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Abstract This paper characterizes the optimal collusion-proof mechanism in a two-
agent nonlinear pricing environment. Ourmodel allows agents to have correlated types
and to reallocate their total purchases among themselves.We show that, under strongly
negative correlation, the coalition will, sometimes, be torn apart at no cost. Under
positive or weakly negative correlations, however, the threat of collusion forces the
principal to distort allocation away from the first-best level obtained without collusion.
We also show that, in contrast to the result of Laffont and Martimort (Econometrica
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68:309–342, 2000), when the correlation is almost perfectly positive, the possibility
of arbitrage prevents the principal from approaching the first-best efficiency.
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1 Introduction

Acentral topic ofmechanism design theory concerns the ability of agents to earn infor-
mation rents. Both casual observation and economic intuition suggest that possession
of relevant private information confers a positive rent. However, this insight is at odds
with the finding of Crémer and McLean (henceforth CM) (1985, 1988). They show
that, in models having common priors supported on a fixed finite number of types, the
set of priors which admit full surplus extraction (FSE) is generic.

The analysis of CM has been challenged on several grounds: their conclusion is
not robust to the cases where the agents are risk averse or are protected by limited
liability (Roberts 1991; Demougin and Garvie 1991), or to the case with competition
amongprincipals (Peters 2003).Heifetz andNeeman (2006) show thatCM’s genericity
result hinges on their implicit common-knowledge assumption that each agent has a
fixed finite number of types. FSE is generically impossible in both a geometric and
a measure-theoretical sense when convex combination of priors is allowed. Another
major critique towards CM comes from its vulnerability to collusion among agents.
The intuition is simple. In the FSE mechanism, payments to and from agents depend
on the reports of other agents. The agents have strong incentives to collude, especially
in nearly independent environments where these payments are very large.

Collusion is a widespread and noxious phenomenon in reality. Typically, it imposes
severe limits on what can be achieved by the mechanism designer, and thus it is gener-
ally regarded as a factor that reduces the principal’s payoff in addition to asymmetric
information. The pioneeringwork that studies collusion in principal-multiagent setting
is due to Laffont and Martimort (hereafter LM) (1997, 2000). They offer a tractable
modeling framework for analyzing the role of colluders’ information asymmetry in
collusion-proof mechanism design. A difference is found for independent and corre-
lated types. In procurement/public good settings with two agents, they show that the
optimal outcome can be made collusion-proof at no cost to the principal if the agents’
types are independent (LM 1997), but if the types are correlated, preventing collusion
entails a strict cost to the principal (LM 2000). In a duopoly model, Pouyet (2002)
shows that under strongly negative correlation, the principal can prevent collusion at
no cost. But he does not consider the possibility of reallocation/arbitrage.

In LM’s procurement and public good settings, two agents may consume certain
amount of goods in a non-excludable way. As such, there is no need and it is techno-
logically impossible to divide the goods between them. However, in a private goods
setting, e.g., in monopoly pricing problem, buyers have incentives to reallocate their
total purchases obtained from the principal. Thus, the mechanism designer should
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make an optimal contractual response preventing the agents from (i) manipulating
their reports, (ii) exchanging side transfers, and (iii) conducting arbitrage.1 Jeon and
Menicucci (hereafter JM) (2005) extend LM’s model by incorporating arbitrage. They
show that collusion is preventable at no cost with uncorrelated types in a nonlinear
pricing model that allows collusive consumers to conduct reallocations on their initial
purchases. They do not, however, consider a more interesting case where agents’ types
are correlated.

Che and Kim (hereafter CK) (2006) advance on these fronts by developing a more
general method for collusion-proofing amechanism. They show that agents’ collusion,
including both reporting manipulation and arbitrage, is harmless to the principal in
a broad class of circumstances. Any payoff the principal can attain in the absence of
collusion, including the second-best efficiency is attainable with uncorrelated types,
and the first-best efficiency is also attainable for cases with correlated types and more
than three agents.2 Their analysis is quite general in terms of the number of colluders,
the distribution of types, and the production technology. They also allow collusion to
take place between a subgroup of agents rather than being pervasive. However, while
they give a satisfactory answer in a broad class of environments, they leave unanswered
an important question about whether collusion is harmless in the two-agent correlated-
type environment.3 It is still unknown what outcome could be implemented in a two-
agent environment when types are correlated and arbitrage is allowed. We are trying
to fill this gap in the present paper.

Our results depart from and contribute to the existing literature in the following
aspects. Firstly, our two-agent result complements CK’swork and gives amore general
answer to the question whether or not collusion with both reports manipulation and
arbitrage is harmful.4 Our findings are that collusion can sometimes be prevented at no
cost if correlation is strongly negative; but it always incurs a strict cost to the principal
if correlation is positive or weakly negative. From the perspective of rents extraction,
we extend CM’s work by showing that the FSE result is immune to collusion in the
environment with strongly negative correlation.

Secondly, we extend the result of LM (2000) by considering both arbitrage and
negative correlation. LM (2000) characterize the collusion-proof mechanism in pro-
curement/public good environments. It is unnecessary and impossible to split the goods
between consumers. In contrast, we discuss the private good problem. Consumers
could conduct arbitrage on their total purchases. Moreover, LM’s model considers
only positive correlation, while we consider negative correlation as well. We find that
a strongly negative correlation between agents may greatly facilitate the principal’s
fighting against collusion.

1 A number of contributions, notably Mookherjee and Tsumagari (2004), Dequiedt (2007) and Pavlov
(2008), have noted that agents can coordinate not only on the way they play the grand mechanism, but also
on their participation decisions.
2 An additional requirement in their paper is that at least one agent has more than two types if n = 3.
3 In mechanism design literature, the two-agent case is usually important and different from its multi-agent
counterpart. It usually needs a separate discussion. See Maskin (1999), Moore and Repullo (1990), Dutta
and Sen (1991), Danilov (1992) and Sjöström (1991), among many others, for detailed discussion.
4 Admittedly, our result does not cover all possible cases, so it is still not a full characterization.
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Lastly, we also extend the work of JM (2005). They consider information manipu-
lation and arbitrage with only independent types. We extend their model to correlated
environments, which is obvious more practically applicable. Their result could be
regarded as a special case of ours when the correlation approaches zero.

The rest of this paper is organized as follows. Section 2 describes the economic envi-
ronment studied and reviews as a benchmark the optimal pricing mechanism without
collusion. Section 3 characterizes the coalitional incentive and no-arbitrage constraints
which must be satisfied by an optimal weakly collusion-proof mechanism. Section 4
describes the collusion-proof implementation of the first-best allocation under strongly
negative correlation. Section 5 characterizes the optimal collusion-proof mechanism
with weak (both negative and positive) correlations. Section 6 discusses the case with
an almost perfectly positive correlation. Section 7 gives conclusions.

2 The model

2.1 Preferences, information, and mechanisms

A monopolistic seller can produce any amount of homogeneous goods at a constant
marginal cost c and sells the goods to two buyers whose consumptions are qi , i ∈
{1, 2}. Buyer i obtains utility θi V (qi ) − ti from consuming qi units of goods and
paying ti units of money to the seller. V (·) is an increasing concave function with
V (0) = 0, V ′(x) > 0, V ′′(x) < 0,∀x > 0, and satisfies the Inada conditions:
limx→+∞ V ′(x) = 0, limx→0 V ′(x) = +∞. A consumer privately observes his own
type θi ∈ � ≡ {θL , θH }, with �θ ≡ θH − θL . The probabilities p(θ1, θ2) of each
state (θ1, θ2) ∈ �2 are common knowledge prior beliefs. For simplicity, we write
pLL = p(θL , θL), pLH = p(θL , θH ) = p(θH , θL), pHH = p(θH , θH ). We also
denote by ρ ≡ pLL pHH − p2LH the degree of correlation between the agents’ types.5

The monopolistic seller designs a grand sale mechanism M to maximize her
expected profit. Considering the Revelation Principle, we can restrict our attention to a
direct revelationmechanismwhichmaps any pair of reports (̂θ1, ̂θ2) into a combination
of consumptions and payments: M = {q1(̂θ1, ̂θ2), q2(̂θ1, ̂θ2), t1(̂θ1, ̂θ2), t2(̂θ1, ̂θ2)},
∀(̂θ1, ̂θ2) ∈ �2.6 We assume that buyers are ex ante identical, for notational sim-

5 Note that ρ ∈ [−1/4, 1/4], ρ attains its maximum at pLH = 0, pHH = pLL = 1/2; it attains its
minimum at pLH = 1/2, pHH = pLL = 0. We refer these extreme cases, respectively, as perfectly
positive and negative correlations.
6 One may argue that allowing a stochastic grand mechanism would increase the efficiency of prin-
cipal. If the utility function is of general form, Ui (θi , qi , ti ), and quantities qi is chosen among a
discrete set, Q = {Q1, . . . , Qn}, allowing randomization/convexification does make some differences.
But, remember that in our model Ui (θi , qi , ti ) = θi V (qi ) − ti (θi and V (qi ) are multiplicatively sep-
arable, θi V (qi ) and ti are additively separable), and Q = [0, ∞) is a continuum, the stochastic grand
mechanism makes no substantial difference. We assume that the grand mechanism M is stochastic, i.e.,
M = 〈(qi , ti ) : �2 → �(X ) × R〉ni=1, where X ≡ [0, a], a is a sufficiently large number. �(X )

denotes the set of all probability measures supported on X . Agent θi ’s expected payoff when he reports

θ̃i , his opponent reports θ−i is
∑

θ−i
p(θi , θ−i )

[

∫

X θi V (x)dq(θ̃i , θ−i )(x) − ti (θ̃i , θ−i )
]

. Under stochas-

tic grand mechanism, all expressions in our paper are the same except that V (qi (θi , θ−i )) is replaced
by

∫

X V (x)dqi (θi , θ−i )(x). Given V (0) = 0, V (+∞) = +∞, there exists a unique x∗
i (θi , θ−i )
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plicity, we focus on anonymous mechanism in which the consumption and payment
of a buyer depend only on the reports and not on his identity.7 Then we denote
by tkl for k, l ∈ {H, L} the tax paid by an agent whose report is θk and the other
agent’s report is θl , and qkl is defined analogously, the rent obtained by agent
is denoted by πkl = θkV (qkl) − tkl . Let q = (qLL , qLH , qHL , qHH ) ∈ R4+ ,
t = (tLL , tLH , tHL , tHH ) ∈ R4 and π = (πLL , πLH , πHL , πHH ) ∈ R4 denote,
respectively, the vectors of quantities, transfers and rents.

2.2 Coalition formation

Applying themethodology of LM (1997, 2000), wemodel the buyers’ coalition forma-
tion by a side-contract, denoted by S, offered by a benevolent uninformed third party,
whose aim is tomaximize the total payoff of agents. Themaximizingproblem is subject
to the buyers’ incentive compatibility and participation constraints writtenwith respect
to the utility they obtain when the grand mechanism M is played non-cooperatively.
We study a collusive arrangement that allows the agents (i) to collectively manipulate
their reports to the principal and to exchange transfers in a budget-balanced way, and
(ii) to reallocate quantities assigned by the grand contract. The timing of the overall
game of contract offer and coalition formation is the following:

• Stage 1 Buyers learn their respective “types” θi , i = 1, 2.
• Stage 2 The seller proposes a grand sale mechanism M. If any buyer vetoes it,
all buyers get their reservation utility normalized exogenously at zero and the
following stages do not occur.

• Stage 3 The third party proposes a side mechanism S to the buyers. If anyone
refuses this side mechanism,M is played non-cooperatively. If both buyers accept
S, they report their types to the third party who enforces manipulation of report
into M, and commits to enforce the corresponding side transfers and reallocation
within the coalition.

• Stage 4 Reports are sent into the grand mechanism. Quantities and payments
specified inM are enforced. Quantities reallocation and side transfers specified in
S, if any, are implemented.

Formally, a side mechanism S takes the following form:

S =
{

φ(θ̃1, θ̃2), x1(θ̃1, θ̃2, φ̃), x2(θ̃1, θ̃2, φ̃), y1(θ̃1, θ̃2), y2(θ̃1, θ̃2)
}

,∀(θ̃1, θ̃2) ∈ �2.

θ̃i is buyer i’s report to the third party. φ(·) is the report manipulation function which
maps any pair of reports (θ̃1, θ̃2) submitted by the buyers to the third-party into a pair of

Footnote 6 continued
satisfying V (x∗

i (θi , θ−i )) = ∫

X V (x)dqi (θi , θ−i )(x). Therefore, choosing an optimal random allocation
(a probability measure) qi (θi , θ−i )(x) is equivalent to choosing a deterministic function x∗

i (θi , θ−i ).
7 We make this anonymous/symmetric assumption for tractability reasons following the conventions of
LM (2000) and JM (2005). Absent this, the principal possess more flexibilities and then achieves a surplus
at least as much as under the symmetric assumption. In this sense, our main result in Proposition 3 that FSE
is achievable is robust since it is obtained in the worst case for the principal.

123



182 D. Meng et al.

reports to the principal. To convexify the third-party’s feasible set, stochastic manip-
ulations are allowed. Let φ̃ ∈ �2 denote an outcome of φ(·). Then, φ(·) specifies
the probability pφ(θ̃1, θ̃2, φ̃) in which the third party, after receiving reports (θ̃1, θ̃2),
requires the buyers to report φ̃ to the principal. When pφ(θ̃1, θ̃2, ·) is a degenerated
lottery that assigns probability one to some φ̃ ∈ �2, we get a deterministic manip-
ulation. yi (θ̃1, θ̃2) denotes the monetary transfer from the third party to buyer i . yi
does not need to depend on φ̃ because of quasi linearity of a buyer’s payoff in money.
xi (θ̃1, θ̃2, φ̃) represents the quantity of goods buyer i receives from the third party
when φ̃ is reported to the seller and (θ̃1, θ̃2) are reported to the third party. Such a real-
location rule maximizes the buyers’ joint surplus subject to the total amount of goods
being allocated to them by an incentive compatible grand mechanism.8 Since the third
party is neither a source of goods nor money, we assume that a side mechanism should
satisfy the ex post budget-balance constraints for the reallocation of goods and for the
side transfers, respectively

2
∑

i=1

xi (θ̃1, θ̃2, φ̃) = 0 and
2
∑

i=1

yi (θ̃1, θ̃2) = 0,∀(θ̃1, θ̃1) ∈ �2 and ∀φ̃ ∈ �2.

Let UM (θi ) denote the expected payoff of θi in truthful equilibrium of M. The side
mechanism must guarantee to an agent a utility level at least as large as what he
expects from playing non-cooperatively the grandmechanism and then getting a utility
UM (θi ).

2.3 The optimal grand-mechanism without coalition

We consider, as a benchmark, the optimal grand-mechanism without side-contracting.
Absent collusion, a mechanism M = (π ,q) is feasible if it is individually rational,

BI RL : pLLπLL + pLHπLH � 0, (1)

BI RH : pLHπHL + pHHπHH � 0; (2)

and incentive compatible,

BICL : pLLπLL + pLHπLH � pLLπHL

+pLHπHH − �θ [pLLV (qHL) + pLHV (qHH )], (3)

BICH : pLHπHL + pHHπHH � pLHπLL + pHHπLH

+�θ [pLHV (qLL) + pHHV (qLH )]. (4)

8 Here we implicitly assume that buyers could only reallocate their goods for at most what they receive from
the seller, i.e., xi (θ̃1, θ̃2, φ) + qi (φ) � 0,∀φ ∈ �2, ∀(θ̃1, θ̃2) ∈ �2, ∀i = 1, 2. For cases when both types
have positive virtual valuations, xi (θ1, θ2, φ)+ qi (φ) > 0, i = 1, 2 are guaranteed by the Inada conditions
V (0) = +∞, V (+∞) = 0. For case with very small pLH and thus the low-type’s virtual valuation is
nonpositive, i.e., θL − pHH ε�θ/pLH � 0, a corner solution x1(θL , θH , φ) + q1(φ) = 0 may arise.

123



Two-agent collusion-proof implementation with correlation… 183

LetM ≡ {(π ,q)|subject to (1) to (4)} be the set of all feasible mechanisms. We rep-
resent the principal’s payoff as �(π ,q) = 2

∑

k
∑

l pkl [θkV (qkl) − cqkl − πkl ] .
Let V ≡ {V ∈ R+|V = �(π ,q), (π ,q) ∈ M} denote the set of all imple-
mentable payoffs for the principal. Of special interest is the highest implementable
payoff�SB(p) ≡ supV , which is represented as a function of probability distribution
p ≡ (pLL , pHH ) and is referred to as noncollusive optimal or the second-best payoff.

Obviously, in the complete information case, the seller could implement the first-
best payoff �FB(p) ≡ 2

∑

k
∑

l pkl
[

θkV (qFB
kl ) − cqFB

kl

]

, where qFB
kl is given by

θkV ′(qFB
kl ) = c,∀k, l ∈ {H, L}. CM’s FSE result shows that under incomplete infor-

mation, the first-best payoff is still achievable (i.e., �SB(p) = �FB(p)) if ρ �= 0.
They show that there is a vector of rents π , so that (π ,qFB) satisfies all BICs and
binding BI Rs. Representing πLH and πHL by πLL and πHH from BI Rs written with
equalities, then substituting these expressions into BICs written with q = qFB yields

BIC ′
L : πHHρ

pLH
+ �θ(pLH + pLL)V

(

qFB
HH

)

� 0, (5)

BIC ′
H : πLLρ

pLH
− �θ(pHH + pLH )V

(

qFB
LL

)

� 0. (6)

We denote by M∗(p) ≡ {

(πLL , πHH ) ∈ R2|subject to B IC ′
L and B IC ′

H

}

the
reduced feasible region, within which the first-best (FSE) result is achieved. It is
easy to find that the first-best outcome is implementable if and only if ρ �= 0, because
M∗(p) �= ∅ for ρ �= 0 and M∗(p) = ∅ if ρ = 0.

3 The third party’s optimization program

In this section, we study formally the third party’s optimization problem and derive
the coalitional incentive and no-arbitrage constraints which must be satisfied by an
optimal collusion-proof grand mechanism.

The third-party’s optimal problem is given by:

[PT ] max
φ(·),xi (·),yi (·)

∑

(θ1,θ2)∈�2

p(θ1, θ2)
[

U 1(θ1) +U 2(θ2)
]

subject to:

Ui (θi ) =
∑

θ j∈�

p(θ j |θi )
⎧

⎨

⎩

∑

φ̃∈�2

pφ(θi , θ j , φ̃)
[

θi V
(

xi
(

θi , θ j , φ̃
)

+ qi
(

φ̃
))

+yi (θi , θ j ) − ti
(

φ̃
)]

⎫

⎬

⎭

for any θi ∈ � and i, j = 1, 2 with i �= j ;
(

BICS
i

)

:Ui (θi ) � Ui (˜θi | θi )
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where

Ui (˜θi | θi ) =
∑

θ j∈�

p(θ j |θi )
⎧

⎨

⎩

∑

φ̃∈�2

pφ(θ̃i , θ j , φ̃)
[

θi V
(

xi
(

θ̃i , θ j , φ̃
)

+ qi
(

φ̃
))

+yi (θ̃i , θ j ) − ti
(

φ̃
)]

⎫

⎬

⎭

for any
(

θi , θ̃i

)

∈ �2 and i, j = 1, 2 with i �= j ;

(

BI RS
i

)

:Ui (θi ) � UM (θi )

for any θi ∈ � and i = 1, 2;

(BB : y):
2
∑

i=1
yi (θ1, θ2) = 0

(BB : x):
2
∑

i=1
xi (θ1, θ2,˜φ) = 0

for any (θ1, θ2) ∈ �2 and any ˜φ ∈ �2.

Definition 1 A side mechanism S is coalition-interim-efficient with respect to an
incentive-compatible grand mechanism M providing a reservation utility UM (θ)9 if
and only if it solves the above program [PT ].
Let S0 ≡ {φ(·) = I d(·), x1(·) = x2(·) = 0, y1(·) = y2(·) = 0} denote the null
contract that implements no manipulation of reports, no reallocation of quantities, and
no side transfers. A weakly collusion-proof mechanism is such that the third party’s
optimal response to it is to offer a null side mechanism.

Definition 2 An incentive-compatible grandmechanismM is weakly collusion-proof
if and only if it is a truthtelling direct mechanism and the null side mechanism S0 is
coalition-interim-efficient with respect toM.

Proposition 1 (Weak collusion-proofness principle, WCP) Any Bayesian perfect
equilibrium of the two-stage game of grand and side contract offer M ◦ S can be
achieved by a weakly collusion-proof mechanism.

Proof The proof is a straightforward adaptation of the proof of Proposition 3 of LM
(2000) and hence is omitted. 
�

9 Following LM (2000), we assume that, if buyer i vetoes S, then the other buyer still has prior beliefs about
θi . Therefore, if we denote by U

M (θi ) the expected payoff of a θi agent in the truthful equilibrium of M,
then his reservation utility upon rejection of S is still UM (θi ) [see LM (2000) for more general analysis].
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Two-agent collusion-proof implementation with correlation… 185

According to the WCP, to characterize the optimal weakly collusion-proof mecha-
nism, it suffices to add the coalitional incentive constraints (C ICs) and no-arbitrage
constraint (NAC), under which the third party’s best response is to offer a null side
contract, to the principal’s optimization problem. Our next proposition characterizes
these additional constraints.

Proposition 2 A symmetric Bayesian incentive compatible grand mechanism M is
weakly collusion-proof if and only if there exists ε ∈ [0, 1) such that:

• The following coalitional incentive constraints are satisfied:10

C ICLL ,LH : 2πLL � πLH + πHL + 2h(ε)�θV (qLL) − g(qLH + qHL , ε)

− pHH ε�θV (qLH )

pLH
(7)

C ICLL ,HH : πLL � πHH − �θV (qHH ) − h(ε)�θ [V (qHH ) − V (qLL)] (8)

C ICLH,LL : πLH + πHL � 2πLL + g(2qLL , ε)

+ pHH ε�θ

pLH
V (qLH ) − 2h(ε)�θV (qLL) (9)

C ICLH,HH : πLH + πHL � 2πHH − f (2qHH , ε) + pHH ε�θ

pLH
V (qLH )

(10)

C ICHH,LH : 2πHH � πHL + πLH + f (qLH + qHL , ε)

− pHH ε�θ

pLH
V (qLH ) (11)

C ICHH,LL :πHH � πLL + �θV (qLL) (12)

where

f (x, ε) = 2θHV
( x

2

)

− max
x1,x2�0,x1+x2=x

[(

θL − pHH ε�θ

pLH

)

V (x1) + θHV (x2)

]

,

g(x, ε) = max
x1,x2�0,x1+x2=x

[(

θL − pHH ε�θ

pLH

)

V (x1) + θHV (x2)

]

−2 [θL − �θh(ε)] V
( x

2

)

,

h(ε) = p2LH ε

pLL pLH + ρε
.

• The following no-arbitrage constraint is satisfied:

NAC : qLH = ϕ1(qLH + qHL), qHL = ϕ2(qLH + qHL), (13)

10 Since our attention is restricted to the symmetric/anonymous grand mechanism, coalitions HL and LH
are identical, so we don’t need to consider constraints C ICLH,HL or C ICHL ,LH .
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where

(ϕ1(x), ϕ2(x)) = arg max
x1,x2�0,x1+x2=x

[(

θL − pHH ε�θ

pLH

)

V (x1) + θHV (x2)

]

is the optimal splitting rule within a heterogenous coalition.
• If ε > 0, the θH type’s Bayesian incentive compatibility constraint B ICH (4) is
binding.

Proof See “Appendix”. 
�
The coalitional incentive constraints prevent the third party from manipulating the

agents’ reports. For instance, C ICLL ,LH requires that a (θL , θL) coalition prefers
truthtelling to reporting (θL , θH ). Each coalitional incentive constraint takes into
account the possibility of reallocation: if both agents report the same types to the
third party, each of them receives half of the total quantities available; otherwise, the
total quantities are reallocated so as to maximize the coalitional total payoff evaluated
at (θH , θL − pHH ε�θ/pLH ). The symmetric assumptions q1(θk, θk) = q2(θk, θk),
for all k ∈ {H, L} imply that there is no reallocation within homogenous (i.e., LL or
HH ) coalitions. In heterogeneous (i.e., LH ) coalitions, however, the third party has an
incentive to reallocate the goods bought from the seller unlessNAC is satisfied. There-
fore, the optimal weakly collusion proof mechanism maximizes the seller’s expected
payoff subject to constraints BICs, BI Rs,C ICs and NAC [(1)–(4), (7)–(13)].

The variable ε in coalitional incentive constraints can be interpreted as a transac-
tion cost of side contracting due to asymmetric information. If the θH type’s incentive
compatibility constraint is binding in the third party’s program, the principal has flex-
ibility in choosing ε, since S0 is optimal for the third party if and only if it satisfies
conditions C ICs and NAC for at least one ε ∈ [0, 1). An agent usually cannot fully
trust and share his private information with his collusive partners, then the third party
has to face the same incentive problem faced by the principal and thus a frictional
transaction cost arises within their coalition. This transaction cost is a major imped-
iment to collusive efficiency. The principal, although can not necessarily implement
the first-best allocation, is able to exploit the agents’ divergence and mutual distrust to
increase the transaction cost of side contracting and thus tear apart their coalition. In
constraints (7)–(13), true valuations are replaced by virtual valuations. For high-type,
the virtual and true valuations are the same, i.e., θv

H = θH ; whereas for low-type, the
virtual valuation is lower: θv

L ,1 ≡ θL − p2LH ε�θ/(pLL pLH + ρε) in a homogeneous
(LL) coalition and θv

L ,2 ≡ θL − pHH ε�θ/pLH in a heterogeneous (LH ) coalition.
Given LM’s result that collusion incurs efficiency loss for positive correlation and

JM’s result that collusion is preventable at no cost for independent types, a natural
question to explore is what would happen if we allow for negative correlation.

4 The case with strongly negative correlation

In this section, we will show that the principal can implement the first-best allocation
under strongly negative correlation. For the first-best allocations qFB

LH and qFB
HL to be
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resistant to arbitrage, the principal needs to set ε = 0.11 Also, both BI RL and BI RH

need to be binding, since no information rent can accrue to either type. We thus obtain
πLH = −pLLπLL/pLH and πHL = −pHHπHH/pLH from binding BI Rs, then the
remaining constraints evaluated at q = qFB reduce to the following conditions.

BICL(πLL , πHH ) ≡ πHHρ

pLH
+ �θ (pLH + pLL) V

(

qFB
HH

)

� 0, (14)

BICH (πLL , πHH ) ≡ πLLρ

pLH
− �θ (pHH + pLH ) V

(

qFB
LL

)

� 0, (15)

C ICLL ,LH (πLL , πHH ) ≡ (1 − pHH ) πLL

+pHHπHH + pLH g
(

qFB
HL + qFB

LH , 0
)

� 0, (16)

C ICLL ,HH (πLL , πHH ) ≡ πHH − πLL − �θV
(

qFB
HH

)

� 0, (17)

C ICLH,LL(πLL , πHH ) ≡ (1 − pHH )πLL + pHHπHH + pLH g(2q
FB
LL , 0)

� 0, (18)

C ICLH,HH (πLL , πHH ) ≡ pLLπLL + (1 − pLL)πHH − pLH f (2qFB
HH , 0)

� 0, (19)

C ICHH,LL(πLL , πHH ) ≡ πHH − πLL − �θV
(

qFB
LL

)

� 0, (20)

C ICHH,LH (πLL , πHH ) ≡ pLLπLL + (1 − pLL)πHH

−pLH f (qFB
LH + qFB

HL , 0) � 0, (21)

We denote by ̂M(p) = {

(πLL , πHH ) ∈ R2|subject to: (14) to (21)
}

the set of
rent vectors which could support the first-best quantities qFB . It follows directly
that the first-best outcome is achievable if and only if ̂M(p) �= ∅. In Fig. 1,
the points within parallelogram ABCD satisfy adjacent coalitional conditions
C ICHH,LH ,C ICLH,LL ,C ICLH,HH and C ICLL ,LH .12 The coordinates of points

11 Remember that θLV
′(qFBLH ) = θHV ′(qFBHL ) = c and NAC: (θL − pHH ε�θ/pLH )V ′(qLH ) =

θHV ′(qHL ).
12 If local coalitional constraints hold, then the global coalitional constraintsC ICLL ,HH andC ICHH,LL
are automatically satisfied:

C ICHH,LL (π A
LL , π A

HH ) = f (qFBLH + qFBHL , 0) + g(2qFBLL , 0)

2
− �θV (qFBLL )

>
f (2qFBLL , 0) + g(2qFBLL , 0)

2
− �θV (qFBLL ) = 0

C ICLL ,HH (πC
LL , πC

HH ) = g(qFBLH + qFBHL , 0) + f (2qFBHH , 0)

2
− �θV

(

qFBHH

)

<
f (2qFBHH , 0) + g(2qFBHH , 0)

2
− �θV

(

qFBHH

)

= 0.

These two inequalities follow from the monotonicity of functions f (x, 0), g(x, 0), conditions qFBLL <

[qFBLH + qFBHL ]/2 < qFBHH and the identity f (x, 0) + g(x, 0) ≡ 2�θV (x/2).
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Fig. 1 Collusion-proof implementation of the first-best allocation

A to D are given as follows:13

π A
LL = − (1 − pLL)g

(

2qFB
LL , 0

)+ pHH f
(

qFB
HL + qFB

LH , 0
)

2
< 0,

π A
HH = pLLg

(

2qFB
LL , 0

)+ (1 − pHH ) f
(

qFB
HL + qFB

LH , 0
)

2
> 0;

π B
LL = − (1 − pLL)g

(

2qFB
LL , 0

)+ pHH f
(

2qFB
HH , 0

)

2
< 0,

π B
HH = pLLg

(

2qFB
LL , 0

)+ (1 − pHH ) f
(

2qFB
HH , 0

)

2
> 0;

πC
LL = − pHH f

(

2qFB
HH , 0

)+ (1 − pLL)g
(

qFB
HL + qFB

LH , 0
)

2
< 0

13 Again, from the monotonicity of f (x, 0), g(x, 0) and inequalities qFBLL < [qFBLH + qFBHL ]/2 < qFBHH ,

we have πC
LL < min{π B

LL , πD
LL } < max{π B

LL , πD
LL } < π A

LL and π A
HH < min{π B

HH , πD
HH } <

max{π B
HH , πD

HH } < πC
HH .
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πC
HH = (1 − pHH ) f

(

2qFB
HH , 0

)+ pLLg
(

qFB
HL + qFB

LH , 0
)

2
> 0;

πD
LL = − (1 − pLL)g

(

qFB
LH + qFB

HL , 0
)+ pHH f

(

qFB
HL + qFB

LH , 0
)

2
< 0,

πD
HH = pLLg

(

qFB
LH + qFB

HL , 0
)+ (1 − pHH ) f

(

qFB
HL + qFB

LH , 0
)

2
> 0.

To guarantee the nonemptiness of ̂M(p), the intersection O of lines BICH and BICL

must lie within the union of the grey and the red regions, that is:

πO
HH ≡ −�θ(pLH + pLL)pLHV

(

qFB
HH

)

ρ
� π A

HH , (22)

πO
LL ≡ �θ(pLH + pHH )pLHV (qFB

LL )

ρ
� πC

LL , (23)

C ICHH,LH (πO
LL , πO

HH ) ≡ pLLπO
LL + (1 − pLL)πO

HH

−pLH f (qFB
LH + qFB

HL , 0) � 0, (24)

C ICLL ,LH (πO
LL , πO

HH ) ≡ (1 − pHH ) πO
LL + pHHπO

HH

+pLH g
(

qFB
HL + qFB

LH , 0
)

� 0. (25)

To characterize the first-best implementation, we start with the following lemmas.

Lemma 1 If 2�θV (qFB
LL ) � g(qFB

LH + qFB
HL , 0), then the first-best outcome is achiev-

able for distributions (pLL , pHH ) ∈ F ≡ {(x, y) ∈ [0, 1]2|ρ(x, y) � ρ∗(x, y)};
if 2�θV (qFB

LL ) > max{g(qFB
LH + qFB

HL , 0), f (2qFB
HH , 0)}, we have F = ∅, then the

first-best outcome is unachievable for any feasible distribution, where

ρ(x, y) ≡ xy −
(

1 − x − y

2

)2

,

ρ∗(x, y) ≡ −�θ(1 − x + y)(1 − x − y)V (qFB
LL )

2
[

(1 − x)g(qFB
LH + qFB

HL , 0) + y f (2qFB
HH , 0)

] .

Proof See “Appendix”. 
�
The following lemma shows that the ranking between g(qFB

LH + qFB
HL , 0) and

f (2qFB
HH , 0) depends on the agents’ risk attitude.

Lemma 2 g(qFB
LH +qFB

HL , 0) < (resp. =,>) f (2qFB
HH , 0) if the absolute risk aversion

ra(x) ≡ −V ′′(x)/V ′(x) is increasing (resp. constant, decreasing) in x.

Proof See “Appendix”. 
�
Theproof in “Appendix” shows that g(qFB

LH+qFB
HL , 0)/ f (2qFB

HH , 0) = V (z∗(ξ, θL))/

V (z∗(ξ, θH )) for some ξ ∈ (θL , θH ), where z∗(θ1, θ2) ≡ argmaxz∈[0,qFB
HH+q∗(θ2)] θ1
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V (z) + θ2V (qFB
HH + q∗(θ2) − z) and q∗(θ) ≡ argmaxq [θV (q) − cq]. So, the com-

parison between g(qFB
LH + qFB

HL , 0) and f (2qFB
HH , 0) depends on the monotonicity of

function z∗(ξ, θ2) with respect to θ2. For fixed ξ , an increase of agent 2’s valuation
has two opposite effects on agent 1’s allocation z∗: he will capture a smaller share of
the total quantities when facing a more efficient opponent (rivalry effect); but at the
same time, the total size of cake to be divided between them, i.e., qFB

HH + q∗(θ2), will
increase (expansion effect). The net outcome hinges on the trade-off between these
two counteracting effects.

With increasing absolute risk aversion, agents is inclined to take less risk as they
become wealthier. This requires a more egalitarian resource distribution among them
to reduce inequality and risk. The expansion effect outweighs the rivalry effect as the
opponent’s valuation increases. So, ∂z∗(ξ, θ2)/∂θ2 > 0 and thus g(qFB

LH + qFB
HL , 0) <

f (2qFB
HH , 0). The arguments for constant and decreasing absolute risk aversions are

analogous.
The above Lemma 1 provides a sufficient condition forF �= ∅, and also a necessary

condition for F �= ∅. Lemma 2 gives a condition under which these two conditions
coincide. As an immediate corollary of Lemmas 1 and 2, we obtain the following
result.

Proposition 3 If the agent’s preference exhibits nonincreasing absolute risk aversion,
the first-best allocation is implementable for probability distributions with strongly
negative correlation, i.e., (pLL , pHH ) ∈ F if and only if g(qFB

LH + qFB
HL , 0) �

2�θV (qFB
LL ).14

The result of this proposition could be depicted by Fig. 2 in (pLL , pHH ) space.
Letting X and Y denote, respectively, the intercepts of curve ρ(pLL , pHH ) =
ρ∗(pLL , pHH ) with the horizontal and vertical axes, we have

X = g(qFB
LH + qFB

HL , 0) − 2�θV (qFB
LL )

g(qFB
LH + qFB

HL , 0)
,

Y = 2
[

g(qFB
LH + qFB

HL , 0) − 2�θV (qFB
LL )

]

√

[

g(qFB
LH + qFB

HL , 0) + 2�θV (qFB
LL ) − f (2qFB

HH , 0)
]2

+4 f (2qFB
HH , 0)

[

g(qFB
LH + qFB

HL , 0) − 2�θV (qFB
LL )

] +
[

g(qFB
LH + qFB

HL , 0) + 2�θV (qFB
LL )

− f (2qFB
HH , 0)

]

.

Since g(qFB
LH + qFB

HL , 0) − f (2qFB
HH , 0) � 0 whenever ra(x) is nonincreasing, we can

find easily that if g(qFB
LH +gFBHL , 0) � 2�θV (qFB

LL ), both X and Y are nonnegative and
regionF (the red region in Fig. 2) is nonempty, so the first-best allocation is achievable
for distributions (pLL , pHH ) ∈ F . If g(qFB

LH + gFBHL , 0) < 2�θV (qFB
LL ), both X and

14 Since ρ∗(x, y) itself depends on probabilities (x, y), so some readers may argue that it is imprecise
to interpret ρ(x, y) � ρ∗(x, y) as a condition of strongly negative correlation. Please note that curve
ρ(x, y) = ρ∗(x, y) is not parallel to but is sandwiched by two contours ρ(x, y) = ρl and ρ(x, y) = ρh ,
for some ρl < ρh < 0. Region {(x, y) ∈ [0, 1]2|ρ(x, y) � ρ∗(x, y)} lies in a region of strongly negative
correlation {(x, y) ∈ [0, 1]2|ρ(x, y) � ρh}; and it contains a region of even stronger negative correlation
{(x, y) ∈ [0, 1]2|ρ(x, y) � ρl }. In this sense, we term the case with ρ(x, y) � ρ∗(x, y) as “strongly
negative correlation”. The authors appreciate one referee for reminding us of this point.
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Fig. 2 Regions of probability distributions for nonincreasing absolute risk aversion

Y are negative, so region F vanishes, the first-best allocation is thus unachievable for
any feasible distribution (pLL , pHH ).

For utility with constant absolute risk aversion V (x) = 1 − e−r x , expression
g(qFB

LH + qFB
HL , 0) � 2�θV (qFB

LL ) is equivalent to

(

θH

θL
− 1

)(

2c

θLr
− 1

)

+ 2c

θLr

(
√

θL

θH
− 1

)

� 0.

For utility with decreasing absolute risk aversion V (x) = x1−α

1−α
, g(qFB

LH + qFB
HL , 0) �

2�θV (qFB
LL ) is equivalent to

{[

1 +
(

θL

θH

) 1
α

]α

− 2α

(

θL

θH

)

}[

1 +
(

θL

θH

) 1
α

]1−α

� 2

(

1 − θL

θH

)(

θL

θH

) 1−α
α

.

The region of parameters for the first-best implementation in these two cases can be
depicted by the following Fig. 3.

Expression ρ(pLL , pHH ) = ρ∗(pLL , pHH ) is equivalent to

pLL pHH −
(

1 − pLL − pHH

2

)2

= −
1
2�θ

(

1 − c
rθL

)

(1 − pLL − pHH )

�θ − 2r
c

(

1 −
√

θL
θH

) .
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(a) (b)

Fig. 3 The parameter regions of g(qFBLH + qFBHL , 0) � 2�θV (qFBLL ) for nonincreasing ra(x). a V (x) =
1 − e−r x , b V (x) = x1−α

1−α

for V (x) = 1 − e−r x ; and is equivalent to

pLL pHH −
(

1 − pLL − pHH

2

)2

=
−(1 − θL

θH
)
(

θL
θH

) 1−α
α

(1 − pLL − pHH )(1 − pLL + pHH )

2

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

(1 − pLL)

[

(

1 +
(

θL
θH

) 1
α

)α

− 2α
(

θL
θH

)

]

[

1 +
(

θL
θH

) 1
α

]1−α

+pHH

[

2α −
[

1 +
(

θL
θH

) 1
α

]α
]

21−α

⎫

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎭

for V (x) = x1−α/(1 − α). Figure 4a (resp. Fig. 4b) depicts the contours of ρ = ρ∗
for different values of c/r (resp. α) in (pLL , pHH ) space with particular values θH =
6, θL = 2. It is easy to see that the larger is c/r (resp. the smaller is α), the larger is
region F , and thus the more likely will the first-best allocation be obtained.

The economic intuition behind Proposition 3 could be explained as follows. With
correlated types, an agent’s report contains additional information about the other
agent’s valuation. The mechanism designer could exploit this statistical interdepen-
dence to cross-check agents’ reports, thereby inducing each agent to reveal his type
truthfully without leaving any informational rent to him. Naturally, such a mecha-
nism is not ex-post budget-balanced. The uninformed mechanism designer plays the
important role of a budget-breaker. She collects transfers from the agents in some
states of the world, and may also have to pay them in some other states. Figure 5a, b
illustrate the penalties and rewards in setups with respective negative and positive
correlations. The horizontal axis displays the first, and the vertical axis the sec-
ond component of a vector. When ρ < (resp. >)0, (pLH , pHH ) is flatter (resp.
steeper) than (pLL , pLH ). Vectors (πLL , πLH )(resp.(πHL , πHH )) is perpendicular
to (pLL , pLH )(resp.(pLH , pHH )) to guarantee that a L-type (resp. H -type) agent
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(a) (b)

Fig. 4 Contours of ρ(pLL , pHH ) = ρ∗(pLL , pHH ) with θH = 6, θL = 2. a V (x) = 1 − e−r x , b

V (x) = x1−α

1−α

45
45

(a) (b)

Fig. 5 Full surplus extraction for correlated types. a Negative correlation, b positive correlation

will only get a zero expected rent. With negative (resp. positive) correlation, in order
to elicit truth-telling, the principal needs to impose a penalty (resp. reward) on the
agents if they both announce low types (i.e., πLL < (resp. >)0). Geometrically,
(πLL , πHH ) lies to the northwest of point A in Fig. 5a, whereas it lies to the southeast
of point A in Fig. 5b.

The determination ofπLL is the outcome of two opposing forces. First, the principal
is inclined to impose a penalty on the agents when they both report θL to prevent their
collective downwardmanipulations since πLL is on the right-hand sides ofC ICLH,LL

and C ICHH,LL . Second, the principal may also have incentive to impose a reward in
the same state to prevent collective upward manipulations since πLL is also on the left-
hand sides ofC ICLL ,LH andC ICLL ,HH . As in the standard nonlinear pricing model,
in order to receive information rent from the principal/seller, agents may inherently
be more willing to underreport than to overreport their valuations. So, the principal is
more pressured by the task of preventing downward misreport than that of preventing
upward misreport. As a result, the principal will impose a punishment rather than a
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A

C

D

B

O

III

III IV

B

A

C

D

B

O

II

III IV

B

I

(a) (b)

Fig. 6 Cases in which the first-best allocation is not achievable. a ρ < 0 and close enough to zero, b ρ > 0

reward on agents when they both report low-types (πLL � π A
LL < 0). Nevertheless,

this punishment is up to the extent that the upward coalitional constraints C ICLL ,LH

and C ICLH,HH are binding, i.e., πLL � πC
LL . Analogously, a moderate reward when

both agents report θH (i.e., πHH ∈ [π A
HH , πC

HH ] ⊂ [0,+∞)) is required to deter
them from collective manipulations.

We now come to the individual incentive constraints. With a positive correlation,
the high-type agent’s individual incentive constraint BICH requires the principal to
reward both agents when they report consistent messages (θL , θL) (see Fig. 5b). As
stated above, the coalitional constraints, however, requires a punishment in the same
state, i.e.,πLL < π A

LL < 0. This conflict between individual and coalitional constraints
therefore prevents the principal from achieving the first-best allocation. Will the first-
best allocation always be achievable for cases with negative correlation? The answer
is no. As the negative correlation becomes weaker, the informativeness of one agent’s
report on the other’s type becomes smaller. The ex post penalty and award necessary
to implement the first-best allocation are both extremely large. In Fig. 5a, as the angle
between (pLL , pLH ) and (pHL , pHH ) becomes smaller and smaller, point A goes
to infinity in the north-west direction. But, conditions C ICLL ,LH and C ICLH,HH

together will impose a limited liability restriction on the agents which requires a finite
upper bound of the level of penalty, i.e., πLL � πC

LL . The conflict between individual
and coalitional incentive constraints thus prevents the first-best outcome from being
achieved for weakly negative correlation. Geometrically, since the area ABCD lies
within the north-west quadrant, so ̂M(p) = ∅ for eigher ρ � 0 or ρ < 0 but close
enough to zero (see Fig. 6).

If g(qFB
LH +qFB

HL , 0) < 2�θV (qFB
LL ), then even under perfectly negative correlation

(i.e., pLL = pHH = 0, ρ = −1/4), the minimum penalty imposed on the agents
for their “consistent” announcements will exceed their maximum liability imposed
by the upward adjacent coalitional incentive compatibility constraints C ICLH,HH

and C ICLL ,LH , i.e., −�θV (qFB
LL ) < πC

LL = −g(qFB
LH + qFB

HL , 0)/2. The first-
best allocation is thus unattainable. Notice that, the question about the necessary
and sufficient condition for the first-best implementation is still open because a grey
interval (g(qFB

LH + qFB
HL , 0),max{g(qFB

LH + qFB
HL , 0), f (2qFB

HH , 0)}] of 2�θV (qFB
LL )
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(a) (b)

Fig. 7 V (x) = ∫ x
0 e−5t2dt, θH = 40, c = 1. a F �= ∅, θL = 39, g(qFBLH + qFBHL , 0) = 0.39 <

2�θV (qFBLL ) = 0.79 < f (2qFBHH , 0) = 15.75, b F = ∅, θL = 20, g(qFBLH + qFBHL , 0) = 7.86 <

2�θV (qFBLL ) = 15.63 < f (2qFBHH , 0) = 15.71

exists for the case with increasing absolute risk aversion. Within this interval, the
nonemptiness of F is inconclusive. Figure 7 provides two examples, both with
g(qFB

LH + qFB
HL , 0) < 2�θV (qFB

LL ) < f (2qFB
HH , 0), in Fig. 7a F �= ∅, in Fig. 7b

F = ∅.15

In a related paper, Pouyet (2002) gets a similar conclusion that the first-best out-
come is achievable under strongly negative correlation. However, his model does not
consider the possibility of arbitrage, so it does not fit into our problem. To facilitate the
comparison, we now apply Pouyet’s method to a nonlinear pricing model.16 Absent
arbitrage, for the first-best allocation to be implementable, the principal will choose
a parameter ε ∈ [0, 1) and a vector of rents (πLL , πLH , πHL , πHH ) to satisfy the
following conditions:17

C ICLL ,LH : 2πLL � πLH + πHL − �θV (qFB
HL) − �θh(ε)

[

V (qFB
HL) − V (qFB

LL )
]

15 Notice that in this example, function V (x) = ∫ x
0 e−5t2dt is increasing and concave, the first order

condition remains valid provided that θH > θL > c though the Inada condition V (0) = +∞ fails to hold.
16 He considers a regulation problem of a duopoly under incomplete information.
17 Since there is no arbitrage, g(x1 + x2, ε) in expressions (7)–(12) is replaced by

θHV (x1) +
(

θL − pHH ε�θ

pLH

)

V (x2) − (θL − h(ε)�θ) [V (x1) + V (x2)],

and f (x1 + x2, ε) is replaced by

θH [V (x1) + V (x2)] −
[

θHV (x1) +
(

θL − pHH ε�θ

pLH

)

V (x2)

]

.
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C ICLL ,HH : πLL � πHH − �θV
(

qFB
HH

)

− h(ε)�θ [V
(

qFB
HH

)

− V (qFB
LL )]

C ICLH,LL : πLH + πHL � 2πLL − �θV (qFB
LL )

C ICLH,HH : πLH + πHL � 2πHH − �θV
(

qFB
HH

)

− pHH ε�θ

pLH

[

V
(

qFB
HH

)

− V (qFB
LH )

]

C ICHH,LH : 2πHH � πHL + πLH + �θV (qFB
LH )

C ICHH,LL : πHH � πLL + �θV (qFB
LL )

Pouyet (2002) shows that if the correlation is strongly negative, i.e., ρ+ pLL pLH < 0,
then there exists a ε∗ ∈ (0, 1) such that ρε∗ + pLL pLH = 0. The principal will choose
ε close enough to but strictly less than ε∗ tomake h(ε) infinitely large.With this choice,
C ICLL ,LH and C ICLL ,HH can be arbitrarily satisfied. Then, the principal recovers
some degrees of freedom. and uses them tomake both participation constraints binding
and to ensure that all the other constraints are satisfied. In our setup, however, for the
first-best allocation to meet the NAC condition, the principal needs to set ε = 0. She
is thus deprived of any flexibility of choosing ε. In this sense, though literally similar,
our result is different from and is more striking than his.

In the following section, we will discuss the cases with weak correlations, where
collusion is still detrimental to the principal.

5 The cases with weak correlations

When the first-best outcome is not implementable, the standard techniques of imple-
mentation theory suggest us to focus on the cases in which BICH and BI RL are
binding. The difficulty, as usual, is to determine the binding coalitional constraints. To
simplify the system of constraints, it is useful to give the following implementability
conditions.

Lemma 3 For weak correlation (ρ is close enough to but is not zero), the schedule
of weakly collusion-proof implementable consumptions satisfies the following mono-
tonicity conditions:

[M] : qLL � qLH + qHL

2
� qHH ; (26)

conversely, if these inequalities hold, the local coalitional incentive constraints
CICLL ,LH (7) and CICLH,HH (10) [or CICLH,LL (9) and CICHH,LH (11)] are bind-
ing, then all the remaining coalitional incentive constraints are indeed satisfied.

Proof See “Appendix”. 
�
Given this result, we could focus in the sequel only on the θL agent’s individual

rationality constraint (1); the θH agent’s Bayesian incentive constraint (4); the adjacent
coalitional incentive constraints (9), (11) or (7), (10); no-arbitrage constraint (13) and
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the implementability condition (26). Then we can simplify the principal’s problem as
the following program [PCP− ] or [PCP+ ].

[PCP− ] :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max{π ,q,ε∈[0,1)}�(π ,q)

subject to:
BI RL , BICH ,C ICLL ,LH ,C ICLH,HH ,NAC,M

[(1), (4), (7), (10), (13), (26)] ,

[PCP+ ] :

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

max{π ,q,ε∈[0,1)}�(π ,q)

subject to:
BI RL , BICH ,C ICHH,LH ,C ICLH,LL ,NAC,M

[(1), (4), (9), (11), (13), (26)] .

Next, we present a geometric argument to show that [PCP+ ] and [PCP− ] correspond
to, respectively, the cases with weakly positive and negative correlations. Get-
ting πLH = −πLL pLL/pLH and πHL = [�θpHHV (qLH ) + �θpLHV (qLL) −
πHH pHH ]/pLH − ρπLL/p2LH from BICH and BI RL written with equalities then
inserting them into the remaining constraints yields:

BI R′
H (πLL , πHH ) ≡ �θpHHV (qLH ) + �θpLH V (qLL ) − πLLρ

pLH
� 0 (27)

BIC ′
L (πLL , πHH ) ≡ pLH�θ

[

p2LH V (qHH ) − pHH pLLV (qLH )
]

+�θp2LH pLL [V (qHL ) − V (qLL )] + ρpLHπHH + ρpLLπLL � 0 (28)

C IC ′
LL ,LH (πLL , πHH ) ≡ pLH pHHπHH + [ρ + pLH (1 − pHH )]πLL

+p2LH g (qHL + qLH , ε)

−�θ(1 − ε)pHH pLH V (qLH ) − �θp2LH [1 + 2h(ε)]V (qLL ) � 0 (29)

C IC ′
LL ,HH (πLL , πHH ) ≡ πLL − πHH + �θV (qHH ) [h(ε) + 1]

−�θV (qLL )h(ε) � 0 (30)

C IC ′
LH,LL (πLL , πHH ) ≡ pLH pHHπHH + [ρ + pLH (1 − pHH )]πLL

+g (2qLL , ε) p2LH

−�θ(1 − ε)pHH pLH V (qLH ) − �θp2LH [1 + 2h(ε)]V (qLL ) � 0 (31)

C IC ′
LH,HH (πLL , πHH ) equivpLH (1 − pLL )πHH + (ρ + pLH pLL )πLL

−p2LH f (2qHH , ε) − �θ(1 − ε)pHH pLH V (qLH ) − �θp2LH V (qLL ) � 0

(32)

C IC ′
HH,LL (πLL , πHH ) ≡ πHH − πLL − �θV (qLL ) � 0 (33)

C IC ′
HH,LH (πLL , πHH ) ≡ pLH (1 − pLL ) πHH + (ρ + pLH pLL )πLL

−p2LH f (qHL + qLH , ε)

−pHH pLH (1 − ε)�θV (qLH ) − p2LH�θV (qLL ) � 0 (34)

The feasible set ̂M(p) ≡ {(πLL , πHH ) ∈ R2|subject to (27) to (34)} can be depicted
by the shaded area A′B ′C ′D′ in Fig. 8.Whenρ is negative and close sufficiently to zero,
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,LL LHCIC

,LH LLCIC

,HH LHCIC

,LH HHCIC

,HH LLCIC

,LL HHCIC

LL

HH
LBIC

HBIR

,LL LHCIC

,LH LLCIC

,HH LHCIC

,LH HHCIC

,HH LLCIC

,LL HHCIC

LL

HH

LBIC

HBIR

(a) (b)

Fig. 8 The case with weak correlations. a ρ < 0, b ρ > 0

the feasible region lies to the right of line BI RH and is under line BICL .18 Tominimize
expected information rent conceded to the high-type agent, the principal needs to
choose the leftest point C ′, where adjacent upward coalitional constraints C ICLL ,LH

and C ICLH,HH are binding. When ρ is weakly positive, however, the feasible region
A′B ′C ′D′ lies to the left of line BI RH . For the purpose of reducing information rent,
the principal will obviously choose the rightest point A′ at the optimum, implying
binding adjacent downward coalitional constraints C ICHH,LH and C ICLH,LL .

Proposition 4 Assuming that the correlation ρ is negative and close enough to zero,
θL − pHH�θ/pLH > 019, then ε∗ = 1 is the principal’s optimal choice. The optimal
weakly collusion-proof mechanism entails:

• a monotonic schedule of consumptions represented as functions of p: qCP
LL (p) <

[qCP
LH (p) + qCP

HL (p)]/2 < qCP
HH (p) given by:

(

θH pLH
ρ + pLH

)

V ′(qHH ) + ρθHV ′ (ϕ2(2qHH ))

ρ + pLH
= c, (35)

θHV
′(qHL) −

ρ(1 − pLL)

⎡

⎢

⎣

(

θL − pHH�θ
pLH

)

V ′(qLH )

−
(

θL − p2LH�θ

pLL pLH+ρ

)

V ′ ( qLH+qHL
2

)

⎤

⎥

⎦

2pLH (ρ + pLH )
= c

(36)

18 Notice that, though the slopes of lines representing C ICs change with distributions (pLL , pHH ), for
weak correlationC ICLL ,LH ,C ICLH,LL has larger absolute slope thanC ICLH,HH ,C ICHH,LH since

ρ + pLH (1 − pHH )

pLH pHH
− ρ + pLH pLL

pLH (1 − pLL )
= 2(ρ + pLH )

pHH (1 − pLL )
> 0.

19 This condition is imposed to avoid the tedious computation in corner solutions. If it fails, then ϕ1(x) =
0, ϕ2(x) = x, ∀x .Wemust haveqLH = 0, then themonotonicity condition takes the formqLL � qHL/2 �
qHH , this condition is very difficult to pass the ex-post check.
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(

θL − pHH�θ

pLH

)

V ′(qLH )

−
ρ(1 − pLL)

⎡

⎢

⎣

(

θL − pHH�θ
pLH

)

V ′(qLH )

−
(

θL − p2LH�θ

pLL pLH+ρ

)

V ′ ( qLH+qHL
2

)

⎤

⎥

⎦

2pLH (ρ + pLH )
= c (37)

(

θL − �θp2LH
ρ + pLL pLH

)

V ′(qLL) = c. (38)

• the consumptions exhibit a two-way distortion away from the first-best levels:
qCP
HH (p) > qFB

HH (p), qCP
HL (p) > qFB

HL(p), qCP
LH (p) < qFB

LH (p), qCP
LL (p) < qFB

LL (p).
• a vector of rents πCP ∈ R4 such that B I RL , BICH ,C ICLL ,LH ,C ICLH,HH are
binding.

Proof See “Appendix”. 
�

Figure 8a provides a geometric interpretation of results in this proposition. The rents
leave to the agent can be measured by the distance between point C ′ and line BI RH .
So for the purpose of minimizing information rents, it is optimal for the principal to
move C ′ leftward and shift BI RH rightward. The coordinates of points A′ and C ′ are
given as follows:

π A′
LL = −

pLH

[

pHH f (qHL + qLH , ε) − (1 − pLL ) f (2qLL , ε)

−2�θpHH (1 − ε)V (qLH ) + �θ(pLH + pHH )V (qLL )

]

2 (pLH + ρ)
,

π A′
HH =

[

[ρ − (pHH − 1) pLH ] f (qHL + qLH , ε) − (pLH pLL + ρ) f (2qLL , ε)

+2�θ [−pLL (pHH + pLH ) V (qLL ) + (1 − ε)pHH pLH V (qLH )]

]

2 (pLH + ρ)
,

πC ′
LL =

pLH

[

pHH [2�θ(1 − ε)V (qLH ) − f (2qHH , ε)] − (1 − pLL ) g (qHL + qLH , ε)

−2h(ε) (pLL − 1) �θV (qLL ) + 2�θpLH V (qLL )

]

2 (pLH + ρ)
,

πC ′
HH =

[

[(1 − pHH ) pLH + ρ] f (2qHH , ε) + (pLH pLL + ρ) g (qHL + qLH , ε)

−2h(ε)�θV (qLL ) (pLH pLL + ρ) + 2�θpLH [(1 − ε)pHHV (qLH ) + pLH V (qLL )]

]

2 (pLH + ρ)
.

The sign of ∂πC ′
LL/∂qLL and ∂πC ′

LL/∂qLH are ambiguous, but for a weak cor-
relation they are largely outweighed by ∂BI RH/∂qLL = �θp2LHV

′(qLL)/ρ

and ∂BI RH/∂qLH = �θpLH pHHV ′(qLH )/ρ, which are both negative. Also,
∂BI RH/∂qHL = ∂BI RH/∂qHH = 0, ∂πC ′

LL/∂qHL < 0 and ∂πC ′
LL/∂qHH < 0.

So it requires downward distortions for qLL and qLH and upward distortions for qHL

and qHH .
To make things more transparent, we give a numerical example. Suppose that

V (x) = x1−α/(1 − α), θH = 4, θL = 2. The regions where the optimal mechanisms
are characterized by Proposition 4 (S) (see “Appendix” for the detailed description of
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(a) (b)

(c) (d)
Fig. 9 V (x) = x1−α

1−α
, θH = 4, θL = 2 a α = 0.3, b α = 0.4, c α = 0.6, d α = 0.8

S) and Proposition 3 (F) are depicted in Fig. 9 for different values of α. F vanishes
for large α (Fig. 9c, d).

Things are quite different for weakly positive correlation. We analyze this situation
in the following proposition.

Proposition 5 If the correlation ρ is positive and close sufficiently to zero, θL −
pHH�θ/pLH > 0, then the optimal weakly collusion-proof mechanism MCP (p)
entails:

• an ε∗ ∈ (0, 1) and a monotonic schedule of consumptions: qCP
LL (p) < [qCP

LH (p) +
qCP
HL (p)]/2 < qCP

HH (p) given by

ρ(1 − pLL )[V (ϕ1(2qLL )) − V (qLH )]
2(ρ + pLH )

+ λ(ε∗)V ′(qLH ) = 0 (39)
[

θL pLH − pHH�θ

ρ + pLH
+ ρθH

(ρ + pLH ) pLL

]

V ′(qLL )

−ρ(1 − pLL )θHV ′ (ϕ2(2qLL ))

pLL (ρ + pLH )
= c, (40)
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[

θL − �θ
pHH (ρε∗ + pLH )

(ρ + pLH )pLH

]

V ′(qLH )

−

⎡

⎢

⎢

⎢

⎣

ρpHH θH

[

V ′
(

qLH+qHL
2

)

−V ′(qHL )
]

2pLH (ρ+pLH )

+λ(ε∗)

(

θL− pHH ε�θ

pLH
pLH

)

V ′′(qLH )

⎤

⎥

⎥

⎥

⎦

= c, (41)

θHV ′(qHL ) −
ρpHH θH

[

V ′ ( qLH+qHL
2

)

− V ′(qHL )
]

2pLH (ρ + pLH )
+ λ(ε∗)

θH

pLH
V ′′(qHL ) = c,

(42)

θHV ′(qHH ) = c; (43)

where nonnegative parameter

λ(ε∗) =
−�θ(1−ε∗)pHH

pLH+ρ

[

cpLH + ρpHH θH

(

V ′
(

qHL+qLH
2

)

−V ′(qHL )
)

2(pLH+ρ)

]

(

θL − �θε∗ pHH
pLH

)2
V ′′ (qLH ) + θH

[

θL − �θpHH (pLH+ρε∗)
pLH (pLH+ρ)

]

V ′′ (qHL)

is the Lagrangian multiplier of NAC written with ε = ε∗;
• the consumptions except qCP

HH are distorted away from their respective first-best
levels: qCP

HH (p) = qFB
HH (p), qCP

HL (p) < qFB
HL(p), qCP

LH (p) < qFB
LH (p), qCP

LL (p) <

qFB
LL (p);

• a vector of rents πCP ∈ R4 such that B ICH , BI RL ,C ICHH,LH ,C ICLH,LL are
binding.

Proof See “Appendix”. 
�
At this point, it is worth pausing to discuss how positive correlation differs from

its negative counterpart in its influence on the principal’s choice of transaction cost.
Notice that two effects jointly determine the optimal ε∗. On the one hand, the traditional
efficiency versus rent extraction tradeoff calls for a larger downward distortion of qLH
than that of qHL relative to their respective first-best levels.20 So, in order to meet
NAC, the principal needs to set a larger ε∗ to discriminate H -type from L-type. On
the other hand, ε also enters directly into the expected information rent Eπ through
the binding coalitional constraints. Expressions (94) and (95) in “Appendix” show that
the coalitional constraints are tightened as ε decreases (resp. increases) for negative
(resp. positive) correlation, since

∂Eπ

∂ε
= −ρ

2(ρ + pLH )

{

2(1 − pLL)h′(ε)�θ
[

V (qLL) − V
( qHL+qLH

2

)]

+ p2HH�θ[V (qLH )−V (ϕ1(2qHH ))]
pLH

}

< 0

20 As shown in expressions of Eπ [(94) and (95) for respective cases with weakly negative and
weakly positive correlations in the “Appendix”], if ρ < 0, qLH affects terms βBICH , βC ICLH,HH
and βC ICLL ,LH , qHL affects only βC ICLL ,LH ; if ρ > 0, qLH affects terms βBICH , βC ICLH,LL and
βC ICHH,LH , qHL affects only βC ICHH,LH . Both cases require a larger distortion of qLH than qHL .
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for ρ < 0 (resp. ∂Eπ/∂ε = [ρ(1− pLL)pHH�θ ] [V (qLH ) − V (ϕ1(2qLL))] /[2pLH
(ρ + pLH )] > 0 for ρ > 0). For negative correlation, these two effects are aligned, so
the principal chooses ε∗ = 1 at the optimum.21 For positive correlation, however, the
determination of ε∗ hinges on the comparison between two opposite effects, the trade-
off is optimally resolved by setting ε strictly below 1. The smaller is the correlation
ρ, the weaker is the second effect, and hence the larger is ε∗. In the degenerate case
of no correlation, the second effect disappears, we would have ε∗ = 1.22

Figure 8b give a geometric explanation to the above proposition. The principal
needs to move point A′ rightward and shift BI RH leftward to minimize information
rents. This requires a downward distortion for qLL qLH and qHL , but no distortion for
qHH since it affects neither π A′

LL nor BI RH .
For positive correlation, both individual and coalitional incentive constraints are

binding for downward manipulation, the efficiency versus rent extraction trade-off
calls for a downward distortions of qLL , qLH and qHL , but no distortion for qHH ,
this is the standard “no distortion at the top” result. For negative correlation, however,
the individual incentive constraint is binding for a downward manipulation while the
coalitional incentive constraints are binding for upwardmanipulations.Hence, an issue
similar to countervailing incentives arises and this calls for two-way distortions for
quantities: qHL and qHH are distorted upward, whereas qLH and qLL are distorted
downward compared to their respective first-best levels.23

As correlation vanishes, it is easy to find from (35) to (43) that

lim
ρ↑0 q

CP
kl (p) = lim

ρ↓0 q
CP
kl (p) = qCP

kl (ρ = 0) = qSB
kl (ρ = 0), k, l ∈ {H, L},

where qSB
kl (ρ = 0) are given as follows

(

θL − pHH�θ

pLH

)

V ′(qLL) =
(

θL − pHH�θ

pLH

)

V ′(qLH )

= θHV
′(qHL) = θHV

′(qHH ) = c.

Therefore, JM’s result that the principal can achieve her payoff without collusion in a
collusion-proof way for independent types could be regarded as a limit case of ours.24

21 Although ε belongs to [0, 1), we allow ε to take the value equal to one since we are interested in the
supremum of the seller’s profit.
22 The working paper version of JM (2005) (available at: http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.202.5958&rep=rep1&type=pdf), gives a brief discussion of the determination of ε for the case
of small and positive correlation (in page 22). We provide a more elaborate and formal analysis for this
problem. We appreciate one referee for reminding us this version of JM (2005).
23 See Lewis and Sappington (1989), Maggi and Rodriguez-Clare (1995) for detailed discussions of coun-
tervailing incentives problem.
24 JM (2005) also extend their 2 × 2 result to n × 2 and 2 × 3 environments.
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6 The case of almost perfectly positive correlation

With an almost perfectly positive correlation (pLH is very close to zero, pLL and
pHH are both very close to 1/2), agents have very likely the same type, and ρ is
close to its supremum 1/4. Constraints C ICLH,HH (10) and C ICHH,LH (11) implies
f (2qHH , ε) � f (qLH + qHL , ε), constraints C ICLH,LL (9) and C ICLL ,LH (7)
implies g(qLH + qHL , ε) � g(2qLL , ε). We know that f (x, ε) is always increas-
ing in x for any ε, so we have qHH � (qLH + qHL)/2. If g(x, ε) is decreasing
in x , we have qLL � (qLH + qHL)/2. Things are different if g(x, ε) is increas-
ing in x . On the one hand, the principal needs to set (qLH + qHL)/2 � qLL for
the contract to be implementable; on the other hand, she needs to set qLH and
qHL as small as possible due to tradeoff between efficiency and rent extraction. To
see this, note first that the contributions of qHL and qLH to efficiency (i.e., term
pLH [θHV (qHL)−cqHL +θLV (qLH )−cqLH ] in the principal’s payoff) is negligible
for small pLH , but their contributions to the expected rent Eπ is nonnegligible.25 The
intuition is quite simple. If there is only a small probability that agents have different
valuations, quantities in this state of nature have much smaller contribution to the
principal’s expected payoff than their aid to the agents to secure information rents.
The principal will shutdown production in this state at almost no cost. This tight-
ens constraint (qLH + qHL)/2 � qLL and thus entails partial pooling consumptions:
qHH � (qLH+qHL)/2 = qLL . To simplify the analysis, we assume in this section that
the consumer’s utility function is V (x) = x1−α/(1−α), α ∈ [0, 1).Wewill show that,
with an almost perfect correlation, the principal will choose a parameter ε such that
the virtual valuation of low-type is nonpositive, i.e., θv

L ,2 ≡ θL − pHH ε�θ/pLH � 0.
Then g(x, ε) = maxz∈[0,x][θHV (z) + θv

L ,2V (x − z)] − 2[θL − h(ε)�θ ]V (x/2) =
[θH − 2α(θL − h(ε)�θ)] V (x). If θH � 2αθL , then g(x, ε) is increasing in x ; if
θH � 2α(θL − �θ), then g(x, ε) is decreasing in x . The following two propositions
characterize the cases with increasing and decreasing g(x, ε), respectively.

Proposition 6 With an almost perfectly positive correlation and θH � 2αθL , the
principal will choose an arbitrary ε∗ in [θL pLH/(pHH�θ), 1], the optimal weakly
collusion-proof mechanism entails

• partial pooling quantities qCP
HH = qFB

HH , qCP
LH = 0, qCP

HL = 2qCP
LL , with q

CP
LL given

by

qCP
LL =

[

max

(

0,
pLL

(1 − pHH )

(

(2ρ + 21−α pLH )pLH θH

(ρ + pLH )pLL
+ θL

−�θ(pHH − ρ)

ρ + pLH

)

/c

)]1/α

(44)

• a vector of information rents/transfers such that constraints B ICH , BI RL ,

C ICLH,LL ,C ICHH,LH , C ICLL ,LH and C ICHH,LL are all binding.

25 In this section, we still have binding constraints BICH , BI RL ,C ICHH,LH ,C ICLH,LL , so Eπ is
still given in (95). This will be verified later on in the proof of Proposition 6.
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Proof See “Appendix”. 
�
With an almost perfect correlation and binding constraints BICH , BI RL ,

C ICLH,LL and C ICHH,LH , there is only a negligible small probability that agents
have different types. For the purpose of reducing information rents conceded to the
agent, the principal optimally chooses qLH and qHL as small as possible. Meanwhile,
the monotonic implementability constraints qHH � (qLH + qHL)/2 � qLL still
need to be satisfied since functions f (x, ε) and g(x, ε) are both increasing in x when
θH � 2αθL . As a result, the principal offers a less responsive contract to the reported
messages, i.e., qHH � (qLH + qHL)/2 = qLL .

When a fixed amount 2qLL is available to and is distributed in a LH coalition, the
NAC implies that the larger is ε, the smaller share will be taken by the L agent, i.e.,
dqLH/dε < 0. Notice that

∂rB ICH

∂ε
= �θpHHV

′(qLH )
dqLH
dε

< 0,

∂rC ICLH,LL

∂ε
= g′

ε(2qLL , ε) − 2h′(ε)�θV (qLL) + pHH�θ

pLH
V (qLH )

+ pHH ε�θ

pLH

dqLH
dε

V ′(qLH )

= pHH ε�θ

pLH

dqLH
dε

V ′(qLH ) < 0,

∂rC ICHH,LH

∂ε
= f ′

ε(2qLL , ε) − pHH�θ

pLH
V (qLH ) − pHH ε�θ

pLH

dqLH
dε

V ′(qLH )

= − pHH ε�θ

pLH

dqLH
dε

V ′(qLH ) > 0.

∂rC ICLH,LL /∂ε +∂rC ICHH,LH /∂ε = 0, and the shadow cost of C ICLH,LL (i.e., ρ(1−
pLL)/2(ρ+ pLH )) is larger than that ofC ICHH,LH (i.e., ρpHH/2(ρ+ pLH )). Hence,
to minimize the cost of these constraints, the principal needs to increase ε. Meanwhile,
a larger ε requires allocating more resources to the θH -type agent, and less to the θL -
type. So the expected revenue 2

∑

k
∑

l pkl [θkV (qkl) − cqkl ] increases with ε. As a
result, the principal will increase ε to the extend that the virtual valuation of low type
agent is non-positive, i.e., ε∗ � (θL pLH )/(pHH�θ). Any positive amount of goods
initially allocated to the low-type agent will be reallocated to his high-type partner.
To avoid reallocation, the principal thus gives zero amount to low-type agent in state
(θL , θH ), i.e., qLH = 0.

The set of binding constraints could be depicted in Fig. 10, in which the feasible
region degenerates to line segment PQ, the coordinates of points P and Q are given
as follows:

π P
LL = p2LH f (2qLL , ε) − �θpLH (pHH + pLH ) V (qLL)

ρ + pLH
, (45)

π P
HH = p2LH f (2qLL , ε) + �θpLL (pHH + pLH ) V (qLL)

ρ + pLH
, (46)
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Fig. 10 The case with an almost perfect correlation and θH > 2αθL

π
Q
LL =

[

pLH (pHH + 2pLH ) f (2qLL , ε) − pLH pHH f (2qHH , ε)

−2�θpLH (pHH + pLH ) V (qLL)

]

2 (pLH + ρ)
, (47)

π
Q
HH =

[

[ρ + pLH (1 − pHH )] f (2qHH , ε) − (ρ + pLL pLH ) f (2qLL , ε)

+2�θpLL (pHH + pLH ) V (qLL)

]

2 (pLH + ρ)
.

(48)

Note that the lines representing coalitional constraints C ICHH,LL ,C ICHH,LH ,

C ICLH,LL and C ICLL ,LH all pass through the optimal point P . Together with
the presumed binding constraints BICH and BI RL , we have that the set of bind-
ing constraints includes BICH , BI RL ,C ICHH,LL ,C ICHH,LH ,C ICLH,LL and
C ICLL ,LH .

If the function g(x, ε) is decreasing in x , the optimal contract requires a non-
monotonic schedule of consumptions qHH > qLL > (qLH + qHL)/2. The binding
constraints are then BICH , BI RL ,C ICLH,LL and C ICHH,LL . To see this, we
can represent the relationships between C ICs in Fig. 11. Area B ′C ′D′E ′F ′ rep-
resents the feasible region. Notice that given binding C ICHH,LH and C ICLH,LL

(at point A′), we have �C ICHH,LL − rC ICHH,LL = πHH − πLL − �θV (qLL) =
[ f (qLH + qHL , ε) + g(2qLL , ε)]/2 − [h(ε) + 1]�θV (qLL) < [ f (2qLL , ε) +
g(2qLL , ε)]/2− [h(ε)+ 1]�θV (qLL) = 0, A′ is below line C ICHH,LL ; given bind-
ing C ICLH,LL and C ICLH,HH (at point B ′), we have �C ICHH,LL − rC ICHH,LL =
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,LL LHCIC

,LH LLCIC

,HH LHCIC

,LH HHCIC

,HH LLCIC
,LL HHCIC

LL

HH

HBIR

LBIC

Fig. 11 The case with an almost perfect correlation and θH < 2α(θL − �θ)

πHH −πLL −�θV (qLL) = [ f (2qHH , ε)+g(2qLL , ε)]/2−�θ [h(ε)+1]V (qLL) >

[ f (2qLL , ε)+g(2qLL , ε)]/2−�θ [h(ε)+1]V (qLL) = 0, B ′ is above lineC ICHH,LL .
Hence, the optimum is attained at the rightest point F ′ of feasible region B ′C ′D′E ′F ′,
where BICH , BI RL ,C ICLH,LL and C ICHH,LL are binding.

Proposition 7 With an almost perfect correlation and θH − 2α(θL − �θ) < 0, the
principal will choose an arbitrary ε∗ in [θL pLH/(pHH�θ), 1], the optimal weakly
collusion-proof mechanism MCP entails:

• qCP
LH = 0, qCP

HL = qCP
HH = qFB

HH < 2qCP
LL , where

qCP
LL =

[

max

(

0,

(
(

2 − 21−α
)

ρθH pLH
pLL (pLH + ρ)

+ �θ (ρ − pHH )

pLH + ρ
+ θL

)

/c

)]1/α

(49)

• a vector of rents π such that B I RL , BICH ,C ICHH,LL ,C ICLH,LL are binding.

Proof See “Appendix”. 
�
For a strong correlation and a decreasing g(x, ε), the principal can offer non-

monotonic schedules of consumptions in a collusion-proof way. To a low-type agent,
she offers him no good when the other agent has high type, and a nonnegative amount
when the other agent is also of low-type. For a high-type agent, however, the principal
always offers the first-best quantity, since neither qHL nor qHH affects the expected
information rent Eπ .
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Given 2qLL > qLH + qHL , a larger ε, on the one hand, make constraint
C ICLH,LL (9) easier to be satisfied since ∂rC ICLH,LL /∂ε = �θpHH [V (ϕ1(qLH +
qHL)) − V (ϕ1(2qLL))]/pLH < 0. On the other hand, a larger ε demands a larger
deviation away from the principal’s first-best decision (notice that in the first-best
allocation θHV ′(qHL) = θLV ′(qLH ) = c, so ε = 0), and thus reduces the term
2
∑

k
∑

l pkl [θkV (qkl) − cqkl ] in the principal’s profit. Since pLH is very small, the
first effect dominates. It is not very costly froman ex ante allocative point of view for the
principal to choose a large ε. It will decrease the virtual valuation of a low-type agent to
zero and thus has a tendency to favor the high-type agent to the extend that any positive
amount of quantities will be reallocated from his low-type partner to him, so qLH = 0.

With an almost perfectly positive correlation, a point worth discussing is the differ-
ence between cases with and without arbitrage. LM (2000) show that when the corre-
lation becomes almost positively perfect, the first-best efficiency is approached. In our
model, however, expression (49) converges to [max(0, (θL − pHH�θ/pLL)/c)]1/α

as pLH goes to zero, which implies that the allocation does not approaches its full
information value qFB

LL . The difference hinges on the role of arbitrage. When arbitrage
is not allowed, an agent is only endowed with the goods initially sold to him by the
principal. So, in the coalitional incentive constraints g(2qLL , ε) and f (2qHH , ε) need
to be replaced, respectively, by θHV (qLL)+ (θL − pHH�θε/pLH )V (qLL)−2[θL −
h(ε)�θ ]V (qLL), and 2θHV (qHH ) − θHV (qHH ) − (θL − pHH�θε/pLH )V (qHH ).
The right-hand sides of constraints C ICLH,HH (10) and C ICLH,LL (9) become
2πHH −�θV (qHH )+ pHH�θε/pLH [V (qLH )−V (qHH )] and 2πLL+�θV (qLL)+
pHH�θε/pLH [V (qLH )−V (qLL)]. As pLH goes to zero, they both tends to −∞ for
quantities satisfying 0 = qLH < qLL < qHH and a positive ε. Therefore, these two
constraints can be arbitrarily satisfied, the principal then recovers some degrees of free-
dom. This enables him to implement the first-best allocation in the limit case of a per-
fectly positive correlation. But this is not the case if arbitrage would take place. Notice
that, as pLH → 0, a corner solution emerges in the maximization problem within
the coalition with ϕ1(x) = 0, ϕ2(x) = x,∀x > 0. We thus have rLH,LL = 2πLL +
θHV (ϕ2(2qLL)) + θLV (ϕ1(2qLL)) − 2θLV (qLL) + pHH ε�θ/pLH [V (ϕ1(qLH +
qHL)) − V (ϕ1(2qLL))] → 2πLL + θHV (2qLL) − 2θLV (qLL), rLH,HH = 2πHH +
θHV (ϕ2(2qHH ))+ θLV (ϕ1(2qHH ))− 2θHV (qHH )+ pHH ε�θ/pLH [V (ϕ1(qLH +
qHL)) − V (ϕ1(2qHH ))] → 2πHH + θHV (2qHH ) − 2θHV (qHH ). The possibil-
ity of arbitrage therefore prevents the right-hand sides of constraints C ICLH,LL and
C ICLH,HH from tending to −∞, they are now both bounded from below. So, these
two constraints cannot be satisfied freely, that is why the first-best allocation is not
achievable for an almost perfectly positive correlation in our model.

7 Conclusion

This paper explores the collusion-proof mechanism design problem in a two-agent
environment with both correlation and arbitrage. CM’s FSEmechanism shows that the
principal may generically exploit the correlation between agents’ private information
to elicit their truthtelling at no cost. For the purpose of protecting their rents, agentsmay
collude at the principal’s loss by coordinating their reports and conducting arbitrage
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on their total purchases. As such, the principal needs to fight off collusion by designing
her grand mechanism. This raises natural questions: whether and to what extend does
collusion prevent the principal from implementing the first-best allocation. CK (2006)
have shown that the principal can always fight off collusion at no cost in a broad
class of environments with n � 2 agents for uncorrelated types and n � 3 agents for
correlated types.

We extended CK’s analysis to the two-agent case with arbitrage and correlation.
It is shown that collusion is sometimes preventable at no cost when the correlation is
strongly negative. Collusion calls for distortion away from the noncollusive efficiency
if correlation is close to zero. Moreover, we find that the distortionary patterns are
quite different for weakly positive and negative correlations. For weakly positive cor-
relation, the classical no distortion at the top property is preserved; for weakly negative
correlation, however, the optimal collusion-proof mechanism entails two-way distor-
tions for consumptions. For almost perfect positive correlation, in contrast to the result
of LM (2000), the possibility of arbitrage prevents the principal from implementing
an efficiency close sufficiently to the first-best level.

Notice that, our model does not cover all the possible cases. The cases between
weak and strong correlations, and θH ∈ [2α(θL − �θ), 2αθL) for almost perfectly
positive correlation are not discussed. It appears to be quite challenging to obtain a
complete description of the optimal collusion-proof mechanism in all the possible
cases. This analysis is left for future researches.

Appendix

Proof of Proposition 2

Notice that we are finding conditions under which S0 is optimal for the third party.
Under S0, BICS

i (θL), i = 1, 2 are as same as BICL . Therefore, for the grand mecha-
nisms such that θL -type’s incentive constraint holds, the incentive constraint of θL -type
will be satisfied in the side mechanism as well.26 The third-party’s problem can be
written as:

max
φ(·),xi (·),yi (·)

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

pLL

⎧

⎨

⎩

∑

φ̃∈�2 pφ(θL , θL , φ̃)

⎡

⎣

(

θLV
(

x1(θL , θL , φ̃) + q1(φ̃)
)

− t1
(

φ̃
))

+
(

θLV
(

x2(θL , θL , φ̃) + q2(φ̃)
)

− t2
(

φ̃
))

⎤

⎦

⎫

⎬

⎭

+pLH

⎧

⎨

⎩

∑

φ̃∈�2 pφ(θL , θH , φ̃)

⎡

⎣

(

θLV
(

x1(θL , θH , φ̃) + q1(φ̃)
)

− t1
(

φ̃
))

+
(

θHV
(

x2(θL , θH , φ̃) + q2(φ̃)
)

− t2
(

φ̃
))

⎤

⎦

⎫

⎬

⎭

+pLH

⎧

⎨

⎩

∑

φ̃∈�2 pφ(θH , θL , φ̃)

⎡

⎣

(

θHV
(

x1(θH , θL , φ̃) + q1(φ̃)
)

− t1
(

φ̃
))

+
(

θLV
(

x2(θH , θL , φ̃) + q2(φ̃)
)

− t2
(

φ̃
))

⎤

⎦

⎫

⎬

⎭

+pHH

⎧

⎨

⎩

∑

φ̃∈�2 pφ(θH , θH , φ̃)

⎡

⎣

(

θHV
(

x1(θH , θH , φ̃) + q1(φ̃)
)

− t1
(

φ̃
))

+
(

θHV
(

x2(θH , θH , φ̃) + q2(φ̃)
)

− t2
(

φ̃
))

⎤

⎦

⎫

⎬

⎭

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

26 In the sequel, we will verify that BICL is satisfied by collusion-proof grand mechanisms in all environ-
ments considered. So readers don’t need to worry about the neglected constraints BICS

i (θL ), i = 1, 2.
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subject to the following constraints:

• Budget balance:

(BB : y)
2
∑

i=1

yi (θ1, θ2) = 0,∀(θ1, θ2) ∈ �2 (50)

(BB : x)
2
∑

i=1

xi (θ1, θ2, φ̃) = 0,∀(θ1, θ2) ∈ �2,∀φ̃ ∈ �2; (51)

• Bayesian incentive constraints for respectively the θH agents 1 and 2:

BICS
1 (θH ) : pLH

∑

φ̃∈�2

pφ(θH , θL , φ̃)
[

θHV
(

x1(θH , θL , φ̃) + q1(φ̃)
)

+ y1(θH , θL ) − t1(φ̃)
]

+pHH
∑

φ̃∈�2

pφ(θH , θH , φ̃)
[

θHV
(

x1(θH , θH , φ̃) + q1(φ̃)
)

+ y1(θH , θH ) − t1(φ̃)
]

� pLH
∑

φ̃∈�2

pφ(θL , θL , φ̃)
[

θHV
(

x1(θL , θL , φ̃) + q1(φ̃)
)

+ y1(θL , θL ) − t1(φ̃)
]

+pHH
∑

φ̃∈�2

pφ(θL , θH , φ̃)
[

θHV
(

x1(θL , θH , φ̃) + q1(φ̃)
)

+ y1(θL , θH ) − t1(φ̃)
]

,

(52)

BICS
2 (θH ) : pLH

∑

φ̃∈�2

pφ(θL , θH , φ̃)
[

θHV
(

x2(θL , θH , φ̃) + q2(φ̃)
)

+ y2(θL , θH ) − t2(φ̃)
]

+pHH
∑

φ̃∈�2

pφ(θH , θH , φ̃)
[

θHV
(

x2(θH , θH , φ̃) + q2(φ̃)
)

+ y2(θH , θH ) − t2(φ̃)
]

� pLH
∑

φ̃∈�2

pφ(θL , θL , φ̃)
[

θHV
(

x2(θL , θL , φ̃) + q2(φ̃)
)

+ y2(θL , θL ) − t2(φ̃)
]

+pHH
∑

φ̃∈�2

pφ(θH , θL , φ̃)
[

θHV
(

x2(θH , θL , φ̃) + q2(φ̃)
)

+ y2(θH , θL ) − t2(φ̃)
]

;

(53)

• Bayesian participation constraints for respectively the θH agents 1 and 2:

BI RS
1 (θH ) : pLH

∑

φ̃∈�2

pφ(θH , θL , φ̃)
[

θHV
(

x1(θH , θL , φ̃) + q1(φ̃)
)

+ y1(θH , θL ) − t1(φ̃)
]

+pHH
∑

φ̃∈�2

pφ(θH , θH , φ̃)
[

θHV
(

x1(θH , θH , φ̃) + q1(φ̃)
)

+ y1(θH , θH ) − t1(φ̃)
]

� (pLH + pHH )UM
1 (θH ),

(54)

BI RS
2 (θH ) : pLH

∑

φ̃∈�2

pφ(θL , θH , φ̃)
[

θHV
(

x2(θL , θH , φ̃) + q2(φ̃)
)

+ y2(θL , θH ) − t2(φ̃)
]

+pHH
∑

φ̃∈�2

pφ(θH , θH , φ̃)
[

θHV
(

x2(θH , θH , φ̃) + q2(φ̃)
)

+ y2(θH , θH ) − t2(φ̃)
]

� (pLH + pHH )UM
2 (θH );

(55)
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• Bayesian participation constraints for respectively the θL agents 1 and 2:

BI RS
1 (θL ) : pLL

∑

φ̃∈�2

pφ(θL , θL , φ̃)
[

θLV
(

x1(θL , θL , φ̃) + q1(φ̃)
)

+ y1(θL , θL ) − t1(φ̃)
]

+pLH
∑

φ̃∈�2

pφ(θL , θH , φ̃)
[

θLV
(

x1(θL , θH , φ̃) + q1(φ̃)
)

+ y1(θL , θH ) − t1(φ̃)
]

� (pLL + pLH )UM
1 (θL ),

(56)

BI RS
2 (θL ) : pLL

∑

φ̃∈�2

pφ(θL , θL , φ̃)
[

θLV
(

x2(θL , θL , φ̃) + q2(φ̃)
)

+ y2(θL , θL ) − t2(φ̃)
]

+pLH
∑

φ̃∈�2

pφ(θH , θL , φ̃)
[

θLV
(

x2(θH , θL , φ̃) + q2(φ̃)
)

+ y2(θH , θL ) − t2(φ̃)
]

� (pLL + pLH )UM
2 (θL ). (57)

Let us introduce the followingmultipliersρ(θ1, θ2), τ (θ1, θ2, φ̃), δ1, δ2, ν1, ν2, ν1, ν2,

associated with constraints (50)–(57) respectively. We write the Lagrangian function
of the above maximization problem as:

L = E(U 1 +U 2) +
2
∑

i=1

δi B IC
S
i (θH ) +

2
∑

i=1

νi B I R
S
i (θH ) +

2
∑

i=1

νi B I R
S
i (θL)

+
∑

(θ1,θ2)∈�2

ρ(θ1, θ2)(BB : y)(θ1, θ2)

+
∑

(θ1,θ2)∈�2

∑

φ̃∈�2

τ(θ1, θ2, φ̃)(BB : x)(θ1, θ2, φ̃).

• Step 1: Optimal side transfers Optimizing with respect to y1(·, ·), y2(·, ·) yields

y1(θL , θL) : ρ(θL , θL) − pLH δ1 + pLLν1 = 0, (58)

y2(θL , θL) : ρ(θL , θL) − pLH δ2 + pLLν2 = 0, (59)

y1(θL , θH ) : ρ(θL , θH ) − pHH δ1 + pLHν1 = 0, (60)

y2(θL , θH ) : ρ(θL , θH ) + pLH (δ2 + ν2) = 0, (61)

y1(θH , θL) : ρ(θH , θL) + pLH (δ1 + ν1) = 0, (62)

y2(θH , θL) : ρ(θH , θL) + pLHν2 − pHH δ2 = 0, (63)

y1(θH , θH ) : ρ(θH , θH ) + pHH (δ1 + ν1) = 0, (64)

y2(θH , θH ) : ρ(θH , θH ) + pHH (δ2 + ν2) = 0. (65)

Expressions (58) and (59) imply

− pLH δ1 + pLLν1 = −pLH δ2 + pLLν2. (66)
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(60) and (61) imply

δ2 + ν2 = ν1 − pHH

pLH
δ1. (67)

(62) and (63) imply

δ1 + ν1 = ν2 − pHH

pLH
δ2. (68)

(64) and (65) imply

δ1 + ν1 = δ2 + ν2. (69)

In what follows, we restrict our attention to symmetric multipliers δ1 = δ2 ≡
δ, ν1 = ν2 ≡ ν, ν1 = ν2 ≡ ν. 27

• Step 2: The optimal rule of reallocation Optimizing with respect to xi (θ1, θ2, φ̃)

for given pφ(θ1, θ2, φ̃) yields:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

(x1(θL , θL , φ̃), x2(θL , θL , φ̃))

maximizes
⎡

⎢

⎣

τ(θL , θL , φ̃)
[

x1(θL , θL , φ̃) + x2(θL , θL , φ̃)
]

+
(

pLLθL
−pLH δθH + pLLνθL

)

pφ(θL , θL , φ̃)

[

V (x1(θL , θL , φ̃) + q1(φ̃))

+V (x2(θL , θL , φ̃) + q2(φ̃))

]

⎤

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(x1(θL , θH , φ̃), x2(θL , θH , φ̃))

maximizes
⎡

⎢

⎣

τ(θL , θH , φ̃)
[

x1(θL , θH , φ̃) + x2(θL , θH , φ̃)
]

+pφ(θL , θH , φ̃)

[ (

pLH θL − pHH δθH + pLH νθL
)

V (x1(θL , θH , φ̃) + q1(φ̃))

+ (pLH θH + pLH δθH + pLH νθH ) V (x2(θL , θH , φ̃) + q2(φ̃))

]

⎤

⎥

⎦

=
⎡

⎢

⎢

⎣

τ(θL , θH , φ̃)
[

x1(θL , θH , φ̃) + x2(θL , θH , φ̃)
]

+pφ(θL , θH , φ̃)pLH (1 + δ + ν)

[ (

θL − pHH ε�θ
pLH

)

V (x1(θL , θH , φ̃) + q1(φ̃))

+θHV (x2(θL , θH , φ̃) + q2(φ̃))

]

⎤

⎥

⎥

⎦

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

,

where ε ≡ δ/(1 + δ + ν), the equality follows from (67). Since x1(θL , θL , φ̃) +
x2(θL , θL , φ̃) = 0, x1(θL , θH , φ̃) + x2(θL , θH , φ̃) = 0 for a budget-balance con-
straint, we have

(x1(θL , θL , φ̃), x2(θL , θL , φ̃)) ∈ argmax

[

V (x1(θL , θL , φ̃) + q1(φ̃))

+V (x2(θL , θL , φ̃) + q2(φ̃))

]

, (70)

(x1(θL , θH , φ̃), x2(θL , θH , φ̃)) ∈ argmax

[ (

θL − pHH ε�θ
pLH

)

V (x1(θL , θL , φ̃) + q1(φ̃))

+θHV (x2(θL , θH , φ̃) + q2(φ̃))

]

.

(71)

27 We make these assumptions for tractability following the tradition of LM (2000) and JM (2005). When
no restrictions are imposed on parameters δi , νi , νi , the principal could possess more flexibilities and thus
obtains a surplus at least as much as under the symmetric assumptions.
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By analogy, we also have

(x1(θH , θH , φ̃), x2(θH , θH , φ̃)) ∈ argmax

[

V (x1(θH , θH , φ̃) + q1(φ̃))

+V (x2(θH , θH , φ̃) + q2(φ̃))

]

, (72)

(x1(θH , θL , φ̃), x2(θH , θL , φ̃)) ∈ argmax

[

θHV (x1(θH , θL , φ̃) + q1(φ̃))

+
(

θL − pHH ε�θ
pLH

)

V (x2(θH , θL , φ̃) + q2(φ̃))

]

.

(73)

Aweakly collusion-proofmechanism requires the coalition to report truthfully and
conduct no arbitrage/reallocation: in state (θ1, θ2), φ̃ = (θ1, θ2) is required to be
reported in probability one, and xi (θ1, θ2, φ̃) = 0. Then (70) and (72) are equiva-
lent to q1(θL , θL) = q2(θL , θL) and q1(θH , θH ) = q2(θH , θH ), which are trivially
satisfied. Expression (71) (or (73)) implies qLH = ϕ1 (qLH + qHL) , qHL =
ϕ2 (qLH + qHL), where

(ϕ1(x), ϕ2(x)) = argmax
x1,x2�0,x1+x2=x

[(

θL − pHH ε�θ

pLH

)

V (x1) + θHV (x2)

]

.

(74)

If problem (74) has interior solutions, then qLH and qHL satisfies

(

θL − pHH ε

pLH
�θ

)

V ′(qLH ) = θHV
′(qHL). (75)

This condition states that the agents’ initial allocations must maximize their total
surplus evaluated at virtual valuations, otherwise, a reallocation will be made by
the third party. We call it “no-arbitrage constraint (NAC)”.

• Step 3: The optimal manipulation of reports We now give the conditions under
which the third party finds it optimal to require any coalition to truthfully report,
i.e.,

pφ(θ1, θ2, φ̃) =
{

1 if φ̃ = (θ1, θ2)

0 otherwise
,∀(θ1, θ2) ∈ �2.

(i) When (θ1, θ2) = (θL , θL), (θL , θL) ∈ argmaxφ̃∈�2 I (φ̃), where,

I (φ̃) =
[

θLV
(

x1(θL , θL , φ̃) + q1(φ̃)
)

− t1(φ̃) + θLV
(

x2(θL , θL , φ̃) + q2(φ̃)
)

− t2(φ̃)
]

− pLH�θδ

pLL + pLLν − pLH δ

⎡

⎣

V
(

x1(θL , θL , φ̃) + q1(φ̃)
)

+V
(

x2(θL , θL , φ̃) + q2(φ̃)
)

⎤

⎦

=
(

θL − p2LH ε�θ

pLL pLH + ρε

)

⎡

⎣

V
(

x1(θL , θL , φ̃) + q1(φ̃)
)

+V
(

x2(θL , θL , φ̃) + q2(φ̃)
)

⎤

⎦− t1(φ̃) − t2(φ̃)

= 2

(

θL − p2LH ε�θ

pLL pLH + ρε

)

V

(

q1(φ̃) + q2(φ̃)

2

)

− t1(φ̃) − t2(φ̃).
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The second equality follows by (67), the third equality is a result of (70).
Therefore,

(θL , θL ) ∈ argmax
φ̃

{

2

(

θL − p2LH ε�θ

pLL pLH + ρε

)

V

(

q1(φ̃) + q2(φ̃)

2

)

− t1(φ̃) − t2(φ̃)

}

.

(76)

(ii) When (θ1, θ2) = (θL , θH ),

(θL , θH ) ∈ argmax
φ̃

⎧

⎨

⎩

(

θL − pHH ε�θ
pLH

)

V
(

x1(θL , θH , φ̃) + q1(φ̃)
)

+θHV
(

x2(θL , θH , φ̃) + q2(φ̃)
)

− t1(φ̃) − t2(φ̃)

⎫

⎬

⎭

= argmax
φ̃

⎧

⎨

⎩

(

θL − pHH ε�θ
pLH

)

V
(

ϕ1

(

q1(φ̃) + q2(φ̃)
))

+θHV
(

ϕ2(q1(φ̃) + q2(φ̃))
)

− t1(φ̃) − t2(φ̃)

⎫

⎬

⎭

.

(77)

(iii) When (θ1, θ2) = (θH , θL),

(θH , θL ) ∈ argmax
φ̃

⎧

⎨

⎩

θHV
(

x1(θH , θL , φ̃) + q1(φ̃)
)

+
(

θL − pHH ε�θ
pLH

)

V
(

x2(θH , θL , φ̃) + q2(φ̃)
)

− t1(φ̃) − t2(φ̃)

⎫

⎬

⎭

= argmax
φ̃

⎧

⎨

⎩

θHV
(

ϕ2

(

q1(φ̃) + q2(φ̃)
))

+
(

θL − pHH ε�θ
pLH

)

V
(

ϕ1(q1(φ̃) + q2(φ̃))
)

− t1(φ̃) − t2(φ̃)

⎫

⎬

⎭

.

(78)

(iv) When (θ1, θ2) = (θH , θH ),

(θH , θH ) ∈ argmax
φ̃

⎧

⎨

⎩

θHV
(

x1(θH , θH , φ̃) + q1(φ̃)
)

− t1(φ̃)

+θHV
(

x2(θH , θH , φ̃) + q2(φ̃)
)

− t2(φ̃)

⎫

⎬

⎭

= argmax
φ̃

{

2θHV

(

q1(φ̃) + q2(φ̃)

2

)

− t1(φ̃) − t2(φ̃)

}

.

(79)

(76)–(79) imply the following coalitional incentive constraints: for a (θL , θL)

coalition,

C ICLL ,LH : 2

(

θL − p2LH ε�θ

pLL pLH + ρε

)

V (qLL) − 2tLL

� 2

(

θL − p2LH ε�θ

pLL pLH + ρε

)

V
(qLH + qHL

2

)

− tLH − tHL

(80)
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C ICLL ,HH : 2

(

θL − p2LH ε�θ

pLL pLH + ρε

)

V (qLL) − 2tLL

� 2

(

θL − p2LH ε�θ

pLL pLH + ρε

)

V (qHH ) − 2tHH ; (81)

for a (θL , θH ) coalition,

C ICLH,LL :
(

θL − pHH ε�θ

pLH

)

V
(

ϕ1(qLH + qHL)
)+ θHV

(

ϕ2(qLH + qHL)
)

−tLH − tHL

�
(

θL − pHH ε�θ

pLH

)

V
(

ϕ1(2qLL)
)+ θHV

(

ϕ2(2qLL)
)− 2tLL (82)

C ICLH,HH :
(

θL − pHH ε�θ

pLH

)

V
(

ϕ1(qLH + qHL)
)+ θHV

(

ϕ2(qLH + qHL)
)

−tLH − tHL

�
(

θL − pHH ε�θ

pLH

)

V
(

ϕ1(2qHH )
)+ θHV

(

ϕ2(2qHH
)− 2tHH ;

(83)

for a (θH , θH ) coalition,

C ICHH,LL : 2θHV (qHH ) − 2tHH � 2θHV (qLL) − 2tLL (84)

C ICHH,LH : 2θHV (qHH ) − 2tHH � 2θHV
(qLH + qHL

2

)

− tLH − tHL .

(85)

Substituting NAC (qLH = ϕ1(qLH + qHL), qHL = ϕ2(qLH + qHL)) and
πkl ≡ θkV (qkl) − tkl into expressions (80)–(85) yields expressions (7)–(12)
in the main text.

• Note that ε = δ
1+δ+ν

∈ [0, 1). Moreover, δ = 0 when the Bayesian incentive
constraints (52) and (53) are slack in the third party’s optimizing problem.

• Note that participation constraints (54)–(57) are binding for a weakly collusion-
proof mechanism. Hence the slackness condition obtained from the Lagrangian
optimization does not give any information on ε. Therefore, ε is a free variable in
the principal’s programme. 
�

Proof of Lemma 1

(22) is equivalent to
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τ1(pLL , pHH ) ≡ pLL pHH −
(

1 − pLL − pHH

2

)2

+ �θ(1 + pLL − pHH )(1 − pLL − pHH )V
(

qFB
HH

)

2
[

(1 − pHH ) f (qFB
LH + qFB

HL , 0) + pLLg(2qFB
LL , 0)

] � 0;
(86)

(23) is equivalent to

τ2(qLL , qHH ) ≡ − �θ(1 − pLL + pHH )(1 − pLL − pHH )V (qFB
LL )

2
[

(1 − pLL)g(qFB
LH + qFB

HL , 0) + pHH f (2qFB
HH , 0)

]

−pLL pHH +
(

1 − pLL − pHH

2

)2

� 0; (87)

(24) is equivalent to

τ3(qLL , qHH ) ≡ pLL pHH −
(

1 − pLL − pHH

2

)2

−
�θ

[

pLL(1 − pLL + pHH )V (qFB
LL )

−(1 − pLL)(1 + pLL − pHH )V (qFB
HH )

]

2 f
(

qFB
LH + qFB

HL , 0
) � 0; (88)

(25) is equivalent to

τ4(pLL , pHH ) ≡
�θ

[

pHH (1 + pLL − pHH )V
(

qFB
HH

)

−(1 − pHH )(1 − pLL + pHH )V (qFB
LL )

]

2g
(

qFB
LH + qFB

HL , 0
)

−pLL pHH +
(

1 − pLL − pHH

2

)2

� 0. (89)

We next prove that (86) and (88) are satisfied for all feasible distributions
(pLL , pHH ) ∈ {(x, y) ∈ [0, 1]2|x + y � 1}, and (89) is implied by (87).

τ1(pLL , pHH ) ≡ pLL pHH −
(

1 − pLL − pHH

2

)2

+

[

�θ(1 + pLL − pHH )

×(1 − pLL − pHH )V
(

qFB
HH

)

]

2
[

(1 − pHH ) f (qFB
LH + qFB

HL , 0) + pLLg(2qFB
LL , 0)

]

� pLL pHH −
(

1 − pLL − pHH

2

)2

+ (1 + pLL − pHH )(1 − pLL − pHH )

4

= pLL(1 − pLL + pHH )

2
� 0.
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The first inequality follows from (1 − pHH ) f (qFB
HL + qFB

LH , 0) + pLLg(2qFB
LL , 0) �

f (qFB
HL + qFB

LH , 0) + g(2qFB
LL , 0) � f (2qFB

HH , 0) + g(2qFB
HH , 0) = 2�θV

(

qFB
HH

)

.

τ3(pLL , pHH ) = pLL pHH −
(

1 − pLL − pHH

2

)2

+
�θ

[ −pLL(1 − pLL + pHH )V (qFB
LL )

(1 − pLL)(1 + pLL − pHH )V (qFB
HH )

]

2 f
(

qFB
LH + qFB

HL , 0
)

� pLL pHH −
(

1 − pLL − pHH

2

)2

+ 1 − pLL − pHH

2

= pLL pHH + (1 + pLL + pHH )(1 − pLL − pHH )

4
� 0.

The first inequality follows from (1− pLL )(1+ pLL− pHH )V (qFB
HH )− pLL(1− pLL+

pHH )V (qFB
LL ) � [(1− pLL)(1+ pLL − pHH ) − pLL(1− pLL + pHH )]V (qFB

HH ) =
(1 − pLL − pHH )V (qFB

HH ) � 0 and f (qFB
LH + qFB

HL , 0) � �θV

(

qFB
LH+qFB

HL
2

)

<

�θV (qFB
HH ).28

τ4(pLL , pHH ) − τ2(pLL , pHH )

�θ

=
pHH

[ [−(1 − pLL + pHH )pLLV (qFB
LL ) + (1 − pLL )(1 + pLL − pHH )V

(

qFB
HH

)]

g(qFB
LH + qFB

HL , 0)
+ [pHH (1 + pLL − pHH )V

(

qFB
HH

)− (1 − pHH )(1 − pLL + pHH )V (qFB
LL )

]

f (2qFB
HH , 0)

]

2
[

(1 − pLL )g(qFB
LH + qFB

HL , 0) + pHH f (2qFB
HH , 0)

]

g(qFB
LH + qFB

HL , 0)

=
pHH

⎡

⎣

(1 − pLL − pHH )V (qFB
LL )

[

g(qFB
LH + qFB

HL , 0) − f (2qFB
HH , 0)

]

+
[

(1 − pLL )(1 + pLL − pHH )�Vg(qFB
LH + qFB

HL , 0)
+pHH (1 + pLL − pHH )�V f (2qFB

HH , 0)

]

⎤

⎦

2
[

(1 − pLL )g(qFB
LH + qFB

HL , 0) + pHH f (2qFB
HH , 0)

]

g(qFB
LH + qFB

HL , 0)

�
pHH

⎡

⎣

(1 − pLL )(1 + pLL − pHH )�V�θV (qFB
LL )

+pHH (1 + pLL − pHH )�V f (2qFB
HH , 0)

−(1 − pLL − pHH )V (qFB
LL )�θ�V

⎤

⎦

2
[

(1 − pLL )g(qFB
LH + qFB

HL , 0) + pHH f (2qFB
HH , 0)

]

g(qFB
LH + qFB

HL , 0)

=
pHH�V

[

�θV (qFB
LL )pLL (1 − pLL + pHH )

+pHH (1 + pLL − pHH ) f (2qFB
HH , 0)

]

2
[

(1 − pLL )g(qFB
LH + qFB

HL , 0) + pHH f (2qFB
HH , 0)

]

g(qFB
LH + qFB

HL , 0)
� 0,

where�V ≡ V (qFB
HH )−V (qFB

LL ). The first inequality follows from g(qFB
LH+qFB

HL , 0)−
f (2qFB

HH , 0) � −�θ�V , since g(qFB
LH + qFB

HL , 0) � �θV
(

(qFB
LH + qFB

HL)/2
)

�
�θV (qFB

LL ) and f (2qFB
HH ) � �θV (qFB

HH ). Therefore, the first-best allocation is imple-
mentable if and only if the probability distribution (pLL , pHH ) falls in region

28 Notice that f (x, 0)−�θV (x/2) = (θH+θL )V (x/2)−maxx1+x2=x,x1,x2�0 [θHV (x1) + θLV (x2)] �
0, whereas g(x, 0)−�θV (x/2) = maxx1+x2=x,x1,x2�0 [θHV (x1) + θLV (x2)]−(θL +θH )V (x/2) � 0.
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F ≡
{

(pLL , pHH ) ∈ [0, 1]2
∣

∣

∣ τi (pLL , pHH ) � 0, i = 1, 2, 3, 4
}

=
{

(pLL , pHH ) ∈ [0, 1]2
∣

∣

∣ τ2(pLL , pHH ) � 0
}

=
{

(pLL , pHH ) ∈ [0, 1]2 ∣∣ρ(pLL , pHH ) � ρ∗(pLL , pHH )
}

,

where ρ∗(x, y) ≡ −�θ(1− x + y)(1− x − y)V (qFB
LL )/2

[

(1 − x)g(qFB
LH + qFB

HL , 0)
+y f (2qFB

HH , 0)
]

.
If g(qFB

LH + qFB
HL , 0) � 2�θV (qFB

LL ), it is easy to see that (0, 0) ∈ F . So F �= ∅,
the first-best allocation is thus implementable. Conversely, if F �= ∅, then

2�θV (qFB
LL ) �

[(1 − x − y)2 − 4xy][(1 − x)g(qFB
LH + qFB

HL , 0) + y f (2qFB
HH , 0)]

(1 − x − y)(1 − x + y)

holds for some feasible distribution in
{

(x, y) ∈ [0, 1]2∣∣ x + y � 1
}

. In turn, we have

[(1 − x − y)2 − 4xy][(1 − x)g(qFB
LH + qFB

HL , 0) + y f (2qFB
HH , 0)]

(1 − x − y)(1 − x + y)

�
[(1 − x − y)2 − 4xy]max{g(qFB

LH + qFB
HL , 0), f (2qFB

HH , 0)}
1 − x − y

� max
{

g(qFB
LH + qFB

HL , 0), f (2qFB
HH , 0)

}

.

The proof is finished. 
�

Proof of Lemma 2

Let

ψ(θ1, θ2) ≡ max
z∈[0,qFB

HH+q∗(θ2)]
θ1V (z) + θ2V (qFB

HH + q∗(θ2) − z), (90)

z∗(θ1, θ2) ≡ arg max
z∈[0,qFB

HH+q∗(θ2)]
θ1V (z) + θ2V (qFB

HH + q∗(θ2) − z), (91)

where θ1, θ2 ∈ [θL , θH ]. Then

g(qFB
LH + qFB

HL , 0)

f (2qFB
HH , 0)

= ψ(θH , θL) − ψ(θL , θL)

ψ(θH , θH ) − ψ(θL , θH )
= ψθ1(ξ, θL)

ψθ1(ξ, θH )
= V (z∗(ξ, θL))

V (z∗(ξ, θH ))
,

(92)

for some ξ ∈ (θL , θH ), where ψθi (θ1, θ2) denotes the partial derivative of ψ with
respect to θi . The second equality follows from the Cauchy’s mean-value theorem, the
third equality is implied by the envelop theorem. The comparison between g(qFB

LH +
qFB
HL , 0) and f (2qFB

HH , 0) depends on the monotonicity of z∗(ξ, θ2) on θ2.
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The first order condition for (90) is ξV ′(z∗) = θ2V ′(qFB
HH +q∗(θ2)− z∗). It implies

that

∂z∗

∂ξ
= −V ′(z∗)

ξV ′′(z∗) + θ2V ′′(qFB
HH + q∗(θ2) − z∗)

> 0

∂z∗

∂θ2
= V ′(q∗(θ2))V ′(qFB

HH + q∗(θ2) − z∗)
[

ξV ′′(z∗) + θ2V ′′(qFB
HH + q∗(θ2) − z∗)

]

V ′′(q∗(θ2))

×
[

V ′′(q∗(θ2))
V ′(q∗(θ2))

− V ′′(qFB
HH + q∗(θ2) − z∗)

V ′(qFB
HH + q∗(θ2) − z∗)

]

= V ′(q∗(θ2))V ′(qFB
HH + q∗(θ2) − z∗)

[

ra(qFB
HH + q∗(θ2) − z∗) − ra(q∗(θ2))

]

[

ξV ′′(z∗) + θ2V ′′(qFB
HH + q∗(θ2) − z∗)

]

V ′′(q∗(θ2))
.

(93)

• If ra(x) is increasing, we have ∂z∗(ξ, θ2)/∂θ2 > 0. Assume that ∂z∗(ξ, θ2)/∂θ2 �
0, (93) implies ra(qFB

HH + q∗(θ2) − z∗) � ra(q∗(θ2)), then qFB
HH � z∗(ξ, θ2) �

z∗(ξ, θL) < z∗(θH , θL) = qFB
HH , a contradiction. The first inequality follows from

the assumption that ra(x) is increasing, the second and third inequalities follow
from ∂z∗(ξ, θ2)/∂θ2 � 0 and ∂z∗(ξ, θ2)/∂ξ > 0.

• If ra(x) is constant, it is obvious that ∂z∗(ξ, θ2)/∂θ2 = 0;
• If ra(x) is decreasing, then ∂z∗(ξ, θ2)/∂θ2 < 0. Assume that ∂z∗(ξ, θ2)/∂θ2 � 0,
(93) implies ra(qFB

HH + q∗(θ2) − z∗) � ra(q∗(θ2)), then qFB
HH � z∗(ξ, θ2) �

z∗(ξ, θH ) < z(θH , θH ) = qFB
HH , a contradiction. The first inequality follows from

the assumption that ra(x) is decreasing, the second and third inequalities follow
from ∂z∗(ξ, θ2)/∂θ2 � 0 and ∂z∗(ξ, θ2)/∂ξ > 0.

It follows directly from (92) that: if ra(x) is increasing (resp. constant, decreasing)
then g(qFB

LH + qFB
HL , 0) < (resp. =,>) f (2qFB

HH , 0). The proof is thus finished. 
�

Proof of Lemma 3

Letting ν denotes the multiplier of the constraint x1 + x2 = x , applying the envelop
theorem, we have

f ′
x (x, ε) = θHV

′ ( x
2

)

+ ν = 0.

By the first-order condition

θHV
′(ϕ2(x)) =

(

θL − pHH ε�θ

pLH

)

V ′(ϕ1(x)) = −ν

we have

f ′
x (x, ε) = θHV

′ ( x
2

)

− θHV
′(ϕ2(x)).
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Analogously, we have

g′
x (x, ε) =

(

θL − pHH ε�θ

pLH

)

V ′(ϕ1(x)) − (θL − h(ε)�θ) V ′ ( x
2

)

.

Note that ϕ1(x) < x
2 < ϕ2(x), hence, f ′

x (x, ε) > 0, g′
x (x, ε) > 0 if ρ is close

enough to zero.29

• (⇒) Summing constraintsC ICLH,HH (10) andC ICHH,LH (11) yields f (qLH +
qHL , ε) � f (2qHH , ε); summing constraints C ICLL ,LH (7) and C ICLH,LL (9)
yields: g(2qLL , ε) � g(qLH + qHL , ε). Therefore, qLL � (qLH + qHL)/2 �
qHH .

• (⇐) We assume that qLL � (qLH + qHL)/2 � qHH holds. If C ICLH,LL (9)
is binding, then �C ICLL ,LH − rC ICLL ,LH = g(qLH + qHL , ε) − g(2qLL , ε) �
0,C ICLL ,LH (7) holds. If C ICHH,LH (11) is binding, then �C ICLH,HH −
rC ICLH,HH = f (2qHH , ε) − f (qLH + qHL , ε) � 0, C ICLH,HH (10) holds.
Summing the C ICLH,LL (9) C ICHH,LH (11) written with equalities yields
πHH − πLL = [ f (qLH + qHL , ε) + g(2qLL , ε)]/2 − h(ε)�θV (qLL), then
�C ICLL ,HH − rC ICLL ,HH = −[ f (qLH + qHL , ε) + g(2qLL , ε)]/2 + �θ [h(ε) +
1]V (qHH ) � −[ f (2qHH , ε) + g(2qHH , ε)]/2 + �θ [h(ε) + 1]V (qHH ) = 0,
hence C ICLL ,HH (8) holds. �C ICHH,LL − rC ICHH,LL = [ f (qLH + qHL , ε) +
g(2qLL , ε)]/2−h(ε)�θV (qLL)−�θV (qLL) � [ f (2qLL , ε)+g(2qLL , ε)]/2−
h(ε)�θV (qLL) − �θV (qLL) = 0, so C ICHH,LL (12) holds.
Conversely, if C ICLL ,LH (7) and C ICLH,HH (10) are binding, then the remain-
ing constraints are satisfied since �C ICLH,LL − rC ICLH,LL = g(qLH + qHL , ε) −
g(2qLL , ε) � 0, �C ICHH,LH − rC ICHH,LH = f (2qHH , ε) − f (qLH + qHL , ε) �
0, �C ICHH,LL − rC ICHH,LL = [ f (2qHH , ε) + g(qLH + qHL , ε)]/2 − �θ [h(ε) +
1]V (qLL) � [ f (2qLL , ε) + g(2qLL , ε)]/2 − �θ [h(ε) + 1]V (qLL) = 0,
�C ICLL ,HH −rC ICLL ,HH = −[ f (2qHH , ε)+g(qLH+qHL , ε)]/2+�θh(ε)V (qLL)+
�θV (qHH )+h(ε)�θ [V (qHH )−V (qLL)] � −[ f (2qHH , ε)+g(2qHH , ε)]/2+
[h(ε) + 1]�θV (qHH ) = 0. The proof is finished. 
�

Proof of Proposition 4

• Binding constraints and optimal ε We first write BI RL , BICH ,C ICLL ,LH and
C ICLH,HH [(1), (4), (7) (10)] as binding constraints by inserting nonnegative
parameters δi , i = BI RL , BICH ,C ICLL ,LH ,C ICLH,HH , then show that it is
optimal for the principal to set δi = 0 and thus verify that the corresponding
constraints are binding at the optimum for all i . From the system of equations

29 Note that when ρ is close enough to zero pHH ε/pLH ≈ h(ε) ≡ p2LH ε/(ρε + pLL pLH ) and ϕ1(x) <

x/2.
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⎡

⎢

⎢

⎣

pLL pLH 0 0
−pLH −pHH pLH pHH

2 −1 −1 0
0 1 1 −2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

πLL

πLH

πHL

πHH

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

βBI RL + δBI RL

βBICH + δBICH

βC ICLL ,LH + δC ICLL ,LH

βC ICLH,HH + δC ICLH,HH

⎤

⎥

⎥

⎦

,

we get the expected rent

Eπ ≡
∑

i

∑

j

pi jπi j

= 1

2 (pLH + ρ)

[

2pLH (βBICH + δBICH ) − ρ(1 − pLL )(βC ICLL ,LH + δC ICLL ,LH )

+2(pLH + pHH )(βBI RL + δBI RL ) − ρpHH (βC ICLH,HH + δC ICLH,HH )

]

,

(94)

where

βBI RL = 0

βBICH = �θ [pLHV (qLL) + pHHV (qLH )]
βC ICLL ,LH = 2h(ε)�θV (qLL) − g(qLH + qHL , ε) − pHH ε�θV (qLH )

pLH

βC ICLH,HH = pHH ε�θV (qLH )

pLH
− f (2qHH , ε).

To minimize the expected rent, the seller will set ε∗ = 1, ε∗
BI RL

= ε∗
BICH

=
ε∗
C ICLH,HH

= ε∗
C ICLL ,LH

= 0, since

∂Eπ

∂ε
= −ρ

2(ρ + pLH )

{

2(1 − pLL)h′(ε)�θ
[

V (qLL) − V
( qHL+qLH

2

)]

+ p2HH�θ[V (qLH )−V (ϕ1(2qHH ))]
pLH

}

< 0,

∂Eπ/∂δBICH = pLH/(ρ + pLH ) > 0, ∂Eπ/∂δBI RL = (pLH + pHH )/2(ρ +
pLH ) > 0, ∂Eπ/∂δC ICLL ,LH = −ρ(1−pLL)/2(ρ+pLH ) > 0, ∂Eπ/∂δC ICLH,HH

= −ρpHH/2(ρ + pLH ) > 0. The first inequality follows from the monotonicity
condition qLL < (qHL + qLH )/2 < qHH , which will be checked ex post.

• Optimal quantities Maximizing �(q) ≡ 2
[∑

k
∑

l pkl [θkV (qkl)) − cqkl ] − Eπ
]

with respect to qkl yields (35)–(38). (36) and (37) imply that

(

θL − pHH�θ

pLH

)

V ′(qLH ) = θHV
′(qHL).

Hence, NAC (13) holds automatically for ε∗ = 1. The only work left is to verify
the implementability condition. Since lim

ρ↑0q
CP
kl (p) = qCP

kl (0) = qSB
kl (0),∀k, l ∈

{H, L} and qSB
LL (0) = qSB

LH (0) < qSB
HL(0) = qSB

HH (0), following the sign-
preserving property of continuous function, we have 2qCP

LL (p) < qCP
LH (p) +

qCP
HL (p) < 2qCP

HH (p) when ρ is sufficiently close to zero.
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• Distortions of quantitiesNotice that θHV ′(qCP
HH ) <

pLH θH V ′(qCP
HH )

ρ+pLH
+ρθH V ′(ϕ2(2qCP

HH ))

ρ+pLH
= c, therefore qCP

HH > qFB
HH . Similarly, (36) implies θHV ′(qCP

HL ) < c,
hence qCP

HL > qFB
HL . limρ↑0 qCP

LL (p) = qCP
LL (0) = qSB

LL (0) < qFB
LL (0), and

limρ↑0 qCP
LH (p) = qCP

LH (0) = qSB
LH (0) < qFB

LH (0), it follows from the sign-
preserving property thatqCP

LL (p) < qFB
LL (p), qCP

LH (p) < qFB
LH (p) forρ close enough

to zero. The proof is finished. 
�

Region S

Let ρ(x, y) = xy −
(

1−x−y
2

)2
, V (x) = x1−α/(1 − α), then consumptions (35) to

(38) can be represented as functions of (pLL , pHH ) (or (x, y)).

qHH (x, y) =

⎡

⎣ρ(x, y)

⎛

⎝

(

θ
1/α
H +

(

θL− 2y�θ
1−x−y

)1/α
)

2

⎞

⎠

α

+ 1−x−y
2 θH

⎤

⎦

1/α

[(

ρ(x, y) + 1−x−y
2

)

c
]1/α ;

qLH (x, y) =
qHL(x, y)

(

θL − 2y�θ
1−x−y

)1/α

θ
1/α
H

,

qHL(x, y) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

⎛

⎝

θ
1/α
H +

(

θL− 2y�θ
1−x−y

)1/α

2θ
1/α
H

⎞

⎠

−α

(1−x)ρ(x,y)

⎛

⎝θL−
(

1−x−y
2

)2
�θ

ρ(x,y)+ x(1−x−y)
2

⎞

⎠

(1−x−y)
(

ρ(x,y)+ 1−x−y
2

)

+θH

(

1 − (1−x)ρ(x,y)

(1−x−y)
(

ρ(x,y)+ 1−x−y
2

)

)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

1
α

(

1

c

)1/α

;

qLL(x, y) =

[

θL −
(

1−x−y
2

)2
�θ

ρ(x,y)+ x(1−x−y)
2

]1/α

c1/α
.

Let

d(x, y) =
[

θ
1/α
H +

(

θL − 2y�θ

1 − x − y

)1/α
]α

− 2α

⎡

⎢

⎣θL −
(

1−x−y
2

)2
�θ

ρ(x, y) + x(1−x−y)
2

⎤

⎥

⎦

u(x, y) = 2αθH −
[

θ
1/α
H +

(

θL − 2y�θ

1 − x − y

)1/α
]α

,
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then g(Q, 1) = G(x, y, Q) ≡ V (Q)d(x, y), f (Q, 1) = F(x, y, Q) ≡ V (Q)u(x, y),
the coordinates of C ′ in Fig. 8 could be represented as

πC ′
LL = πLL (x, y) =

(

1−x−y
2

)

⎡

⎣

−yF (x, y, 2qHH (x, y)) − (1 − x)G (x, y, qHL (x, y) + qLH (x, y))

+ 2(1−x)
(

1−x−y
2

)2
�θV (qLL (x,y))

ρ(x,y)+ x(1−x−y)
2

+ (1 − x − y)�θV (qLL (x, y))

⎤

⎦

2
(

ρ(x, y) + 1−x−y
2

) ,

πC ′
HH = πHH (x, y) =

⎡

⎣

(

ρ(x, y) + (1−y)(1−x−y)
2

)

F (x, y, 2qHH (x, y))+
(

ρ(x, y) + x(1−x−y)
2

)

G (x, y, qHL (x, y) + qLH (x, y))

⎤

⎦

2
(

ρ(x, y) + 1−x−y
2

) .

Being represented as functions of pLL(x) and pHH (y), BI R′
H and BIC ′

L can be
written as

BI R′
H (x, y) = y�θV (qLH (x, y)) + 1 − x − y

2
�θV (qLL(x, y))

−2πLL(x, y)ρ(x, y)

1 − x − y
;

BIC ′
L(x, y) = 1 − x − y

2
�θ

(

(

1 − x − y

2

)2

V (qHH (x, y)) − xyV (qLH (x, y))

)

+ x

(

1 − x − y

2

)2

�θ (V (qHL(x, y)) − V (qLL(x, y)))

+ ρ(x, y)

(

1 − x − y

2
πHH (x, y) + xπLL(x, y)

)

.

So the region S where Proposition 4 applies could be represented as:

S ≡

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(x, y)

∣

∣

∣

∣

∣

∣

∣

∣

qLL(x, y) � qLH (x,y)+qHL (x,y)
2 � qHH (x, y)

qkl(x, y) � 0, k, l ∈ {H, L}, ρ(x, y) � 0
BI RH (x, y) � 0, BICL(x, y) � 0

θL − 2y�θ
1−x−y � 0, x + y � 1, x, y ∈ [0, 1]

⎫

⎪

⎪

⎬

⎪

⎪

⎭

,

it depends on parameter α.30

Proof of Proposition 5

• Binding constraints We first write BI RL , BICH ,C ICLH,LL ,C ICHH,LH [(1),
(4), (9), (11)] as binding constraints by inserting nonnegative variables δBI RL ,

30 Notice that parameter c can be eliminated so it does not affect S.
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δBICH , δC ICLH,LL and δC ICHH,LH into them. From the system of equations

⎡

⎢

⎢

⎣

pLL pLH 0 0
−pLH −pHH pLH pHH

−2 1 1 0
0 −1 −1 2

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

πLL

πLH

πHL

πHH

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎣

βBI RL + δBI RL

βBICH + δBICH

βC ICLH,LL + δC ICLH,LL

βC ICHH,LH + δC ICHH,LH

⎤

⎥

⎥

⎦

,

we obtain the following expected rent

Eπ ≡
∑

i

∑

j

pi jπi j

=

[

2(βBICH + δBICH )pLH + 2(βBI RL + δBI RL ) (pHH + pLH )

ρ(βC ICHH,LH + δC ICHH,LH )pHH + ρ(βC ICLH,LL + δC ICLH,LL ) (1 − pLL )

]

2(pLH + ρ)
,

(95)

where,

βBI RL = 0

βBICH = �θ [pLHV (qLL) + pHHV (qLH )]

βC ICLH,LL = g(2qLL , ε) + pHH ε�θ

pLH
V (qLH ) − 2h(ε)�θV (qLL)

βC ICHH,LH = f (qLH + qHL , ε) − pHH ε�θ

pLH
V (qLH ).

δi is set optimally at zero since ∂Eπ/∂δi > 0 for i = BI RL , BICH ,C ICLH,LL ,

C ICHH,LH .
• Optimal ε and quantities We write the Lagrangian function of the principal’s
maximization problem as:

L (q, ε, λ) =
∑

k,l

pkl [θkV (qkl) − cqkl ] − Eπ

+λ
[

θHV
′(qHL) − (θL − pHH ε�θ/pLH ) V ′(qLH )

]

.

Optimizing with respect to ε and q yields expressions (39)–(43). Combining (41),
(42) and the NAC condition, we get:

λ(ε) =
−�θ(1−ε)pHH

pLH+ρ

(

cpLH + ρpHH θH

(

V ′
[

qHL+qLH
2

]

−V ′(qHL )
)

2(pLH+ρ)

)

(

θL − �θεpHH
pLH

)2
V ′′ (qLH ) + θH

(

θL − �θpHH (pLH+ρε)
pLH (pLH+ρ)

)

V ′′ (qHL)

� 0.
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10

Fig. 12 Determination of ε∗ for weakly positive correlation

Let

m(ε) ≡ ρ(1 − pLL)

2(ρ + pLH )
[V (ϕ1(2qLL)) − V (qLH )] + λ(ε)V ′(qLH ),

then

m(1) = ρ(1 − pLL)

2(ρ + pLH )
[V (ϕ1(2qLL)) − V (qLH )] < 0

and

m(0) = ρ(1 − pLL)

2(ρ + pLH )
[V (ϕ1(2qLL)) − V (qLH )] + λ(0)V ′(qLH ) > 0.

Note that ρ is sufficiently small, so the sign ofm(0) is determined by λ(0)V ′(qLH ),
which is obviously positive. The intermediate value theorem implies there is a
ε∗ ∈ (0, 1) where m(ε∗) = 0. Figure 12 depicts the determination of ε∗. As
ρ → 0, we have ε∗ → 1, λ → 0, then expressions (40) to (43) imply that
qCP
kl (p) → qCP

kl (0) = qSB
kl (0),∀k, l ∈ {H, L}. Therefore, the implementability

conditions qCP
LL (p) < [qCP

LH (p) + qCP
HL (p)]/2 < qCP

LL (p) hold when ρ is close
enough to zero.

• Distortions of quantities (42) implies

θHV
′(qCP

HL )=c + ρpHH θH
[

V ′ ( qLH+qHL
2

)− V ′(qHL)
]

2pLH (ρ + pLH )
−λ(ε∗)θHV ′′(qHL)

pLH
> c,
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hence qCP
HL < qFB

HL . Furthermore, from NAC we get

V ′(qCP
HL )

V ′(qCP
LH )

=
(

θL − pHH ε∗�θ
pLH

)

θH
<

θL

θH
= V ′(qFB

HL)

V ′(qFB
LH )

.

It implies V ′(qCP
LH ) > V ′(qFB

LH ), therefore qCP
LH < qFB

LH . As ρ → 0, (40)
approaches (θL − pHH�θ/pLH ) V ′(qLL) = c , so qCP

LL < qFB
LL for ρ close

enough to zero. qCP
HH = qFB

HH is obvious. Hence the proof is completed. 
�

Proof of Proposition 6

Given the utility function V (x) = x1−α/(1 − α), NAC implies ϕ1(x) =
s(ε)x, ϕ2(x) = [1 − s(ε)]x , where

s(ε) =
[

max
(

0, θL − pHH ε�θ
pLH

)] 1
α

[

max
(

0, θL − pHH ε�θ
pLH

)] 1
α + θ

1
α

H

.

Given θH − 2αθL � 0,

g′
x (x, ε) =

{[

θ
1
α

H +
(

max

(

0, θL − pHH ε�θ

pLH

)) 1
α

]α

−2α

(

θL − p2LH ε�θ

ρε + pLL pLH

)}

V ′(x)

� (θH − 2αθL)V ′(x) � 0.

Constraints C ICLH,LL (9) and C ICLL ,LH (7) thus imply qLH + qHL � 2qLL . But
this condition does not hold strictly in the optimum when pLH is small enough, since
the principal’s gains from qLH and qHL are very small relative to the information costs
incurred by them. So pooling arises at the optimum, i.e., qLH +qHL = 2qLL . Writing
BICH , BI RL ,C ICLH,LL and C ICHH,LH as binding constraints, and incorporating
qLH = 2s(ε)qLL , qHL = 2[1 − s(ε)]qLL , we then get the expected information rent

Eπ =

⎡

⎣

2pLH�θ [pLH V (qLL ) + pHHV (qLH )] + ρpHH

[

f (qLH + qHL , ε) − pHH ε�θV (qLH )
pLH

]

ρ(1 − pLL )
[

g(2qLL , ε) + pHH ε�θ
pLH

V (qLH ) − 2h(ε)�θV (qLL )
]

⎤

⎦

2(ρ + pLH )

=

⎡

⎣

2pLH�θ [pLH V (qLL ) + pHHV (qLH )] + ρpHH

[

f (2qLL , ε) − pHH ε�θV (qLH )
pLH

]

ρ(1 − pLL )
[

g(2qLL , ε) + pHH ε�θ
pLH

V (qLH ) − 2h(ε)�θV (qLL )
]

⎤

⎦

2(ρ + pLH )
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= �θpHHV (qLH ) (pLH + ρε) − pLL�θV (qLL ) (ρ − pHH ) − ρpLH f (2qLL , ε)

pLH + ρ
,

and the principal’s profit

�(qLL , qHH , ε) ≡ 2
∑

k

∑

l

pkl [θkV (qkl) − cqkl ] − 2Eπ

= 2pLL [θLV (qLL) − cqLL ] + 2pLH [θL [2s(ε)]1−αV (qLL)

− 2s(ε)cqLL ]
+ 2pLH

{

θH [2(1 − s(ε))]1−αV (qLL) − 2(1 − s(ε))cqLL
}

+ 2pHH [θHV (qHH ) − cqHH ] − 2Eπ .

Since

∂�

∂ε
= 2

{

pLHd
[

θL [2s(ε)]1−α + θH [2(1 − s(ε))]1−α
]

dε
− �θpHH (ρε + pLH )

d(2s(ε))1−α

dε

ρ + pLH

}

V (qLL )

{

> 0 ifε ∈ [0, (θL pLH )/(pHH�θ))

= 0 ifε ∈ ((θL pLH )/(pHH�θ), 1] ,

(96)

the principal will therefore choose ε∗ arbitrarily in [(θL pLH )/(pHH�θ), 1] so that
s(ε) = 0, [1 − s(ε)] = 1. Then,

�(qLL , qHH ) = 2pLL [θLV (qLL) − cqLL ] + 2pLH [θH21−αV (qLL) − 2cqLL ]
+2pHH [θHV (qHH ) − cqHH ]
−2

pLL(pHH − ρ)�θV (qLL) − ρpLH
[

(2 − 21−α)θHV (qLL)
]

ρ + pLH
.

Optimizing with respect to qLL and qHH yields:

∂�

∂qLL
= 2pLL

[

θL − �θ(pHH − ρ)

ρ + pLH
+ (2ρ + 21−α pLH )pLH θH

(ρ + pLH )pLL

]

V ′(qLL)

−(1 − pHH )c,
∂�

∂qHH
= 2pHH θH [V ′(qHH ) − c].

Therefore,

qLL =
[

max

(

0,
pLL

(1 − pHH )

(

(2ρ + 21−α pLH )pLH θH

(ρ + pLH )pLL
+ θL − �θ(pHH − ρ)

ρ + pLH

)

/c

)]1/α

,

(97)

qHH =
(

θH

c

)1/α
. (98)
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It is obvious that qHH > qLL when (pLL , pLH , pHH ) ≈ (1/2, 0, 1/2). Still, we
need to verify the remaining constraints.As pLH → 0, �BI RH −rB I RH = [�θ(pHH−
ρ)pLLV (qLL) − ρpLH f (2qLL , ε)]/(ρ + pLH ) → �θ(1 − pLL)V (qLL) > 0,

�BICL − rBICL =

[

ρ f (2qLL , ε) + �θ(pLH + pHH ) [pLHV (qHH ) + pLLV (qHL )]
−�θpLL (pLH + pHH )V (qLL )

]

pHH + pLH
→ pLL f (2qLL , ε) + �θpLL [V (qHL ) − V (qLL )] > 0,

�LL ,LH − rLL ,LH = g (qHL + qLH , ε) − g (2qLL , ε) = 0, �LL ,HH − rLL ,HH =
�θ [h(ε) + 1][V (qHH ) − V (qLL)] > 0 , �LH,HH − rLH,HH = f (2qHH , ε) −
f (qHL + qLH , ε) > 0 , �HH,LL −rHH,LL = 1

2 f (qHL + qLH , ε)− 1
2 f (2qLL , ε) =

0. Therefore, all the remaining constraints are satisfied, among them, C ICLL ,LH and
C ICHH,LL are binding. The proof is completed. 
�

Proof of Proposition 7

Weassumemomentarily thenverify expost that constraints BICH , BI RL ,C ICLH,LL ,

C ICHH,LL are binding, and condition qHH > qLL > (qLH + qHL)/2 holds. From
the binding constraints, we obtain the expected rent:

Eπ ≡
∑

i

∑

j

pi jπi j

=

[

ρpLH g (2qLL , ε) − �θV (qLL)
[

2ρpLHh(ε) − p2LH − ρpHH
]

+�θpHHV (qLH ) (pLH + ρε)

]

pLH + ρ
.

Then,

∂�

∂ε
= −2

∂Eπ

∂ε
= 2

ρpHH�θ [V (2s(ε)qLL) − V (qLH )]
ρ + pLH

.

Taking into account the NAC condition qLH = s(ε)(qLH + qHL), qHL = [1 −
s(ε)](qLH + qHL), we can rewrite the above expression as

∂�

∂ε
= 2

ρpHH�θ [s(ε)]1−α[V (2qLL ) − V (qLH + qHL )]
ρ + pLH

{

> 0 ifε ∈ [0, (θL pLH )/(pHH�θ))

= 0 ifε ∈ [(θL pLH )/(pHH�θ), 1] .

The principalwill optimally choose an arbitrary ε∗ ∈ [(θL pLH )/(pHH�θ), 1]. There-
fore, qLH = s(ε∗)(qLH + qHL) = 0. Maximizing with respect to qLL , qHL , qHH

yields: qHL = qHH = (θH/c)1/α and

qLL = max

[

0,

(

θL − ρpLH
(

21−αθH − 2θL
)+ �θ(p2LH + ρpHH )

pLL(ρ + pLH )

)

/c

]1/α

.
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Now we need only to verify the implementability condition qHH > qLL > (qLH +
qHL)/2.Thefirst inequality is obvious.As (pLL , pLH , pHH ) → (1/2, 0, 1/2), qLL →
max[0, ((θL − �θ)/c)1/α]. From θH < 2α(θL − �θ), we get immediately that
2qLL > qHL = qFB

HH .
We verify the remaining constraints as follows. For ε ∈ [(θL pLH )/(pHH�θ), 1]

and sufficiently small pLH , we have

g′
x (x, ε) =

{[

θ
1
α

H + max

(

0,

(

θL − pHH ε�θ

pLH

) 1
α

)]α

− 2α(θL − h(ε)�θ)

}

V ′(x)

= [θH − 2α(θL − h(ε)�θ)]V ′(x) < [θH − 2α(θL − �θ)]V ′(x) < 0.

As pLH → 0,

�BI RH − rB I RH = ρpLH g (2qLL , ε) − �θV (qLL ) [2ρpLH h(ε) − p2LH − ρpHH ]
pLH + ρ

→ �θpHH V (qLL ) > 0,

�BICL − rB ICL =

[

�θV (qLL )
(

pLL ((2h(ε) + 1)pHH − pLH ) − 2(h(ε) + 1)p2LH

)

+�θ (pHH + pLH ) (pLH V (qHH ) + pLLV (qHL )) − ρg (2qLL , ε)

]

pHH + pLH
→ pLL { f (2qLL , ε) + �θ [V (qHL ) − V (qLL )]} > 0.

�LL ,LH − rLL ,LH = g (qHL + qLH , ε) − g (2qLL , ε) > 0, �LL ,HH − rLL ,HH =
�θ [1 + h(ε)][V (qHH ) − V (qLL)] > 0, �LH,HH − rLH,HH = f (2qHH , ε) −
f (2qLL , ε) > 0, �HH,LH − rHH,LH = f (2qLL , ε) − f (qLH + qHL , ε) > 0. All
these constraints hold strictly. The proof is finished. 
�
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