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Abstract
We explore the consequences of weakening the notion of incentive compatibility from
strategy-proofness to ordinal Bayesian incentive compatibility (OBIC) in the random
assignment model. If the common prior of the agents is the uniform prior, then a large
class of random mechanisms are OBIC with respect to this prior—this includes the
probabilistic serial mechanism. We then introduce a robust version of OBIC: a mech-
anism is locally robust OBIC if it is OBIC with respect all independent and identical
priors in some neighborhood of a given independent and identical prior. We show
that every locally robust OBIC mechanism satisfying a mild property called elemen-
tary monotonicity is strategy-proof. This leads to a strengthening of the impossibility
result in Bogomolnaia and Moulin (J Econ Theory 100:295–328, 2001): if there are at
least four agents, there is no locally robust OBIC and ordinally efficient mechanism
satisfying equal treatment of equals.
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1 Introduction

This paper explores the consequences of weakening incentive compatibility from
strategy-proofness to ordinal Bayesian incentive compatibility in the random assign-
ment model (one-sided matching model). Ordinal Bayesian incentive compatibility
(OBIC) requires that the truth-telling expected share vector of an agent first-order
stochastically dominates the expected share vector from reporting any other pref-
erence. It is the natural analogue of Bayesian incentive compatibility in an ordinal
mechanism. This weakening of strategy-proofness was proposed by d’Aspremont and
Peleg (1988). We study OBIC by considering mechanisms that allow for randomiza-
tion in the assignment model.

In the random assignment model, the set of mechanisms satisfying ex-post effi-
ciency and strategy-proofness is quite rich.1 Despite satisfying such strong incentive
properties, all of them either fail to satisfy equal treatment of equals, a weak notion
of fairness, or ordinal efficiency.2 Indeed, Bogomolnaia and Moulin (2001) propose
a new mechanism, called the probabilistic serial mechanism, which satisfies equal
treatment of equals and ordinal efficiency. However, they show that it fails strategy-
proofness, and no mechanism can satisfy all these three properties simultaneously
if there are at least four agents. A primary motivation for weakening the notion of
incentive compatibility to OBIC is to investigate if we can escape this impossibility
result.

We show two types of results. First, if the (common) prior is a uniform probabil-
ity distribution over the set of possible preferences, then every neutral mechanism
satisfying a mild property called elementary monotonicity is OBIC.3 An example of
such a mechanism is the probabilistic serial mechanism. This is a positive result and
provides a strategic foundation for the probabilistic serial mechanism. In particular,
it shows that there exist ordinally efficient mechanisms satisfying equal treatment of
equals which are OBIC with respect to the uniform prior.

Second, we explore the implications of strengthening OBIC as follows. A mecha-
nism is locally robust OBIC (LROBIC) with respect to an independent and identical
prior if it is OBIC with respect to every independent and identical prior in its “neigh-
borhood". Themotivation for such requirement of robustness in the mechanism design
literature is nowwell-known, and referred to as theWilson doctrine (Wilson 1987).We
show that every LROBIC mechanism satisfying elementary monotonicity is strategy-
proof. An immediate corollary of this result is that the probabilistic serial mechanism
is not LROBIC (though it is OBIC with respect to the uniform prior). As a corollary,
we can show that when there are at least four agents, there is no LROBIC and ordi-
nally efficient mechanism satisfying equal treatment of equals. This strengthens the

1 Pycia and Ünver (2017) characterize the set of deterministic, strategy-proof, Pareto efficient, and non-
bossy mechanisms in this model. This includes generalizations of the top-trading-cycle mechanism.
2 For instance, Bogomolnaia and Moulin (2001) show that the (uniform) random priority mechanism is
ex-post efficient, strategy-proof and satisfies equal treatment of equals, but fails ordinal efficiency (which
is stronger than ex-post efficiency).
3 Neutrality is a standard axiom in social choice theorywhich requires that objects are treated symmetrically.
Elementary monotonicity is a monotonicity requirement of a mechanism. We define it formally in Sect. 4.
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seminal impossibility result of Bogomolnaia andMoulin (2001) by replacing strategy-
proofness with LROBIC.

Both our results point to very different implications of OBIC in the presence of
elementary monotonicity—if the prior is uniform, this notion of incentive compati-
bility is very permissive; but if we require OBIC with respect to a set of independent
and identical priors in any neighborhood of a given prior, this notion of incentive
compatibility is very restrictive.

1.1 Related literature

There is a large literature on random assignment problems.We summarize them below.
The notion of incentive compatibility that we use, OBIC, has been used in vot-

ing models by Majumdar and Sen (2004); Bhargava et al. (2015); Mishra (2016);
Hong and Kim (2018) to escape the dictatorship result in (Gibbard 1973; Satterth-
waite 1975; Gibbard 1977). All these papers use deterministic mechanisms in voting
models, whereas we apply OBIC to the random assignment model. Majumdar and
Sen (2004) show that every deterministic neutral voting mechanism satisfying ele-
mentary monotonicity is OBIC with respect to uniform priors. Our Theorem 1 shows
that this result generalizes to the random assignment model. Mishra (2016) shows that
in the deterministic voting model, elementary monotonicity and OBIC with respect to
“generic" prior is equivalent to strategy-proofness in a variety of restricted domains—
see also Hong and Kim (2018) for a strengthening of this result. Though these results
are similar to our Theorem 2, there are significant differences. First, we consider ran-
domization while these results are only for deterministic mechanisms. Our notion of
locally robust OBIC is stronger than OBIC with respect to generic priors used in these
papers. Second, ours is a model of private good allocation (random assignment), while
these papers deal with the voting model.

Bogomolnaia and Moulin (2001) introduce a family of mechanisms in the ran-
dom assignment model. They call these the simultaneous eating algorithms. which
generate ordinally efficient random assignments, a stronger notion of efficiency than
ex-post efficiency. 4 The probabilistic serial mechanism belongs to this family and it is
anonymous. However, it is not strategy-proof. In fact, Bogomolnaia andMoulin (2001)
show that there is no ordinally efficient and strategy-proof mechanism satisfying equal
treatment of equals when there are at least four agents.5

There is a large literature that provides strategic foundations to the probabilistic
serial (PS) mechanism. Bogomolnaia andMoulin (2001) show that the PS mechanism
satisfies weak-strategy-proofness. Their notion of weak strategy-proofness requires
that the manipulation share vector cannot first-order-stochastic-dominate the truth-
telling share vector. Bogomolnaia and Moulin (2002) study a problem where agents
have an outside option. When agents have the same ordinal ranking over objects
but the position of outside option in the ranking of objects is the only private infor-
mation, they show that the PS mechanism is strategy-proof. Other contributions in
this direction include Liu (2020); Liu and Zeng (2019), who identify domains where

4 Katta and Sethuraman (2006) extend the simultaneous eating algorithm to allow for ties in preferences.
5 With three agent, the random priority mechanism satisfies these properties.
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the probabilistic serial mechanism is strategy-proof. Che and Kojima (2010) show
that the PS mechanism and the random priority mechanism (which is strategy-proof)
are asymptotically equivalent. Similarly, Kojima and Manea (2010) show that when
sufficiently many copies of an object are present, then the PS mechanism is strategy-
proof. Thus, in large economies, the PS mechanism is strategy-proof. Balbuzanov
(2016) introduce a notion of strategy-proofness which is stronger than weak strategy-
proofness and show that the PSmechanism satisfies it. His notion of strategy-proofness
is based on the “convex” domination of lotteries, and hence, called convex strategy-
proofness.Mennle andSeuken (2021) define a notion called partial strategy-proofness,
which is weaker than strategy-proofness and show that the PS mechanism satisfies it.
They show that strategy-proofness is equivalent to upper invariant, lower invariant
and elementary monotonicity (they call it swap monotonicity). Their notion of partial
strategy-proofness is equivalent to upper invariance and elementary monotonicity, and
hence, it is weaker than strategy-proofness.

The main difference between these weakenings of strategy-proofness and ours is
that OBIC is a prior-based notion of incentive compatibility. It is the natural analogue
of Bayesian incentive compatibility in an ordinal environment. Ehlers and Massó
(2007) study OBIC in a two-sided matching problem. Their main focus is on OBIC
mechanism that select a stable matching. They characterize the beliefs for which such
a mechanism exists. There is a literature in computer science studying computational
aspects of manipulation of the PS rule—see Aziz et al. (2014, 2015) and references
therein.

2 Model

2.1 Assignments

There are n agents and n objects.6 Let N := {1, . . . , n} be the set of agents and A be
the set of objects. We define the notion of a feasible assignment first.

Definition 1 An n × n matrix L is an assignment if

Lia ∈ [0, 1] ∀ i ∈ N , ∀ a ∈ A
∑

a∈A

Lia = 1 ∀ i ∈ N

∑

i∈N
Lia = 1 ∀ a ∈ A

Hence, an assignment is a bistochastic matrix. For any assignment L , we write Li as
the share vector of agent i .7 Formally, a share vector is a probability distribution over
the set of objects. For any i ∈ N and any a ∈ A, Lia denotes the “share" of agent i

6 All our results extend even if the number of objects is not the same as the number of agents. We assume
this only to compare our results with the random assignment literature, where this assumption is common.
7 Whenever we say an assignment, we mean a random assignment from now on.
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of object a. The second constraint of the assignment definition requires that the total
share of every agent is 1. The third constraint of the assignment requires that every
object is completely assigned. Let L be the set of all assignments.

An assignment L is deterministic if Lia ∈ {0, 1} for all i ∈ N and for all a ∈ A.
Let Ld be the set of all deterministic assignments. By the Birkohff-von-Neumann
theorem, for every L ∈ L, there exists a set of deterministic assignments in Ld whose
convex combination equals L .

2.2 Preferences

A preference is a strict ordering of A. The preference of an agent i will be denoted
by Pi . The set of all preferences over A is denoted by P . A preference profile is
P ≡ (P1, . . . , Pn), and we will denote by P−i the preference profile P excluding the
preference Pi of agent i . We write aPib to denote that a is strictly preferred over b in
preference Pi .

2.3 Prior

We assume that the preference of each agent is independently and identically drawn
using a common prior μ, which is a probability distribution over P . From now on,
whenever we say a prior, we refer to such an independent and identical prior. We will
denote by μ(Pi ) the probability with which agent i has preference Pi . We assume that
μ(Pi ) > 0 for each Pi . With some abuse of notation, we will denote the probability
with which agents in N \ {i} have preference profile P−i as μ(P−i ). Note that by
independence, μ(P−i ) = × j �=iμ(Pj ).

3 Ordinal Bayesian incentive compatibility

Our solution concept is Bayes-Nash equilibrium but we restrict attention to ordinal
mechanisms, i.e., mechanisms where we only elicit ranking over objects from each
agent. Hence, whenever we say mechanism, we refer to such ordinal mechanisms.8

Formally, a mechanism is a map Q : Pn → L. A mechanism Q assigns a share vector
Qi (P) to agent i at every preference profile P.

Before discussing the notions of incentive compatibility, it is useful to think how
agents compare share vectors in our model. Fix agent i with a preference Pi over the
set of objects A. Denote the k-th ranked object in Pi as Pi (k). Consider two share
vectors π, π ′. For every a ∈ A, we will denote by πa and π ′

a the share assigned to
object a in π and π ′ respectively. We will say π first-order-stochastically-dominates
(FOSD) π ′ according to Pi if

8 The restriction to not consider cardinal mechanisms is arguably arbitrary. It is usually done to simplify the
process of elicitation. Such restriction is also consistent with the literature on random assignment models.
The set of incentive compatible mechanisms expand if we consider cardinal mechanisms (Miralles 2012;
Abebe et al. 2020).
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�∑

k=1

πPi (k) ≥
�∑

k=1

π ′
Pi (k) ∀ � ∈ {1, . . . , n}.

In this case, we will write π 	Pi π ′. Notice that	Pi is not a complete relation over the
outcomes. An equivalent (and well known) definition of 	Pi relation is that for every
von-Neumann–Morgenstern utility representation of Pi , the expected utility from π

is at least as much as π ′.
Themost standard notion of incentive compatibility is strategy-proofness (dominant

strategy incentive compatibility), which uses the FOSD relation to compare share
vectors.

Definition 2 Amechanism Q is strategy-proof if for every i ∈ N , every P−i ∈ Pn−1,
and every Pi , P ′

i ∈ P , we have

Qi (Pi , P−i ) 	Pi Qi (P
′
i , P−i ).

The interpretation of this definition is that fixing the preferences of other agents, the
truth-telling share vector must FOSD other share vectors that can be obtained by
deviation. This definition of strategy-proofness appeared in Gibbard (1977) for voting
problems, and has been the standard notion in the literature on random voting and
random assignment problems.

The ordinal Bayesian incentive compatibility notion is an adaptation of this by
changing the solution concept to Bayes-Nash equilibrium. It was first introduced and
studied in a voting committee model in d’Aspremont and Peleg (1988), and was later
used in many voting models (Majumdar and Sen 2004). To define it formally, we
introduce the notion of an interim share vector. Fix an agent i with preference Pi .
Given a mechanism Q, the interim share of object a for agent i by reporting P ′

i is:

qia(P
′
i ) =

∑

P−i∈Pn−1

μ(P−i )Qia(P
′
i , P−i ).

The interim share vector of agent i by reporting P ′
i will be denoted as qi (P ′

i ).

Definition 3 Amechanism Q is ordinallyBayesian incentive compatible (OBIC) (with
respect to prior μ) if for every i ∈ N and every Pi , P ′

i ∈ P , we have

qi (Pi ) 	Pi qi (P
′
i ).

It is immediate that if a mechanism Q is strategy-proof it is OBIC with respect to
every (including correlated and non-identical) prior. Conversely, if a mechanism is
OBIC with respect to all priors (including correlated and non-identical priors), then it
is strategy-proof.
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Table 1 Manipulation by agent
1

P1 P2 P3 P ′
1 P2 P3

c; 1
2 a; 2

3 c; 1
2 a; 1

2 a; 1
2 c; 3

4

a; 1
6 b; 1

3 a; 1
6 c; 1

4 b; 1
2 a; 0

b; 1
3 c; 0 b; 1

3 b; 1
4 c; 0 b; 1

4

3.1 Amotivating example

We investigate a simple example to understand the implications of strategy-proofness
and OBIC for the probabilistic serial mechanism. Suppose n = 3 with three objects
{a, b, c}. Consider the preference profiles (P1, P2, P3) and (P ′

1, P2, P3) shown in
Table 1—the table also shows the share vector of each agent in the probabilistic serial
mechanism of Bogomolnaia and Moulin (2001). In the probabilistic serial mecha-
nism, each agent starts “eating" her favorite object simultaneously till the object is
finished. Then, she moves to the best available object according to her preference
and so on. Each agent has the same eating speed. Table 1 shows the output of the
probabilistic serial mechanism for preference profiles (P1, P2, P3) and (P ′

1, P2, P3).
Since Q1a(P ′

1, P2, P3)+ Q1c(P ′
1, P2, P3) > Q1a(P1, P2, P3)+ Q1c(P1, P2, P3), we

conclude that Q1(P1, P2, P3) �P ′
1
Q1(P ′

1, P2, P3). Hence, agent 1 can manipulate
from P1 to P ′

1, when agents 2 and 3 have preferences (P2, P3).
When can such a manipulation be prevented by OBIC? Note that P1 is generated

from P ′
1 by permuting a and c. Suppose we permute P2 and P3 also to get P ′

2 and P ′
3

respectively:

c P ′
2 b P ′

2 a and a P ′
3 c P ′

3 b.

Since the probabilistic serial mechanism is neutral (with respect to objects), the share
vector of agent 1 at (P1, P2, P3) is a permutation of its share vector at (P ′

1, P
′
2, P

′
3).

Further, when all the preferences are equally likely, the probability of (P2, P3) is equal
to the probability of (P ′

2, P
′
3). So, the total expected probability of a and c for agent 1

at P1 and P ′
1 is the same (where expectation is taken over (P2, P3) and (P ′

2, P
′
3)). As

we show below, this argument generalizes and the expected share vector at P1 first-
order-stochastic-dominates the expected share vector at P ′

1 when the true preference
is P1 and prior is uniform.

4 Uniform prior and possibilities

In this section,we present our first result which shows that the set ofOBICmechanisms
is much larger than the set of strategy-proof mechanisms if the prior is the uniform
prior. A prior μ is the uniform prior if μ(Pi ) = 1

|P | = 1
n! for each Pi ∈ P . Uniform

prior puts equal probability on each of the possible preferences. We call a mechanism
U-OBIC if it is OBIC with respect to the uniform prior.
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We show that there is a large class of mechanisms which are U-OBIC - this will
include some well-knownmechanisms which are known to be not strategy-proof. This
class is characterized by two axioms, neutrality and elementary monotonicity, which
we define next. To define neutrality, consider any permutation σ : A → A of the set
of objects. For every preference Pi , define Pσ

i as the preference that satisfies: aPib
if and only if σ(a)Pσ

i σ(b). Let Pσ be the preference profile generated by permuting
each preference in the preference profile P by the permutation σ .

Definition 4 A mechanism Q is neutral if for every P and every permutation σ ,

Qia(P) = Qiσ(a)(Pσ ) ∀ i ∈ N , ∀ a ∈ A.

Neutrality requires that objects be treated symmetrically by themechanism.Anymech-
anism which does not use the “names" of the objects is neutral—this includes all
priority mechanisms (including the random priority mechanism), the simultaneous
eating algorithms (including the probabilistic serial mechanism) in Bogomolnaia and
Moulin (2001).

Our next axiom is elementarymonotonicity, an axiomwhich requires amild form of
monotonicity. This was introduced in Majumdar and Sen (2004). To define it, we need
the notion of “adjacency" of preferences. We say preferences Pi and P ′

i are adjacent
if there exists a k ∈ {1, . . . , n − 1} such that

Pi (k) = P ′
i (k + 1), Pi (k + 1) = P ′

i (k), and Pi (k
′) = P ′

i (k
′) ∀ k′ /∈ {k, k + 1}.

In other words, P ′
i is obtained by swapping consecutively ranked objects in Pi . Here,

if Pi (k) = a and Pi (k + 1) = b, we say that P ′
i is an (a, b)-swap of Pi .

Definition 5 A mechanism Q satisfies elementary monotonicity if for every i ∈ N ,
every P−i ∈ Pn−1, and every Pi , P ′

i ∈ P such that P ′
i is an (a, b)-swap of Pi for

some a, b, we have

Qib(P
′
i , P−i ) ≥ Qib(Pi , P−i ) (1)

Qia(P
′
i , P−i ) ≤ Qia(Pi , P−i ) (2)

In other words, as agent i lifts alternative b in ranking by one position by swapping
it with a (and keeping the ranking of every other object the same), elementary mono-
tonicity requires that the share of object b should weakly increase for agent i , while
share of object a should weakly decrease. A similar axiom called swap monotonicity
is used in Mennle and Seuken (2021).9

It is not difficult to see that elementary monotonicity is a necessary condition for
strategy-proofness—see Majumdar and Sen (2004). As we show later, elementary
monotonicity is satisfied by a variety of mechanisms - including those which are not
strategy-proof. However, every neutral mechanism satisfying elementary monotonic-
ity is U-OBIC.

9 Swap monotonicity requires the following change in Definition 5: either Qi (P
′
i , P−i ) = Qi (Pi , P−i ) or

Inequalities (1) and (2) hold with strict inequalities.
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Theorem 1 Every neutral mechanism satisfying elementary monotonicity is U-OBIC.

Proof Fix a neutral mechanism Q satisfying elementary monotonicity. The proof goes
in various steps.

Step 1 Pick an agent i and two preferences Pi and P ′
i . Pick any k ∈ {1, . . . , n} and

suppose Pi (k) = a and P ′
i (k) = b. We show that the interim shares of a and b are

same for agent i in preferences Pi and P ′
i : qia(Pi ) = qib(P ′

i ). This is a consequence
of uniform prior and neutrality. To see this, let P ′

i = Pσ
i for some permutation σ of

objects in A. Then, b = σ(a) and hence, for every P−i , we have

Qia(Pi , P−i ) = Qiσ(a)(P
σ
i , Pσ−i ) = Qib(P

′
i , P

σ−i ).

Due to uniform prior and using the above expression,

qia(Pi ) = 1

(n!)n−1

∑

P−i

Qia(Pi , P−i ) = 1

(n!)n−1

∑

P−i

Qib(P
′
i , P

σ−i )

= 1

(n!)n−1

∑

P−i

Qib(P
′
i , P−i ) = qib(P

′
i ),

where the third equality follows from the fact that {P−i : P−i ∈ Pn−1} = {Pσ−i :
P−i ∈ Pn−1}.

In view of step 1, with some abuse of notation, we write qik to denote the interim
share of the object at rank k in the preference. We call qi the interim rank vector of
agent i .

Step 2 Pick an agent i and a preference Pi . We show that interim shares are non-
decreasing with rank: qik ≥ qi(k+1) for all k ∈ {1, . . . , n − 1}. Fix a number k and let
Pi (k) = a and Pi (k+1) = b. Then, consider the preference P ′

i ,which is an (a, b)-swap
of Pi . For every P−i , elementarymonotonicity implies Qia(Pi , P−i ) ≥ Qia(P ′

i , P−i ).
Due to uniform prior, qia(Pi ) ≥ qia(P ′

i ). But by Step 1,

qik = qia(Pi ) ≥ qia(P
′
i ) = qi(k+1).

Step 3 We show that Q is OBIC with respect to the uniform prior. Suppose agent
i has preference Pi . By Steps 1 and 2, she gets interim rank vector (qi1, . . . , qin) by
reporting Pi with qi j ≥ qi j+1 for all j ∈ {1, . . . , n−1}. Suppose she reports P ′

i = Pσ
i ,

where σ is some permutation of set of objects. By Steps 1 and 2, the interim share
vector is a permutation of interim rank vector qi . Using non-decreasingness of this
interim share vector with respect to ranks, we get qi (Pi ) 	Pi qi (P ′

i ). Hence, Q is
OBIC with respect to uniform prior. ��

Theorem 1 generalizes, an analogous result in Majumdar and Sen (2004), who
consider the voting problem and only deterministic mechanisms. They arrive at the
same conclusion as Theorem 1 in their model. Theorem 1 shows that their result holds
even in the random assignment problem.
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4.1 Probabilistic serial mechanism and U-OBIC

Bogomolnaia and Moulin (2001) define a family of mechanisms, which they call the
simultaneous eating algorithms (SEA). Though the SEAs are not strategy-proof, they
satisfy compelling efficiency and fairness properties, which we discuss in Sect. 5.
We informally introduce the SEAs—for a formal discussion, see Bogomolnaia and
Moulin (2001).

Each SEA is defined by a (possibly time-varying) eating speed function for each
agent. At every preference profile, agents simultaneously start “eating" their favorite
objects at a rate equal to their eating speed. Once an object is completely eaten (i.e.,
the entire share of 1 is consumed), the amount eaten by each agent is the share of that
agent of that object. Once an object completely eaten, agents go to their next preferred
object and so on.

If the eating speed of each agent is the same, then the simultaneous eating algorithm
is anonymous. Bogomolnaia and Moulin (2001) call the unique anonymous SEA, the
probabilistic serial mechanism. 10

Corollary 1 Every simultaneous eating algorithm is U-OBIC.

Proof Clearly, the SEAs are neutral since eating speeds do not depend on the objects.
The SEAs also satisfy elementary monotonicity: Theorem 3 in Cho (2018) and The-
orem 1 in Mennle and Seuken (2021). Hence, by Theorem 1, we are done. ��

5 Locally robust OBIC

While the uniform prior is an important prior in decision theory, it is natural to ask if
Theorem 1 extends to other “generic” priors. Though we do not have a full answer to
this question, we have been able to answer this question in negative under a natural
robustness requirement. Our robustness requirement is local. Take any (independent
and identical) prior μ, and let μ′ be any (independent and identical) prior in the ε-
radius ball around μ (where ε > 0), i.e., ||μ(P) − μ′(P)|| < ε for all P ∈ P . In this
case, we write μ′ ∈ Bε(μ). Our local robustness requirement is the following.

Definition 6 Amechanism Q is locally robust OBIC (LROBIC) with respect to a prior
μ if there exists an ε > 0 such that for every priorμ′ ∈ Bε(μ), Q is OBICwith respect
to μ′.

It is well known that Bayesian incentive compatibility with respect to all priors
lead to strategy-proofness (Ledyard 1978). Here, we require OBIC with respect to
all independent and identical priors in the ε-neighborhood of an independent and
identical prior. Bhargava et al. (2015) study a version of robust OBIC with respect to
uniform prior but their robustness also allows the mechanism to be OBIC with respect
to correlated priors. They show that a large class of voting rules satisfy their notion
of LROBIC. We show that in the random assignment model, LROBIC with respect to
any independent and identical prior has a very different implication.

10 For axiomatic characterization of the PS mechanism, see Bogomolnaia and Heo (2012) and Hashimoto
et al. (2014).
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Theorem 2 A mechanism is LROBIC with respect to a prior and satisfies elementary
monotonicity if and only if it is strategy-proof.

Remark Though relatively strong, the notion of LROBIC is in the spirit of robust
mechanism design (Bergemann and Morris 2005). It remains to be seen if Theorem 2
continues to hold under weaker notions of OBIC than LROBIC—for instance, OBIC
with respect to generic priors as in Majumdar and Sen (2004).11 It may be possible
to construct a OBIC mechanism satisfying elementary monotonicity which is not
strategy-proof if the prior is approriately chosen. Theorem 1 shows this possibility for
uniform priors.

The proof of Theorem 2 builds on some earlier results. Before giving the proof,
we define some notions and preliminary results. We first decompose OBIC into three
conditions. This decomposition is similar to the decomposition of strategy-proofness
in Mennle and Seuken (2021)—there are some minor differences in axioms and we
look at interim share vectors whereas they look at ex-post share vectors.

Our decomposition of OBIC uses the following three axioms.

Definition 7 A mechanism Q satisfies interim elementary monotonicity if for every
i ∈ N and every Pi , P ′

i such that P ′
i is an (a, b)-swap of Pi , we have

qib(P
′
i ) ≥ qib(Pi )

qia(P
′
i ) ≤ qia(Pi ).

Give a preference Pi of agent i and an object a ∈ A, define U (a, Pi ) := {x ∈ A :
x Pi a} and L(a, Pi ) := {x ∈ A : a Pi x}.

Definition 8 Amechanism Q satisfies interim upper invariance if for every i ∈ N and
every Pi , P ′

i such that P
′
i is an (a, b)-swap of Pi , and for every x ∈ U (a, Pi ), we have

qix (P
′
i ) = qix (Pi ).

Definition 9 Amechanism Q satisfies interim lower invariance if for every i ∈ N and
every Pi , P ′

i such that P
′
i is an (a, b)-swap of Pi , and for every x ∈ L(b, Pi ), we have

qix (P
′
i ) = qix (Pi ).

The following proposition characterizes OBIC using these axioms.

Proposition 1 A mechanism Q is OBIC with respect to a prior if and only if it sat-
isfies interim elementary monotonicity, interim upper invariance, and interim lower
invariance.

11 For three objects and three agents, we can show that the probabilistic serial mechanism cannot be OBIC
with respect to a generic prior.
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Since the proof of Proposition 1 is similar to the characteration of strategy-proofness
in Mennle and Seuken (2021), we skip its proof.12 The proof of Theorem 2 is based
on Proposition 1 and the following lemma.

Lemma 1 Suppose Q mechanism is LROBIC with respect to a prior. Then, for every
i , for every P−i , for every Pi and P ′

i such that P ′
i is an (a, b) swap of Pi , we have

Qic(Pi , P−i ) = Qic(P
′
i , P−i ) ∀ c /∈ {a, b}.

Proof Pick an agent i ∈ N and Pi , P ′
i ∈ P such that P ′

i is an (a, b)-swap of Pi . Fix
some P−i . By Proposition 1, Q satisfies interim upper invariance and interim lower
invariance. Hence, we know that for all c /∈ {a, b}, we get

∑

P−i

μ(P−i )
[
Qic(Pi , P−i ) − Qic(P

′
i , P−i )

]
= 0. (3)

Since μ is a probability distribution over P , we can treat it as a vector in Rn!−1. Using
μ(P−i ) ≡ × j �=iμ(Pj ), we note that the LHS of the Equation (3) is a polynomial
function of {μ(P)}P∈P . The equation describes the zero set of this polynomial func-
tion. For non-zero polynomials, the set of zeros has measure zero (Caron and Traynor
2005), i.e., the set of μ satisfying Equation (3) has measure zero.13 Hence, given any
prior μ∗ and ε > 0, if Equation 3 has to hold for all μ ∈ Bε(μ

∗) (which has non-zero
measure), then Qic(Pi , P−i ) = Qic(P ′

i , P−i ) for all c /∈ {a, b}. ��

We now complete the proof of Theorem 2.

Proof of Theorem 2
Proof: Every strategy-proof mechanism is OBIC with respect to any prior. A

strategy-proof mechanism satisfies elementary monotonicity. So, we now focus on
the other direction of the proof. Let Q be an LROBIC mechanism with respect to a
prior μ. Suppose Q satisfies elementary monotonicity.

By Lemma 1, any LROBIC mechanism Q, Q satisfies ex-post versions of interim
lower invariance and interim upper invariance. Mennle and Seuken (2021) refer to
these properties as upper invariance and lower invariance (see also Cho 2018). They
show that upper invariance, lower invariance, and elementary monotonicity are equiv-
alent to strategy-proofness. By the assumption of the theorem, Q satisfies elementary
monotonicity. Hence, it is strategy-proof. ��

We now explore the compatibility of LROBIC and ordinal efficiency.

12 As we discussed, swap monotonicity discussed in Mennle and Seuken (2021) is slightly different than
elementary monotonicity (neither conditions imply the other), but in the presence of the other two axioms
in Mennle and Seuken (2021) (upper invariance and lower invariance), they are equivalent.
13 Note that we are not characterizing the set of μ for which (3) has a solution. Our claim is only about the
measure of the set of solutions.
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Definition 10 A mechansim Q is ordinally efficient if at every preference profile P
there exists no assignment L such that

Li 	Pi Qi (P) ∀ i ∈ N ,

with Li �= Qi (P) for some i .

Bogomolnaia and Moulin (2001) show that every ordinally efficient mechanism is
ex-post efficient but the converse is not true if n ≥ 4. In fact, for n ≥ 4, strategy-
proofness is incompatible with ordinally efficiency along with the following weak
fairness criterion.

Definition 11 Amechanism Q satisfies equal treatment of equals if at every preference
profile P and for every i, j ∈ N , we have

[
Pi = Pj

]
⇒

[
Qi (P) = Q j (P)

]

Due to Theorem 2, we can strengthen the impossibility results in Bogomolnaia and
Moulin (2001) and Mennle and Seuken (2017) as follows.

Corollary 2 Suppose n ≥ 4. Then, there is no locally robust OBIC and ordinally
efficient mechanism satisfying equal treatment of equals.

Proof By Lemma 1, a locally robust OBIC mechanism satisfies ex-post versions of
upper invariance and lower invariance. Mennle and Seuken (2017) show that the proof
in Bogomolnaia and Moulin (2001) can be adapted by replacing strategy-proofness
with ex-post versions of upper invariance and lower invariance. Hence, these two
properties are incompatible with ordinal efficiency and equal treatment of equals for
n ≥ 4, and we are done. ��

Note that Corollary 2 does not use elementary monotonicity, and hence, cannot be
directly inferred from Theorem 2.
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