄ closer to R and R̃. ��

We can follow the proof by Momi (2013b) using preferences in the local set B
to show the incompatibility of Pareto efficiency, strategy-proofness and the positive
consumption on the local preference set.

123



Locally efficient and strategy-proof… 811

Fig. 5 Proof of Theorem2

Proof of Theorem 2 We suppose that f is a Pareto-efficient and strategy-proof social
choice function on B = �N

i=1B
i where Bi = B satisfying f i (R) > 0 for any i and

any R ∈ B, and show a contradiction.
When all agents have the same preference, all agents should be allocated positive

portions of �: f i (R) = λi� with some 0 < λi < 1 for R = (R, . . . , R). We pick
two different preferences R and R̃ in B that are sufficiently close, and consider the

allocations given by f at R = (R, . . . , R) and R̃ =
(
R̃, . . . , R̃

)
.

We let A(x; R) denote the set of consumption bundles x ′ such that � − x ′ is
indifferent to � − x with respect to R

A(x; R) =
{
x ′ ∈ R

L+|(� − x ′)IR(� − x)
}

and we let A+(x; R) = {
x ′ ∈ RL+|(� − x)PR(� − x ′)

}
, which is the upper-

right part of the consumption set partitioned by A(x; R) and let A−(x; R) ={
x ′ ∈ RL+|(� − x ′)PR(� − x)

}
, which is the lower-left part.

Without loss of generality, we assume that f 1(R) ≤ f 1(R̃). See the Edgeworth box
described in Fig. 5, where the consumption of agent 1 is measured from the lower-
left vertex and the sum of the consumptions of the other agents is measured from
the upper-right vertex. We pick x̄1 ∈ A

(
f 1 (R) ; R)

in the neighborhood of f 1 (R)

so that x̄1 is in A
(
f 1

(
R̃

)
; R̃

)−
and x̄1 is not parallel to �. Next, let x ′ be the

intersection of A
(
f 1 (R) ; R)

and the segment
[
x̄1,�

]
and pick x̂1 ∈ A

(
f 1 (R) ; R)

in the neighborhood of x ′ so that x̂1 ∈ A
(
x ′; R̃

)−
.

As we observed in Proposition1 of Momi (2013b), agent 1’s consumption should

be on A
(
f 1 (R) ; R)

(resp. A
(
f 1

(
R̃

)
; R̃

)
) when other agents’ preferences are R

(resp. R̃) and agent 1’s preference is changed. Let R̄ and R̂ be agent 1’s preferences

in B such that f 1
(
R̄,R−1

) = x̄1 and f 1
(
R̂, R̃−1

)
= x̂1. When x̄1 is sufficiently

close to f 1(R), we can select such a R̄ in B. When x̄1 is sufficiently close to f 1(R),
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x ′ is sufficiently close to f 1
(
R̃

)
, and hence x̂1 is sufficiently close to f 1(R̃). Then,

we can select such a R̂ in B.
We let Ř ∈ B be a preference that is an MMT of R at � − x̂1 and of R̃ at

� − x̄1. Observe that our choice of x̄1 and x̂1 ensures the condition in Proposition2:

� − x̄1 ∈ P
(
I
(
� − x̂1; R) ⋂ [

� − x̄1
] ; R̃

)
. Furthermore, because R and R̃ are

sufficiently close, we can select such a Ř in B.
The following discussion is the same as that in Momi (2013b). We observe that the

consumption allocated to agent 1 should not be changedwhen the preferences of agents

other than agent 1 are changed to Ř from the profile
(
R̄,R−1

)
or from

(
R̂, R̃−1

)
.

Because f is Pareto efficient and allocates positive consumption, at the profile(
R̄,R−1

)
, agent 1 receives x̄1 and each of the other agents i = 2, . . . , N , receives

a positive portion of � − x̄1: λ̄i
(
� − x̄1

)
, i = 2, . . . , N , where 0 < λ̄i < 1 and

∑N
i=2 λ̄i = 1. Note that because we have chosen a x̄1 that is not parallel to �, the

vectors x̄1 and � − x̄1 are independent. Now, let us change agent 2’s preference to Ř

from R. We write the new profile as
(
R̄, Ř,R−{1,2}

)
where agent 1’s preference is R̄,

agent 2’s is Ř and the other agents’ preferences are R.
Given that Ř is an MMT of R at �− x̄1, this is also the case at agent 2’s consump-

tion. Therefore agent 2’s consumption should not be changed and nor should his/her
gradient vector. Because of the Pareto efficiency, all agents’ gradient vectors at their
consumptions should be the same. Hence, all agents have the same gradient vector at

both profiles
(
R̄,R−1

)
and

(
R̄, Ř,R−{1,2}

)
. Because the preferences are homothetic,

the equality of the gradient vectors implies that agents’ consumptions at both profiles
should be parallel. That is, at the new profile, agent 1’s consumption is parallel to
x̄1 and the other agents’ consumptions are parallel to � − x̄1. Because of the Pareto
efficiency, the consumptions at the new profile should sum up to the total endowment
�. Then, agent 1’s consumption should remain x̄1.

By applying the discussion repeatedly until all preferences except agent 1’s are

changed to Ř, we finally obtain that f 1
(
R̄, Ř−1

)
= x̄1, where Ř−1 =

(
Ř, . . . , Ř

)
∈

RN−1. The discussions are the same for the profile
(
R̂, R̃−1

)
and we obtain

f 1
(
R̂, Ř−1

)
= x̂1.

Remember our choice of x̂1 and x̄1. From the construction, x ′ is strictly preferred to
x̄1 with respect to any preference for agent 1 and x̂1 can be chosen arbitrarily close to x ′.
Therefore x̂1 could have been chosen to be preferred to x̄1 with respect to agent 1’s pref-
erence R̄. This violates the strategy-proofness of f . This ends the proof ofTheorem2.��

7 Concluding remarks

In this paper, we focused on the local characterization of Pareto-efficient and strategy-
proof social choice functions.We proved that Pareto-efficiency and strategy-proofness
of a social choice function defined in a local preference set imply alternating dictator-

123



Locally efficient and strategy-proof… 813

ship if the number of goods equals or exceeds the number of agents. In addition, we
proved that Pareto efficiency and strategy-proofness of a social choice function defined
in a local preference set are incompatible with the positive consumption condition if
agents’ individual preference sets are the same,.

We comment on open questions left for future research. The most interesting
question is whether local Pareto efficiency and strategy-proofness of a social choice
function imply alternating dictatorship without the condition on the numbers of agents
and goods. Although Momi (2020) proved the result on the whole preference domain,
it seems difficult to extend the proof to the case of a local preference domain because
Momi’s proof changes all agents’ preferences, except for those of two agents, to a
common preference. Reflecting on the proof, the question may become slightly easier
if all agents have the same local preference set. Without the condition on the numbers
of agents and goods, it is also an open question whether Pareto-efficient and strategy-
proof social choice functions defined on an arbitrarily given local preference set are
incompatible with allocation conditions, such as the rationality, minimum consump-
tion guarantee, and positive consumption conditions.

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

A.1 An example

Consider an economywith two agents i = 1, 2, and two goods l = 1, 2. LetUi (x1, x2)
be agent i’s utility function defined on the consumption set R2+ as

U 1 (x1, x2) = (x1 + 1)
1
2 (x2)

1
2 ,

U 2 (x1, x2) = (x1)
3
4 (x2)

1
4 .

We identify utility functions and the preferences represented by the utility functions.
Let � = (2, 2) be the total endowment of the economy and define the allocation
x̄ = (

x̄1, x̄2
)
where x̄1 = (0, 1) and x̄2 = (2, 1). Each agent’s marginal rate of

substitution (MRS) at the consumption bundle x̄ i is calculated as

MRS1 = ∂U 1

∂x1
/
∂U 1

∂x2

∣∣
∣∣
x=x̄1

= 1,

MRS2 = ∂U 2

∂x1
/
∂U 2

∂x2

∣∣∣
∣
x=x̄2

= 3

2
.
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Fig. 6 Edgeworth Box of the
example

Figure 6 illustrates the Edgeworth box of this economy where the consumption of
agent 1 is measured from the lower-left vertex and agent 2’s is measured from the
upper-right vertex. The figure depicts the allocation x̄ and each agent’s indifference
set I

(
x̄ i ,Ui

) = {x ∈ R
2+ : Ui (x) = Ui

(
x̄ i

)}, which is the set of consumption
indifferent to x̄ i with respect to Ui on the possible allocation set X . Observe that x̄,
that is on the boundary of X , is Pareto efficient even though the MRSs are not equal
between agents 1 and 2.

Consider a social choice function f that always allocates x̄ for any preferences.
It is clear that f is strategy-proof and nondictatorial. It is also clear that for prefer-
ence profiles in a neighborhood of

(
U 1,U 2

)
, the allocation x̄ remains Pareto efficient

because the inequality MRS1 < MRS2 holds.
Although the agent 1’s preference represented by U 1 is not homothetic, it can be

modified to be so without affecting the result. We pick up the indifference set of U 1

at x̄1 and construct a new homothetic preference by scaling this indifference set.

A.2 Proofs of lemmas and corollaries

Proof of Lemma 1 Let R ∈ R and p ∈ SL−1++ be given. We pick up a consumption
bundle x̄ ∈ R

L++ and the corresponding indifference set Ī = I (x̄, R). It is clear from
the strict convexity of R that the consumption bundle x ′ ∈ Ī on the indifference set
where the gradient vector is p: p(R, x ′) = p, is determined uniquely. Furthermore, by
the homotheticity of R, the gradient vectors are the same on any consumption bundles
on a ray starting from the origin. In particular, the gradient vector at a consumption
bundle x ∈ R

L++ is p if and only if x is on the ray [x ′]. Therefore, the consumption-
direction vector g(R, p) ∈ SL−1++ , which is the normalization of these consumption

bundles, is uniquely determined as x ′
‖x ′‖ .

To prove the continuity, we fix R̄ ∈ R and p ∈ SL−1++ . We want to show that
for any ε > 0, there exists a δ > 0 such that if R satisfies d(R, R̄) ≤ δ, then
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Fig. 7 Continuity of the consumption-direction vector

‖ g(R, p) − g(R̄, p) ‖< ε, where d(·, ·) is the Kannai metric and ‖ · ‖ is the Euclid
norm in RL .

In contrast, we suppose that there exists an ε > 0 such that for any δ > 0 there
exists some R satisfying d

(
R, R̄

)
< δ, and ‖ g(R, p) − g

(
R̄, p

) ‖≥ ε, and show a
contradiction.

We suppose that a sufficiently small δ and R satisfy the condition. We fix a hyper-
plane H parallel to p⊥ as in Fig. 7. ��

We define a as the intersection between
[
g

(
R̄, p

)]
and H , b as the intersection

between [g(R, p)] and H , b′ as the intersection between [g(R, p)] and I
(
a; R̄)

, c as
the intersection between [1] and I (b; R), and c′ as the intersection between [1] and
I
(
a; R̄)

. We define e as the intersection between I
(
a; R̄)

and I (b; R), and c′′ as the
intersection between I

(
b; R̄)

and [1].
Because g(R, p) is away from g

(
R̄, p

)
by at least the distance ε, b′ is away from

b by some distance, which we write as ε′: ‖ b′ − b ‖= ε′. Note that, because the
preferences are homothetic, ‖ c′ − c′′ ‖:‖ c′ ‖=‖ b′ − b ‖:‖ b′ ‖. Therefore, ‖
c′ − c′′ ‖= ‖c′‖

‖b′‖ε′.
We consider the Kannai metric between R and R̄: d

(
R, R̄

) = maxx∈RL+
‖I (x;R)

⋂[1]−I(x;R̄)⋂[1]‖
1+‖x‖2 .

Letting e be the x in the definition of the Kannai metric, we have

d
(
R, R̄

) ≥ ‖ I (e; R)
⋂[1] − I

(
e; R̄) ⋂[1] ‖

1+ ‖ e ‖2 = ‖ c − c′ ‖
1+ ‖ e ‖2 .
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Letting b be the x in the definition of the Kannai metric, we have

d
(
R, R̄

) ≥ ‖ I (b; R)
⋂[1] − I

(
b; R̄) ⋂[1] ‖

1+ ‖ b ‖2 = ‖ c − c′′ ‖
1+ ‖ b ‖2 .

The condition d
(
R, R̄

)
< δ with a sufficiently small δ implies that ‖ c − c′ ‖<(

1+ ‖ e ‖2) δ and ‖ c − c′′ ‖< (
1+ ‖ b ‖2) δ, that is, both c′ and c′′ are sufficiently

close to c. However, this contradicts to that c′ and c′′ have the distance ‖ c′ − c′′ ‖=
‖c′‖
‖b′‖ε′ between them. ��
Proof of Lemma 2 We fix δ arbitrarily. We let {εn}∞n=0 be a decreasing sequence of
scalars converging to 0: εn < εn′ for n > n′ and εn → 0 as n → ∞. We assume that

for any n, there exist some Ri
(n) ∈ Bεn

(
Ri

)
and x(n) ∈ F

(
Ri

(n);Gi
(
R−i

))
satisfying

x(n) /∈ Bδ

(
F

(
Ri ;Gi (R−i

))
, and we show a contradiction.

Because x(n) IRi
(n)

f i
(
Ri

(n),R
−i

)
Ri

(n) f
i (R), we have x(n) ∈ UC

(
f i (R) ; Ri

(n)

)
.

Because x(n) ∈ Gi
(
R−i

)
, it should not be preferred over f i (R) with respect

to Ri , that is, x(n) ∈ LC
(
f i (R) ; Ri

)
. Therefore, xi(n) is in the intersection

UC
(
f i (R) ; Ri

(n)

)⋂
LC

(
f i (R) ; Ri

)
. As n → ∞, we have Ri

(n) → Ri , and hence

this intersection converges to some set in the indifference set I
(
f i (R) ; Ri

)
.

Note that
{
x(n)

}∞
n=0 has a convergent subsequence

{
x(nk )

}∞
k=0 where nk < nk′ for

k > k′ because the set of feasible allocations is compact. We let x̂ = limk→∞ x(nk )

denote the limit. Thus, we have x̂ ∈ I
(
f i (R) ; Ri

)
.

Because x(nk ) ∈ Gi
(
R−i

)
, we have x̂ ∈ Gi (R−i ), where Gi

(
R−i

)
is the closure

of Gi
(
R−i

)
. This implies x̂ ∈ Gi

(
R−i

)
, as proved by Momi (2017, Lemma 3).

Thus, we have x̂ ∈ F
(
Ri ;Gi

(
R−i

))
and this contradicts that x(nk ) /∈

Bδ

(
F

(
Ri ;Gi

(
R−i

)))
. ��

Proof of Lemma 3 We fix ε′ arbitrarily. We suppose that for any φ′, there exists R−i

such that f i
(
Ri ,R−i

) �= 0, p
((
Ri ,R−i

)
, f

) ∈ Bφ′( p̄), and p
(
R̂i ;Gi

(
R−i

))
/∈

Bε′( p̄), and we show a contradiction.

Because p
(
R̂i ;Gi

(
R−i

))
is not included in Bε′( p̄), there exists x̂ i ∈ F

(
R̂i ;Gi

(
R−i

))
such that p

(
R̂i ; x̂ i

)
/∈ Bε′( p̄). Because p

(
R̂i ; x̄ i

)
= p̄,

p
(
R̂i ; x̂ i

)
/∈ Bε′( p̄) implies that the ray [x̂ i ] is away from the ray [x̄ i ]. Formally,

we measure the distance between rays by the distance between their intersections with
SL−1++ , that is, we define the distance between two rays [y] and [z], where y, z ∈ RL++,
by the distance between y/ ‖ y ‖ and z/ ‖ z ‖.

Note that, even if x̂ i is different from f i
(
R̂i ,R−i

)
, they are indifferent with

respect to R̂i . Therefore, we have x̂ i R̂i f i
(
Ri ,R−i

)
because of strategy-proofness.

Conversely, because x̂ i ∈ Gi
(
R−i

)
, we have f i

(
Ri ,R−i

)
Ri x̂ i . Thus, we have

x̂ i ∈ LC
(
f i

(
Ri ,R−i

) ; Ri
) ⋂

UC
(
f i

(
Ri ,R−i

) ; R̂i
)
.
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By taking a sufficiently small value of φ′, we have p
((
Ri ,R−i

)
, f

)
arbitrarily

close to p̄. Then, the ray
[
f i

(
Ri ,R−i

)]
is arbitrarily close to

[
x̄ i

]
. Then, for any

x ∈ LC
(
f i

(
Ri ,R−i

) ; Ri
) ⋂

UC
(
f i

(
Ri ,R−i

) ; R̂i
)
, the ray [x] is arbitrarily close

to the ray
[
x̄ i

]
, and hence, the ray

[
x̂ i

]
should be arbitrarily close to

[
x̄ i

]
. This is a

contradiction. ��

Proof of Lemma 4 Note that gi
(
R̄, f

) = g
(
Ri , p

(
R̄, f

))
, i = 1, . . . , K , and they

are independent. As p → p
(
R̄, f

)
, we have g

(
R̄i , p

) → g
(
R̄i , p

(
R̄, f

))
. There-

fore, there exists ε′ such that g
(
R̄i , p

)
, i = 1, . . . , K , are independent for any

p ∈ Bε′
(
p

(
R̄, f

))
, where Bε′

(
p

(
R̄, f

))
denotes the closure of Bε′

(
p

(
R̄, f

))
.

For each p ∈ Bε′
(
p

(
R̄, f

))
, g

(
Ri , p

) → g
(
R̄i , p

)
as Ri → R̄i . Therefore, there

exists εp such that g
(
Ri , p

)
, i = 1, . . . , K , are independent for any Ri ∈ Bεp

(
R̄i

)
,

i = 1, . . . , K . We define ε′ as the minimum of εp as p moves over Bε̄ (p(R̄, f )):
ε′ = min

p∈Bε̄

(
p
(
R̄, f

)) εp. It is clear that ε′ and ε′ satisfy Lemma 4 (1).

We consider Ri ∈ Bε′
(
R̄i

)
, i = 1, . . . , K , and p(R, f ) ∈ Bε′

(
p

(
R̄, f

))
. Then,

gi (R, f ), i = 1, . . . , K , are independent.
Note that f j (R) = f j (R̄) = 0 for j ≥ K + 1, means that

∑K
i=1 f i (R) = � and

∑K
i=1 f i

(
R̄

) = �.
We define ᾱi , i = 1, . . . , K , as f i (R) = ᾱi gi (R, f ). Because f i

(
R̄

) ∈[
gi

(
R̄, f

)]
, i = 1, . . . , K , and gi

(
R̄, f

)
, i = 1, . . . , K , are independent, these

ᾱi s are a unique solution of
∑K

i=1 αi gi
(
R̄, f

) = �.
Because gi

(
R̄, f

) = g
(
R̄i , p(R, f )

)
and gi (R, f ) = g

(
Ri , p(R, f )

)
, gi (R, f )

converges to gi
(
R̄, f

)
as Ri and p(R, f ) converge to R̄i and p

(
R̄, f

)
, respectively.

Therefore the scalars αi (R, f ), i = 1, . . . , K satisfying
∑K

i=1 αi (R, f )gi (R, f ) =
�, are determined uniquely and αi (R, f ) converges to ᾱi , for any i = 1, . . . , K , as
gi (R, f ) converges to gi (R̄, f ), i = 1, . . . , K . Then, f i (R) = αi (R, f )gi (R, f )
converges to f i (R̄), i = 1, . . . , K . Thus f i (R̄) > 0 implies that f i (R) > 0 ��

Proof of Lemma 5 We select ε and ε arbitrarily. If f j
(
R̄

) �= 0 for some j ≥ K + 1,
the lemma holds. Therefore, we suppose that f j

(
R̄

) = 0 for any j ≥ K + 1. We
let ε̄ > 0 and ε̄ > 0 be scalars that support Lemma 4 with respect to R̄. We define
ε̃ = min{ε, ε̄} and ε̃ = min{ε, ε̄}. Note that, because of Lemma 4, at any R such
that Ri ∈ Bε̃

(
R̄i

)
, i = 1, . . . , K , and p(R, f ) ∈ Bε̃

(
p

(
R̄, f

))
, if f j (R) = 0 for

j ≥ K + 1, then f i (R), i = 1, . . . , K , are all positive and independent.
We let R̂i ∈ Bε̃

(
R̄i

)
be an MMT of R̄i at f i

(
R̄

)
for each i = 1, . . . , K .

Case 1 We consider the case where some agent j ≥ K + 1 receives positive con-
sumption after replacements of R̄i with R̂i for some agents i = 1, . . . , K , that is,

f j
(
R1, . . . , RK , R̄K+1, . . . , R̄N

) �= 0 for some j ≥ K + 1 and Ri ∈
{
R̄i , R̂i

}
,

i = 1, . . . , K .
Without loss of generality, by relabeling the consumer indexes if necessary, we

assume that f j
(
R̂1, . . . , R̂ S̄, R̄ S̄+1, . . . , R̄N

)
�= 0 for some j ≥ K + 1 where S̄ is
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the smallest number of agents whose preference R̄i should be replaced with R̂i so that
some agent j ≥ K + 1 has positive consumption.

We show that the lemma holds at the preference profile
(
R̂1, . . . , R̂ S̄, R̄ S̄+1, . . . ,

R̄N
)
. It is clear that the preference subprofile

(
R̂1, . . . , R̂ S̄, R̄ S̄+1, . . . , R̄K

)
is in

Bε

(
R̄1

)×· · ·×Bε

(
R̄K

)
. All we have to show is that the price vector at the preference

profile is in Bε

(
p

(
R̄, f

))
.

From the definition of S̄, we have f j
(
R1, . . . , RS̄−1, R̄ S̄, . . . , R̄N

)
= 0 for any

j ≥ K + 1 and any Ri ∈
{
R̄i , R̂i

}
, i = 1, . . . , S̄ − 1. Because the K agents,

i = 1, . . . , K , share the total endowment among them with the independent con-

sumption vectors, we have p
((

R1, . . . , RS̄−1, R̄ S̄, . . . , R̄N
)

, f
)

= p
(
R̄, f v

)
and

f i
(
R1, . . . , RS̄−1, R̄ S̄, . . . , R̄N

)
= f i

(
R̄

)
for any i = 1, . . . , K , and any Ri ∈

{R̄i , R̂i }, i = 1, . . . , S̄−1. In particular,we have f S̄
(
R̂1, . . . , R̂ S̄−1, R̄ S̄, . . . , R̄N

)
=

f S̄
(
R̄

)
and p

((
R̂1, . . . , R̂ S̄−1, R̄ S̄, . . . , R̄N

)
, f

)
= p

(
R̄, f

)
. Because R̂ S̄ is an

MMT of R̄ S̄ at f S̄
(
R̄

)
, we have p

((
R̂1, . . . , R̂ S̄, R̄ S̄+1, . . . , R̄N

)
, f

)
= p

(
R̄, f

)

as desired.

Case 2 We consider the case where agent j ≥ K + 1 receives zero consump-
tion after any replacement of R̄i with R̂i for any agents i = 1, . . . , K , that is,

f j
(
R1, . . . , RK , R̄K+1, . . . , R̄N

) = 0 for any j ≥ K+1 and any Ri ∈
{
R̄i , R̂i

}
, i =

1, . . . , K . Note that f i
(
R1, . . . , RK , R̄K+1, . . . , R̄N

) = f i
(
R̄

)
for i = 1, . . . , K ,

and p
((
R1, . . . , RK , R̄K+1, . . . , R̄N

)
, f

) = p
(
R̄, f

)
for any Ri ∈

{
R̄i , R̂i

}
,

i = 1, . . . , K , because these agents share the total endowment with independent
consumption vectors.

Starting from the preference profile R̄, we replace R̄i with R̂i and then replace R̂i

with a preference Ri ′ in a neighborhood of R̂i for i = 1, . . . , K . If no agents j ≥ K+1
have positive consumption, then we reach a situation contradicting Proposition1.

This replacement of preferences should be done so that the independence of the
consumption vectors is maintained. For this purpose, we prepare a function φi as
follows. For each i = 1, . . . , K , we consider a function φ̄i : ε′ �→ φ̄i

(
ε′) that

maps ε′ to φ′ in Lemma 3 with respect to R̄i and R̂i . Furthermore we define a func-
tion φi : ε′ �→ φi

(
ε′) as φi

(
ε′) = min

{
φ̄i

(
ε′) , ε′}. Then, of course, for any ε

and any R−i , if f i
(
R̄i ,R−i

) �= 0 and p
((
R̄i ,R−i

)
, f

) ∈ Bφi (ε)

(
p

(
R̄, f

))
, then

p
(
R̂i ;Gi

(
R−i

)) ∈ Bε

(
p

(
R̄, f

))
because of Lemma 3.

Step 1We replace R̄1 with R̂1. This replacement does not change the price vector. We

let ε1 be a sufficiently small scalar such that Bε1

(
R̂1

)
⊂ Bε̃

(
R̄1

)
and

p
(
R1′;G1

(
R̄−1

))
⊂ Bφ2◦···◦φK (ε̃)

(
p

(
R̄, f

))
(10)
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for any R1′ ∈ Bε1

(
R̂1

)
. Note that f 1(R̄) is the unique intersection of

UC
(
f 1

(
R̄

) ; R̂1
)
and G1

(
R−1

)
. Therefore, if R1′ is sufficiently close to R̂1, then

f
(
R1′, R̄−1

)
and p

(
R1′;G1

(
R̄−1

))
are sufficiently close to f 1

(
R̄

)
and p

(
R̄, f

)
,

respectively, as discussed after Lemma 2. Thus, a value of ε1 satisfying the condition
exists.

The lemma holds if f j
(
R1′, R̄−1

) �= 0 for some j ≥ K + 1 with some

R1′ ∈ Bε1

(
R̂1

)
. Therefore, we suppose that f j

(
R1′, R̄−1

) = 0 for any j ≥ K + 1

and any R1′ ∈ Bε1

(
R̂1

)
. Then, f i

(
R1′, R̄−1

)
, i = 1, . . . , K , are all positive

and independent because R1′ ∈ Bε1

(
R̂1

)
⊂ Bε̃

(
R̄1

)
and p

((
R1′, R̄−1

)
, f

) ∈
Bφ2◦···◦φK (ε̃)

(
p

(
R̄, f

)) ⊂ Bε̃

(
p

(
R̄, f

))
. ��

Step 2 We replace R2 with R̂2. By (10) and Lemma 3, we have

p
(
R̂2;G2

(
R1′, R̄−{1,2}))

⊂ Bφ3◦···◦φK (ε̃)

(
p

(
R̄, f

))
(11)

for any R1′ ∈ Bε1

(
R̂1

)
.We let ε2 be sufficiently small such that Bε2

(
R̂2

)
⊂ Bε̃

(
R̄2

)

and

p
(
R2′;G2

(
R1′, R̄−{1,2}))

⊂ Bφ3◦···◦φK (ε̃)

(
p

(
R̄, f

))
(12)

for any R2′ ∈ Bε2

(
R̂2

)
and any R1′ ∈ Bε1

(
R̂1

)
. Note that a sufficiently small value

of ε2 ensures (12) because of (11).
The lemma holds if f j

(
R1′, R2′, R̄−{1,2}) �= 0 for some j ≥ K + 1 and some

(
R1′, R2′) ∈ Bε1

(
R̂1

)
×Bε2

(
R̂2

)
. Therefore,we suppose that f j

(
R1′, R2′, R̄−{1,2})

= 0 for any j ≥ K + 1 and any
(
R1′, R2′) ∈ Bε1

(
R̂1

)
× Bε2

(
R̂2

)
. Then

f i
(
R1′, R2′, R̄−{1,2}), i = 1, . . . , K , are all positive and independent because

(
R1′, R2′) ∈ Bε1(R̂

1) × Bε2

(
R̂2

)
⊂ Bε̃ (R̄1) × Bε̃

(
R̄2

)
and p

( (
R1′, R2′, R̄−{1,2}) ,

f
) ∈ Bφ3◦···◦φK (ε̃)

(
p

(
R̄, f

)) ⊂ Bε̃

(
p

(
R̄, f

))
. ��

Step 3We replace R̄3 with R̂3. By (12) and Lemma 3, we have

p
(
R̂3;G3

(
R1′, R2′, R̄−{1,2,3}))

⊂ Bφ4◦···◦φK (ε̃)

(
p

(
R̄, f

))

for any
(
R1′, R2′) ∈ Bε1

(
R̂1

)
× Bε2

(
R̂2

)
. We let ε3 be a sufficiently small scalar

such that Bε3

(
R̂3

)
⊂ Bε̃

(
R̄3

)
and

p
(
R3′;G3

(
R1′, R2′, R̄−{1,2,3}))

⊂ Bφ4◦···◦φK (ε̃)

(
p

(
R̄, f

))
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for any R3′ ∈ Bε3

(
R̂3

)
and any

(
R1′, R2′) ∈ Bε1

(
R̂1

)
× Bε2

(
R̂2

)
.

The lemma holds if f j
(
R1′, . . . , R3′, R̄−{1,2,3}) �= 0 for some j ≥ K + 1 and

some
(
R1′, . . . , R3′) ∈ Bε1

(
R̂1

)
× · · · × Bε3

(
R̂3

)
. Therefore, we suppose that

f j
(
R1′, . . . , R3′, R̄−{1,2,3}) = 0 for any j ≥ K + 1 and any

(
R1′, . . . , R3′) ∈

Bε1

(
R̂1

)
× · · · × Bε3

(
R̂3

)
. Then, f i

(
R1′, . . . , R3′, R̄−{1,2,3}), i = 1, . . . , K all

remain positive and independent because
(
R1′, . . . , R3′) ∈ Bε̃

(
R̂1

)
×· · ·× Bε̃

(
R̂3

)

and p
((
R1′, . . . , R3′, R̄−{1,2,3}) , f

) ∈ Bε̃

(
p

(
R̄, f

))
. ��

We repeat these steps. Finally, we replace R̄K with R̂K and obtain

p
(
R̂K ;GK

(
R1′, . . . , RK−1′, R̄K+1, . . . , R̄N

))
⊂ Bε̃

(
p

(
R̄, f

))
,

for any
(
R1′, . . . , RK−1′) ∈ Bε1

(
R̂1

)
× · · · × BεK−1

(
R̂K−1

)
. We let εK be a suffi-

ciently small scalar such that BεK

(
R̂K

)
⊂ Bε̃

(
R̄K

)
and

p
(
RK ′;GK

(
R1′, . . . , RK−1′, R̄K+1, . . . , R̄N

))
⊂ Bε̃

(
p

(
R̄, f

))
,

for any RK ′ ∈ BεK

(
R̂K

)
and any

(
R1′, . . . , RK−1′) ∈ Bε1

(
R̂1

)
× · · · ×

BεK−1

(
R̂K−1

)
. There should exist some preference profile

(
R1′, . . . , RK ′) ∈

Bε1

(
R̂1

)
× · · · × BεK

(
R̂K

)
⊂ Bε

(
R̄1

) × · · · × Bε

(
R̄K

)
such that f j

(
R1′, . . . ,

RK ′, R̄K+1, . . . , R̄N
) �= 0 for some j ≥ K + 1. Otherwise, f

(·, . . . , ·, R̄K+1, . . . ,

R̄N
)
becomes a social choice function in the economy with K agents i = 1, . . . , K ,

that is Pareto efficient, strategy-proof, and nonalternately dictatorial on Bε1

(
R̂1

)
×

· · · × BεK

(
R̂K

)
with independent consumption directions. This contradicts Proposi-

tion1. This ends the proof of Lemma 5. ��
Proof of Corollary 1 Contrary to the statement of the corollary, we suppose that for

each j ≥ K + 1 there exist ε j and ε j such that no
(
R̃1, . . . , R̃K

)
∈ Bε j

(
R̄1

) ×
· · ·× Bε j (R̄K ) satisfies p

((
R̃1, . . . , R̃K , R̄K+1, . . . , R̄N

)
, f

)
∈ Bε j (p(R̄, f )) and

f j (R̃1, . . . , R̃K , R̄K+1, . . . , R̄N ) /∈ {0,�}. We let ε̄ = min
{
εK+1, . . . , εN

}
and

ε̄ = min
{
εK+1, . . . , εN

}
. Then, for these ε̄ and ε̄, no

(
R̃1, . . . , R̃K

)
∈ Bε̄

(
R̄1

) ×
· · · × Bε̄

(
R̄K

)
satisfies p

((
R̃1, . . . , R̃K , R̄K+1, . . . , R̄N

)
, f

)
∈ Bε̄(p(R̄, f )) and

f j
(
R̃1, . . . , R̃K , R̄K+1, . . . , R̄N

)
/∈ {0,�} for any j ≥ K + 1. This contradicts

Lemma 5. ��
Proof of Lemma 6 We select ε and ε arbitrarily. If f j

(
R̄

) �= 0 for some j ≥ K +1, the
lemma holds. Therefore, we assume that f j

(
R̄

) = 0 for j ≥ K + 1. When an agent
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receives neither zero consumption nor the total consumption, there exists another agent
who also receives neither zero nor the total consumption. Without loss of generality,
by relabeling the consumer indexes if necessary, we assume that f i

(
R̄

)
/∈ {0,�} for

i = 1, . . . , M1 and f i
(
R̄

) = 0 for i ≥ M1 + 1, where 2 ≤ M1 ≤ K . Applying
Corollary 1 to agents who receive positive consumption repeatedly, we can increase
the number of agents who receive positive consumption. ��
Step 1We start from the preference profile R̄. We let ε̄ > 0 and ε̄ > 0 be scalars that
support Lemma 4 with respect to R̄. We define that ε̃ = min{ε, ε̄} and ε̃ = min{ε, ε̄}.

We apply Corollary 1 to agents i = 1, . . . , M1. There exists j ≥ M1 + 1 such that

for any ε1 and ε1, some
(
R1

(1), . . . , R
M1
(1)

)
∈ Bε1(R̄

1) × · · · × Bε1(R̄
M1) satisfies

p
((

R1
(1), . . . , R

M1
(1) , R̄

M1+1, . . . , R̄N
)

, f
)

∈ Bε1(p(R̄, f )), (13)

and

f j
(
R1

(1), . . . , R
M1
(1) , R̄

M1+1, . . . , R̄N
)

/∈ {0,�}. (14)

If (14) holds with some agent j ≥ K + 1, then the lemma holds. Therefore,
we assume that agent j ≥ K + 1 has zero consumption at any preference profile
(R1

(1), . . . , R
M1
(1) , R̄

M1+1, . . . , R̄N ). We set sufficiently small ε1 < ε̃ and ε1 < ε̃, and

we fix
(
R1

(1), . . . , R
M1
(1)

)
∈ Bε1(R̄

1)×· · ·×Bε1

(
R̄M1

)
to satisfy (13) and (14).Without

loss of generality, we assume that agents j = M1+1, . . . , M2, whereM1+1 ≤ M2 ≤
K , satisfies (14).

We can prove that agents i = 1, . . . , K have independent consumption vec-
tors and agents i = 1, . . . , M1 have positive consumption at the preference profile
(R1

(1), . . . , R
M1
(1) , R̄

M1+1, . . . , R̄N ). Remember Lemma 4 and our choice of the scalars

ε1 and ε1. First, gi
((

R1
(1), . . . , R

M1
(1) , R̄

M1+1, . . . , R̄N
)

, f
)
, i = 1, . . . , K , are inde-

pendent because gi (R̄, f ), i = 1, . . . , K , are independent, Ri
(1) ∈ Bε1

(
R̄i

) ⊂ Bε̃ (R̄i ),

i = 1, . . . , M1, and p
((

R1
(1), . . . , R

M1
(1) , R̄

M1+1, . . . , R̄N
)

, f
)

∈ Bε1(p(R̄, f )) ⊂
Bε̃(p(R̄, f )). Furthermore f i (R1

(1), . . . , R
M1
(1) , R̄

M1+1, . . . , R̄N ) �= 0 for any i =
1, . . . , M1, because f i (R̄) �= 0 for i = 1, . . . , M1. Note that, as a result, agents
i = 1, . . . , M2 have positive consumption at the preference profile. ��
Step 2: Starting from the preference profile (R1

(1), . . . , R
M1
(1) , R̄

M1+1, . . . , R̄N ),
where agents i = 1, . . . , M2 have positive consumption, we conduct the same
operation as in Step 1. We let ε̄1 and ε̄1 be scalars such that they support
Lemma 4 with respect to (R1

(1), . . . , R
M1
(1) , R̄

M1+1, . . . , R̄N ) and satisfy Bε̄1(R
i
(1)) ⊂

Bε(R̄i ) for i = 1, . . . , M1, Bε̄1(R̄
i ) ⊂ Bε(R̄i ) for i = M1 + 1, . . . , K , and

Bε̄1(p(R
1
(1), . . . , R

M1
(1) , R̄

M1+1, . . . , R̄N ), f ) ⊂ Bε(p(R̄, f )).
We applyCorollary 1 to agents i = 1, . . . , M2. There exists j ≥ M2+1 such that for

any ε2 and ε2, some (R1
(2), . . . , R

M2
(2) ) ∈ Bε2(R

1
(1))×· · ·× Bε2(R

M1
(1) )× Bε2

(
R̄M1+1

)×
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· · · × Bε2

(
R̄M2

)
satisfies

p((R1
(2), . . . , R̃

M2
(2) , R̄

M2+1, . . . , R̄N ), f ) ∈ Bε2(p((R
1
(1), . . . ,

R̃M1
(1) , R̄

M1+1, . . . , R̄N ), f )),

(15)

and

f j
(
R1

(2), . . . , R̃
M2
(2) , R̄

M2+1, . . . , R̄N
)

/∈ {0,�}. (16)

If (15) holds with some agent j ≥ K + 1, then the lemma holds. Therefore,
we assume that agent j ≥ K + 1 has zero consumption at any preference pro-
file (R1

(2), . . . , R̃
M2
(2) , R̄

M2+1, . . . , R̄N ). We set ε2 < ε̄1 and ε2 < ε̄1, and we fix

(R1
(2), . . . , R̃

M2
(2) ) ∈ Bε2(R

1
(1)) × · · · × Bε2(R

M1
(1) ) × Bε2(R̄

M1+1) × · · · × Bε2(R̄
M2)

to satisfy (15) and (16). Without loss of generality, we assume that agents j =
M2 + 1, . . . , M3, where M2 + 1 ≤ M3 ≤ K , satisfy (16).

We can prove that agents i = 1, . . . , K have independent consumption vec-
tors and agents i = 1, . . . , M2 have positive consumption at the preference profile
(R1

(2), . . . , R̃
M2
(2) , R̄

M2+1, . . . , R̄N ) in a similar way to the previous step. As a result,
agents i = 1, . . . , M3 have positive consumption at the preference profile. ��

We repeat these steps. In each step, we have at least one additional agent who
receives positive consumption at the preference profile in the ε-neighborhood of R̄,
where the price vector is in the ε-neighborhood of p(R̄). Finally, some agent j ≥ K+1
should receive positive consumption. This ends the proof of Lemma 6. ��
Proof of Corollary 2 Contrary to the statement of the corollary, we suppose that for each
j ≥ K + 1, there exist values of ε j and ε j such that no (R̃1, . . . , R̃K ) ∈ Bε j (R̄1) ×
· · · × Bε j (R̄K ) satisfies p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N ), f ) ∈ Bε j (p(R̄, f )) and
f j (R̃1, . . . , R̃K , R̄K+1, . . . , R̄N ) /∈ {0,�}. We let ε̄ = min{εK+1, . . . , εN } and
ε̄ = min{εK+1, . . . , εN }. Then, for these ε̄ andε̄, no (R̃1, . . . , R̃K ) ∈ Bε̄ (R̄1) ×
· · · × Bε̄ (R̄K ) satisfies p((R̃1, . . . , R̃K , R̄K+1, . . . , R̄N ), f ) ∈ Bε̄(p(R̄, f )) and
f j (R̃1, . . . , R̃K , R̄K+1, . . . , R̄N ) /∈ {0,�} for any j ≥ K + 1. This contradicts
Lemma 6. ��
Proof of Lemma 7 We write ai = ((1/αi

1)
1/(ρ−1), . . . , (1/αi

L)1/(ρ−1)). First, we show
that the lemma holds when ai , i = 1, . . . , N , are independent. If ai , i = 1, . . . , N , are
independent, β i (δ, zi ), i = 1, . . . , N , are positive and independent with any vectors
z̄i , i = 1, . . . , N , when δi , i = 1, . . . , N , are sufficiently small.

When they are dependent, z̄i , i = 1, . . . , N , can be obtained as follows, for example.
Without loss of generality we assume that the vectors a1, . . . , aN span S-dimensional
space, where S < N and a1, . . . , aS are independent. We set z̄i = ai for i = 1, . . . , S.
We let 〈a1, . . . , aS〉 denote the S-dimensional vector space spanned by a1, . . . , aS and
let 〈a1, . . . , aS〉⊥ denote the orthogonal complement space of (L − S)-dimensions,
We select z̄i , i = S+1, . . . , N , so that they are independent vectors in 〈a1, . . . , aS〉⊥.
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When δi is sufficiently small ai + δi z̄i is positive for any i = 1, . . . , N . Their inde-
pendence is clear from the construction. ��
Proof of Lemma 8 In the proof of Lemma 7, we set z̄i so that ai + δi z̄i , i = 1, . . . N ,
are independent. It is clear that any zi that is sufficiently close to z̄i sustains the
independence, and Lemma 7 holds with zi instead of z̄i . That is, there exists a t̄ such
that β i (δi , zi ), i = 1, . . . , N , are independent for any 0 < δi ≤ δ̄ and any zi ∈ Bt̄ (z̄

i ),
i = 1, . . . , N .

For each δi and zi ∈ Bt̄i (z̄
i ), we calculate γ̂ i

zi
= (γ i

zi1
, . . . , γ̂ i

zi L
) by solving

((1/γ̂ i
zi1)

1/(ρ−1), . . . , (1/γ̂ i
zi L)1/(ρ−1)) = β i (δi , zi ) (17)

and define γ i
zi

= (γ i
zi1

, . . . , γ i
zi L

) as the normalization of γ̂ i
zi
: γ i

zi
= γ̂ i

zi
/ ‖ γ̂ i

zi
‖. We

define the CES utility function Uγ i
zi
with γ i

zi
as the parameter. Then, as in the case of

Uγ i , for any price p, the consumption-direction vectors of Uγ i
zi
, i = 1, . . . , N , are

independent for any 0 < δi < δ̄ and any zi ∈ Bt̄ (z̄
i ) because of the independence of

β(δi , zi ), i = 1, . . . , N .
For each δi and p ∈ P , we define Gi (δi , t̄ i , p) = ⋃

zi∈Bt̄i (z̄i ) g(Uγ i
zi
, p) as the

set of the consumption-direction vectors of Uγ i
zi
for p while zi moves over Bt̄ (z̄

i ).

Then, any vectors bi ∈ Gi (δi , t̄ i , p), i = 1, . . . , N are independent as observed in
the previous paragraph.

As Ri → Uγ i , we have g(Ri , p) → gi (Uγ i , p). Therefore, for each p ∈ P

and 0 < δi ≤ δ̄, there exists an εi
(
p, δi

)
such that if Ri ∈ Bεi(p,δi)

(
Uγ i

)
, then

gi (Ri , p) ∈ Gi
(
δi , t̄, p

)
. Finally, we define εi

(
δi

) = minp∈P εi (p, δi ). ��
Proof of Lemma 9 When δi = 0, Ri

0,t,s is an MMT of R̄i at ḡi and Ri
0,t,s → R̄i as

t → 0 and s → 0. We fix s and t such that Ri
0,t,s ∈ Bε

(
R̄i

)
for any i = 1, . . . , N .

Because Ri
δi ,t,s

→ Ri
0,t,s as δi → 0, we select δ̄i such that Ri

δ̄i ,t,s
∈ Bε

(
R̄i

)
. Then

we have Ri
δi ,t,s

∈ Bε

(
R̄i

)
for any 0 ≤ δi ≤ δ̄i .

For any 0 < δi ≤ δ̄i , the consumption-direction vectors of Ri
δi ,t,s

, i = 1, . . . , N ,
are independent for prices in a neighborhood of p̄. That is, there exists an ε such that

g
(
Ri

δi ,t,s
, p

)
, i = 1, . . . , N , are independent for p ∈ Bε ( p̄). ��

Proof of Lemma 10 Let εi be the same as in Lemma 8. Because the preference Ri
δi ,t,s

coincides with the preference Uγ i in a neighborhood of ḡi , we set ε̄ such that

g
(
Ri

δi ,t,s
, p

)
= g

(
Uγ i , p

)
, i = 1, . . . , N , for p ∈ Bε̄ ( p̄). Then, Lemma 10 fol-

lows Lemma 8. ��
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