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Abstract This essay is a didactic introduction to the literature on the “consistency
principle” and its “converse”. An allocation rule is consistent if for each problem
in its domain of definition and each alternative that it chooses for it, then for the
“reduced problem” obtained by imagining the departure of an arbitrary subgroup of
the agents with their “components of the alternative” and reassessing the options open
to the remaining agents, it chooses the restriction of the alternative to that subgroup.
Converse consistency pertains to the opposite operation. It allows us to deduce that a
rule chooses an alternative for a problem from the knowledge that for each two-agent
subgroup, it chooses its restriction to the subgroup for the associated reduced problem
this subgroup faces. We present two lemmas that have played a critical role in help-
ing understand the implications of these properties in a great variety of models, the
Elevator Lemma and the Bracing Lemma. We describe several applications. Finally,
we illustrate the versatility of consistency and of its converse by means of a sample
of characterizations based on them.
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258 W. Thomson

1 Introduction

This essay is a didactic introduction to the literature on the “consistency principle” and
its “converse”. A “solution” associates with each decision problem in some domain
one or several of its feasible alternatives, usually interpreted as recommendations for
it. The principles pertain to the behavior of solutions whose domains of definition
contain problems involving populations that may vary from one to the other, and for
which it is therefore meaningful to compare the choices they make for different popu-
lations. (By contrast, most of the early axiomatic literature had been written for fixed
populations.) Informally, the consistency principle states the following. Consider a
problem and an alternative chosen by a solution for it. Then, imagine some agents
“leaving with their components of the alternative”, and examine the “reduced prob-
lem” that the remaining agents face, that is, reevaluate their opportunities at that point.
The solution is consistent if for this problem, it chooses the restriction of the alternative
to this subgroup. Thus, there is no need to reevaluate a chosen alternative as we start
implementing it.

The principle of converse consistency pertains to the opposite operation. Consider
a problem and an alternative in its feasible set. Suppose that for each two-agent sub-
group of the agents this problem involves, a solution chooses the restriction of the
alternative to the subgroup for the associated reduced problem this subgroup faces.
The solution is conversely consistent if, under these conditions, it chooses the alterna-
tive for the initial problem. Thus, the desirability of an alternative can be deduced from
the desirability, for each of its two-agent subgroups, of its restriction to the subgroup
for the associated reduced problem the subgroup faces.

The principles, first investigated for abstract models of cooperative game theory,
have now been examined in the context of a great variety of concrete problems of
resource allocation, and for many models, their implications are quite well under-
stood. We will survey some of these developments.

The essay is organized as follows. We first introduce the basic concepts of a “prob-
lem” and of a “solution”, and our two principles. We also describe a number of variants
of the principles. Then, we present two lemmas involving the principles that have been
critical in understanding their implications in a wide range of situations. Finally, we
sketch several characterizations based on the principles.

In order to illustrate various ideas and techniques, we specify a number of models
in succession. Our objective however is not a comprehensive account of what is known
of the principles for these models, but rather to show their usefulness in evaluating
allocation rules, and in exposing some of the mechanics of proofs based on them. For
a detailed survey of the vast literature devoted to their study, see Thomson (2011b).1

1 Some of the recent studies in which consistency and its converse have played a central or important role
concern airport problems (Potters and Sudhölter 1999), minimal cost spanning tree problems (Dutta and Kar
2004), probabilistic assignment (Chambers 2004), abstract social choice (Hwang et al. 2006; Yeh 2006),
siting of public facilities (Ju 2008), queueing (Chun 2011), and roommate problems (Klaus and Nichifor
2010).
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2 Basic concepts: domains and solutions

A problem is given by a set of alternatives and a set of agents whose preferences
are defined over this set, or over “personal” components of it. A domain of prob-
lems satisfying some regularity conditions is specified, and the objective is to identify
one or several feasible alternatives for each problem in the domain. Depending upon
the context, such an alternative is interpreted as a recommendation that an arbitrator,
(or a planner, a high-level manager, a judge . . .) could make, or as a prediction of what
the agents could choose if left to their own devices. A solution is a correspondence
defined on the domain that associates with each problem in the domain a non-empty
subset of its feasible set. For several of the models that we use as examples, the most
interesting solutions are single-valued, but we will proceed under the assumption that
this property may not hold. Indeed, for a number of others, it is very demanding, and
the central solutions are multi-valued.

A number of tests can be devised to evaluate how satisfactory a solution is. Con-
sistency involves testing each alternative it chooses for each group of agents and each
problem involving this group, to the choices it makes for the “reduced” problems
associated with subgroups and this alternative.

We use the following notation and language. There is an infinite set of “potential”
agents indexed by the natural numbers, N. To specify a problem, we first draw a finite
number of them from this infinite population. Let N denote the family of nonempty
finite subsets of N. For each N ∈ N , there is a class of problems DN that N could
face. Solutions are defined over the union D ≡ ⋃

N∈N DN of these classes as N varies
in N . When an alternative is chosen by a solution S for a problem D, we say that it
is S-optimal for D. If a solution S̄ only chooses alternatives that are also chosen by
some solution S, we say that S̄ is a subsolution of S. For simplicity, we introduce each
domain of problems, DN , for a fixed population N ∈ N , but once again, solutions are
understood to be defined over

⋃
N∈N DN .

To see the need for testing how solutions behave when the population of agents
varies, we introduce our first domain, which pertains to fair division.

Domain 1 A classical problem of fair division (see Thomson 2010a, for a survey of
the literature on the subject) is a pair (R,�) where R ≡ (Ri )i∈N is a list of preference
relations defined on the non-negative quadrant R

�+ of the �-dimensional commodity
space for some � ∈ N and � ∈ R

�++ is a social endowment. Preferences are con-
tinuous, monotone increasing, and convex. The asymmetric part of Ri is denoted by
Pi and the associated indifference relation is denoted by Ii . A feasible allocation for
(R,�) is a list z ∈ R

�N+ such that
∑

zi = �.2

Several of the solutions defined for this model will also play a role in the analysis
of models introduced later. We will not repeat the formal definitions then.

Examples of solutions for Domain 1 The Pareto solution, P, chooses the feasible
allocations z of (R,�) for which there is no other feasible allocation z′ such that for

2 By R
N and R

N� we mean the cross-product of |N | copies of R and R
� respectively, indexed by the

members of N .
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(a) (b) (c) (d) (e)

Fig. 1 Solutions defined on a domain of problems involving variable populations. Which one(s) of the
solutions is (are) consistent? a This solution chooses the equal-division Walrasian allocations for each
economy. b This solution chooses the envy-free allocations for each economy. c This hybrid solution is
more and more restrictive as the number of agents increases: it chooses the efficient allocations for each
two-agent economy, the envy-free and efficient allocations for each three-agent economy, and the equal-
division Walrasian allocations for each economy with more than three agents. d By contrast, this solution
is less and less restrictive as the number of agents increases. e This solution makes choices that do not seem
to follow any particular pattern as the number of agents changes

each i ∈ N , z′
i Ri zi , and for at least one i ∈ N , z′

i Pi zi . The no-envy solution,
F, chooses the feasible allocations z such that for each {i, j} ⊆ N , zi Ri z j . The
equal-division lower bound solution, Bed, chooses the feasible allocations z such
that for each i ∈ N , zi Ri

�
|N | . The egalitarian-equivalence solution chooses the

feasible allocations z such that for some “reference bundle” z0 ∈ R
�+ and for each

i ∈ N , zi Ii z0. The equal-division Walrasian solution, Wed, chooses the feasible
allocations z for which there is a price vector p ∈ �� such that for each i ∈ N , zi

maximizes Ri in the budget set
{

z′
i ∈ R

�+ : pz′
i ≤ p �

|N |
}

.3

Figure 1 illustrates the great freedom available in defining solutions in a vari-
able population framework. Column a represents the solution that chooses the equal-
division Walrasian allocations for each economy, and Column b the solution that
chooses the envy-free allocations for each economy. When a solution is defined over
a domain of problems involving arbitrary sets of agents, it can in principle choose
allocations in completely different ways as population varies. Giving free rein to our
imagination, let us consider for instance the solution that chooses the efficient allo-
cations for each two-agent economy, the envy-free and efficient allocations for each
three-agent economy, and the equal-division Walrasian allocations for each economy
involving more agents (Column c). Columns d − e represent two other solutions, both
of which also seem quite hard to justify. Note that in these examples as well as in
several of the figures below, solutions are schematically shown as making recommen-
dations in a manner that depends on the number of agents and not on their identify,
but in general, a solution could take this data into consideration too. In any case,
these examples make it clear that some tests are needed to relate the choices made by
solutions for different sets of agents. In the next two sections we introduce two such
tests.

3 The notation �� designates the unit simplex in the �-dimensional Euclidean space.
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3 Consistency and its converse

In this section, we introduce the ideas of “consistency” “converse consistency”, and
illustrate them by means of several examples. We only give a few sample proofs that
certain solutions pass or do not pass these tests. In most cases, these are simple exer-
cises, which we suggest to the reader as a way of progressively strengthening his or
her understanding of the subject, as well as gaining familiarity with the models, not all
of which are standard, that we will discuss. The figures should be seen as an integral
part of our exposition, as their detailed legends sometimes contain sketches of proofs.

3.1 Consistent allocation rules: the general definition

Very informally, we require of a solution that there should never be a need to revise
an alternative it has chosen, once some agents “have received their components of it”
and left. Here, the clause “have received their components of the alternative” is only
meant to be suggestive, and we devote the next few pages to giving it substance.

To take a first step in this direction, let N ∈ N and D ∈ DN be a problem that N
could face. Let S be a solution and x be one of the S-optimal alternatives for D. Now,
let us imagine some agents leaving with their components of x , and let us reevaluate
the situation at this point, namely let us identify the options that are still available to
the remaining agents. If N ′ is the subgroup they constitute, we refer to the set of alter-
natives at which the agents who leave (the subgroup N\N ′) receive their components
of x , as the reduced problem of D with respect to N′ and x. We denote it by rx

N′(D).
What has to be clarified for each model is what should be understood by this reduced
problem. It is not always obvious how to do so, but we can already give our central
definition. Let S be a solution.

Consistency: For each group N ∈ N , each problem D ∈ DN , each subgroup N ′ ⊂ N ,
and each S-optimal alternative of D, x , if the reduced problem of D with respect
to N ′ and x belongs to DN ′

, then the restriction of x to N ′ is S-optimal for it:
xN ′ ∈ S

(
r x

N ′(D)
)
.

We have presented the consistency principle as a robustness requirement on a solu-
tion: the solution should make coherent choices as population changes. The principle
also has a fairness interpretation. The central idea of solidarity is that when the circum-
stances in which some group of agents find themselves change, and if none of them
bears any particular responsibility for the change, or deserves any particular credit
for it, then their welfare should be affected in the same direction. One expression
of the idea involves imagining that some agents leave empty-handed, and it gives us
the requirement of population monotonicity (Thomson 1983). Another expression is
obtained by imagining instead that the members of the group N\N ′ leave with their
components of x (as opposed to empty-handed). In many situations in which efficiency
is imposed too, requiring that the welfare of all the members of N ′ should be affected
in the same direction essentially leads to the invariance requirement expressed by
consistency.

The following variants of consistency have been explored. (i) First is the property,
which often turns out to be only slightly weaker, that is obtained by limiting attention
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to subgroups of two remaining agents, a variant called bilateral consistency. (ii) Apart
from size, it is sometimes natural to impose other restrictions on the subgroups. The
class they constitute may be endowed with some particular structure that reflects cer-
tain aspects of social organization, such as communication networks, trade groups,
family relations, and so on. (iii) A third variant is obtained, for single-valued solu-
tions, and in models in which feasible sets are equipped with a convex structure, as
follows: instead of asking that the restriction of x to each subgroup be chosen for the
associated reduced problem that this subgroup faces, we require that for each agent,
his component of x coincide with the average of what he would receive in the reduced
problems associated with x and all of the proper subgroups of N to which he belongs
(Maschler and Owen 1989). This variant is called average consistency. A bilateral
version of this variant can be defined in which the averages only involve reduced
problems with two agents.

We will illustrate various choices that we have in defining reduced problems by
considering several applications.

3.1.1 The reduction operation for models formulated in commodity space

We start with classical problems of fair division (Domain 1). There, given the natural
“separability” of allocation space, a very simple definition of a reduced economy sug-
gests itself. When some agents leave, they take along the bundles intended for them.
Thus, the options available to the remaining agents are the lists of bundles, one bundle
for each of them, obtained by redividing the sum of the bundles that were intended
for them in the first place.4 Specifically, given e ≡ (R,�), N ′ ⊂ N , and z ∈ S(e),
the reduced economy of e with respect to N ′ and z is the pair (RN ′ ,� − ∑

N\N ′ zi ),
or equivalently (RN ′,

∑
N ′ zi ).

It is easy to see that the Pareto solution is consistent since, if no Pareto-improving
reallocation of the social endowment can be achieved by the group N , then of course
no Pareto-improving reallocation of the resources they have received can be achieved
by any subgroup N ′ ⊂ N . The no-envy solution is consistent too: if an agent would
not want to exchange bundles with anyone in the initial group N , then a fortiori, he
would not want to exchange bundles with anyone in any subgroup N ′ ⊂ N .

On the other hand, the equal-division lower bound solution is not consistent
(Fig. 2b). It is tempting to say that this is because in a reduced economy, the point
of equal division is typically not what it was in the initial economy. Thus, if initially,
an agent finds his component of some allocation at least as desirable as equal divi-
sion, there is no reason why this should still be true in a reduced economy associated
with the allocation. But that is not the whole story because a solution such as the
equal-division Walrasian solution, which obviously also depends on equal division,
is consistent (Fig. 2a). The reason is that the points of equal division in the reduced
economies associated with an equal-division Walrasian allocation z of some initial
economy are related in a very special way, namely, they all have the same value at
some prices supporting z. Thus, in each of these reduced economies, if these same

4 This is because feasibility is defined with an equality sign. It does make a difference whether that is the
case or not, as shown by Thomson (1988) and Ehlers and Klaus (2006).
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(a) (b)

Fig. 2 Two solutions for the problem of fair division, one consistent and the other not. a The equal-
division Walrasian solution is consistent: z is an equal-division Walrasian allocation in the economy with
agent set {1, 2, 3} depicted here; after agent 3 leaves with his bundle z3, the resources that remain available
to agents 1 and 2 are z1 + z2, and if each of them is endowed with z1+z2

2 , equilibrium is indeed achieved
by quoting the same prices: the pair (z1, z2) is a Walrasian allocation of the economy (R1, R2, z1 + z2).
b The equal-division lower bound and Pareto solution is not consistent: here, z meets the bound in the
three-agent economy, but since z1+z2

2 P1 z1, the restriction (z1, z2) of z to the subgroup {1, 2} does not
meet the bound in (R1, R2, z1 + z2)

prices are quoted, the budget sets the remaining agents face are the same as they were
initially; this guarantees that for each such agent, the same bundle maximizes his
preferences, and in turn, equality of demand and supply.

We consider next the problem of rationing. Such a problem can be modeled as an
economy with single-peaked preferences, as follows:

Domain 2 A fair division problem with single-peaked preferences (Sprumont
1991) is a pair (R,�) where R ≡ (Ri )i∈N is a list of single-peaked preference
relations defined on R+, and � ∈ R+ is a social endowment of an infinitely divisible
commodity. Single-peakedness of Ri means that Ri has a satiation amount, denoted
by p(Ri ), and for each pair {zi , z′

i } such that z′
i < zi ≤ p(Ri ) or p(Ri ) ≤ zi < z′

i ,
we have zi Pi z′

i . A feasible allocation is a list z ∈ R
N+ such that

∑
zi = �.

Examples of solutions for Domain 2 The Pareto solution, the no-envy solution,
and the equal-division lower bound solution are defined as for classical problems of
fair division. The uniform rule chooses the feasible allocation z of (R,�) such that
for some λ ∈ R+, if

∑
p(Ri ) ≥ �, then for each i ∈ N , zi = min{p(Ri ), λ}, and

if
∑

p(Ri ) ≤ �, then for each i ∈ N , zi = max{p(Ri ), λ}, (Fig. 13a illustrates the
definition).

Here too, when defining a reduction, we simply imagine some agents leaving with
their assignments; the social endowment is whatever is left of the endowment. It is
easy to see that the Pareto solution, the no-envy solution, and the uniform rule are
consistent; the equal-division lower bound solution is not.
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3.1.2 The reduction operation for models formulated in utility space

For the model of bargaining presented next, feasible sets are given in utility space.

Domain 3 A bargaining problem is a compact, convex, and comprehensive5 subset
T of R

N+ , containing at least one strictly positive point.

Examples of solutions for Domain 3 The Nash solution, N̄ , (Nash 1950) chooses
the point of T that maximizes the product of utilities. The egalitarian solution, E,
(Kalai 1977) chooses the maximal point of T of equal utilities. Now call the “ideal point
of T ” the point whose i-th coordinate is the maximal utility agent i can achieve in T .
Then, the Kalai-Smorodinsky solution, K, (Kalai and Smorodinsky 1975) chooses
the maximal point of T proportional to its ideal point.

Here, agents are assigned utility levels, and when some of them leave, it is most
natural to define the set of options open to the remaining agents as the subset of the
initial problem consisting of all the vectors at which the departing agents receive their
promised payoffs. Given a problem T involving some group N , the reduced problem
of T with respect to N ′ ⊂ N and x is therefore {x ′ ∈ R

N ′ : for some y ∈ T, yN\N ′ =
xN\N ′ and yN ′ = x ′}. Geometrically, this is the section of T by the plane parallel to
the N ′-coordinate subspace through x , seen as a subset of R

N ′
.

The Nash solution is consistent but the Kalai-Smorodinsky solution is not (Fig. 3).
The egalitarian solution is consistent on the subdomain of problems on which it chooses
Pareto-optimal outcomes (in general, this solution only selects “weakly” Pareto opti-
mal points)6.

To understand the difference between the definition considered here and the defini-
tion we gave above for classical problems of fair division, note that when a feasible set
is defined as the image in utility space of a set of allocations obtained by distributing
a social endowment, if the departing agents leave with physical amounts of goods
giving them their agreed-upon utilities, the set of options available to the remaining
agents is typically a subset of the feasible set of the reduced game as we just defined
it for bargaining problems (except in the one-good case).

3.1.3 The reduction operation when the departing agents remain “available”

In some models, the phrase “an agent leaves with his payoff” should only be under-
stood to mean that his payoff has been decided. Provided that he does get it in the end,
the agents who stay may still be able to “cooperate” with him. This is illustrated by
the next model.

Domain 4 A (transferable utility) coalitional game is a vector v ∈ R
2|N |−1

, with coor-
dinates indexed by the nonempty subgroups of N , called coalitions, each coordinate
of v being interpreted as what the corresponding coalition can achieve; it is the worth
of the coalition.

5 Comprehensiveness means that if x ∈ R
N is feasible, then so is any other vector y such that 0 ≤ y ≤ x .

6 This is a feasible point that is not dominated in every coordinate by some feasible point.
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(a) (b)

Fig. 3 Two bargaining solutions, one consistent, the other not. a The Nash solution is consistent: if x
achieves maximal product of utilities in the problem T with agent set {1, 2, 3}, so that x = N̄ (T ), then
(x1, x2) achieves maximal product of utilities in the section of T by the plane parallel to the {1, 2}-coor-
dinate subspace passing through x (the shaded area). b The Kalai-Smorodinsky solution is not consistent:
it chooses the point K (T ) for the problem T with agent set {1, 2, 3} but not (K1(T ), K2(T )) for the sec-
tion of T by the plane parallel to the {1, 2}-coordinate subspace through K (T ) (the shaded area). The

Kalai-Smorodinsky solution outcome of U ≡ K K (T )
{1,2} (T ) differs from K{1,2}(T )

Examples of solutions for Domain 4 The core (Gillies 1959) chooses forv all payoff
vectors x ∈ R

N such that
∑

N xi = v(N ) and for each C ⊂ N ,
∑

C xi ≥ v(C). The
Shapley value (Shapley 1953) chooses the payoff vector whose i-th coordinate is equal
to

∑
C⊆N : i∈C kC (v(C) − v(C\{i})) for certain combinatorial coefficient kC . Next,

define the “dissatisfaction of coalition C at the payoff vector x” to be the difference
v(C)−∑

C xi ; then, the prenucleolus (Schmeidler 1969) chooses the feasible payoff
vector at which the dissatisfactions of coalitions are minimized in a lexicographic way,
starting with the most dissatisfied coalition.7

Here, in the definition of a reduced game, different scenarios can be imagined
in which the commitment to give some agents the payoffs assigned to them by a
solution is honored. Each results in a particular specification of the set of options
available to the remaining agents. Given a coalition C ⊂ N ′, a first possibility is to
calculate, as for bargaining problems, what C can achieve by getting together with
the departing agents—cooperating with them produces the worth v(C ∪ N\N ′)—
and giving them their agreed-upon payoffs. What remains for C is the difference
v(C ∪ N\N ′) − ∑

N\N ′ xi ; it is its worth in the reduced game. For the grand coa-
lition N ′, we propose the difference v(N ) − ∑

N\N ′ xi . Since the complement of

7 This means that it chooses the payoff vector at which the dissatisfaction of the most dissatisfied coalition
is minimal if there is a unique such vector. Otherwise, among the minimizers, it chooses the vector at which
the dissatisfaction of the second most dissatisfied coalition is minimal if there is a unique such vector;
otherwise, and so on.
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N ′ is involved in the reduced game, we name the resulting condition complement
consistency (Moulin 1988).

Alternatively, we can let C choose which ones of the departing agents to cooperate
with. By getting together with C ′ ⊆ N\N ′, the worth v(C ∪ C ′) is generated, but
since the members of C ′ have to be paid

∑
C ′ xi in total, what remains for C is the

difference v(C ∪ C ′) − ∑
C ′ xi . Then, the worth of C in the reduced game is defined

to be the maximal such difference when C ′ ranges over the subsets of N\N ′. For the
grand coalition, we choose the same formula as for complement consistency. As this
definition is based on a maximization exercise, we name it max-consistency (Davis
and Maschler 1965).

The core satisfies both definitions and the Shapley value satisfies neither. The prenu-
cleolus only satisfies the second one.

3.1.4 When the reduction operation suggests a reduction of consumption spaces

In any model formulated in commodity space, it is possible and sometimes natural
to require that solutions only depend on the restrictions of preferences to the set of
bundles that are actually feasible.8 When some agents leave with certain resources,
the set of bundles achievable by any one of the remaining agents gets smaller, which
then calls for redefining their preferences. For some models, consumption spaces are
“decomposable” in a way that makes requiring this kind of independence even more
tempting. Then, we say that we “reduce” consumption spaces and preference relations.
An illustration is provided by the next domain.

Domain 5 An allocation problem with indivisible goods and one infinitely divis-
ible good (Svensson 1983) is a list (M, A, R) where M ∈ R is some amount of an
infinitely divisible good (often called “money”), A is a finite set of “objects” drawn
from some infinite list A and R ≡ (Ri )i∈N is a list of preference relations defined over
the product R × A. Preferences are continuous and strictly monotonic with respect to
the divisible good. We assume |N | = |A|. A feasible allocation is a pair (m, σ ) where
m ∈ R

N is a list of amounts of the divisible good satisfying
∑

N mi = M and σ is a
bijection from N to A indicating which object each agent receives.

This model is illustrated in Fig. 4a for a three-agent example. With each object
is associated an axis along which the amount of the divisible good that will go with
it is measured, thereby defining a bundle assigned to one agent. We impose no sign
constraint on the consumption of the divisible good. The broken lines connect bundles
that are indifferent to each other for a particular agent.

Examples of solutions for Domain 5 The Pareto, no-envy, and egalitarian-equiv-
alence solutions are all still meaningful here, and there is no need to restate the
definitions.9

8 A number of interesting solutions do not satisfy this requirement however, the equal-division Walrasian
solution being an example.
9 For this model, the no-envy solution is a subsolution of the Pareto solution (Svensson 1983).
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(a) (b)

Fig. 4 Reducing a consumption space and a preference relation. a We start from an economy with agent
set {1, 2, 3} in which each of the three agents has preferences defined over the product of R with the set
consisting of the three objects available, {a, b, c}. The chosen allocation is z. b Agent 3 leaves with his
bundle z3, which contains object c. In the reduced economy associated with the group {1, 2} and z, the
preferences of agents 1 and 2 are restricted to the product of R with the set consisting of the remaining
objects, {a, b}

It is important to understand that whether or not we reduce consumption spaces af-
fects which solutions are consistent. For instance, if we do, the egalitarian-equivalence
solution violates the property; indeed, an agent could leave with the object appearing
in the reference bundle associated with some egalitarian-equivalent allocation taken as
point of departure. But if we do not, the solution is consistent, just as it is for classical
problems of fair division (Domain 1). For the no-envy solution however, it does not
matter which specification is adopted; it is consistent either way.

Another model for which it is natural to reduce consumption spaces pertains is the
following:

Domain 6 A matching problem (Gale and Shapley 1962) is defined by first parti-
tioning the set of agents N, assumed to contain an even number of agents, into two
groups of equal sizes, denoted by M and W , and called “men” and “women”; then,
specifying a list R of strict preference relations for them; for each i ∈ M, Ri is
defined over W , and for each i ∈ W, Ri is defined over M. A feasible allocation is a
bijection, or “match”, from the set of men to the set of women.

Examples of solutions for Domain 6 The Pareto solution is defined in the usual
way. The stable solution chooses for each matching problem the set of matches such
that there is no pair of a man and a woman who prefer each other to their assigned
mates. (There always are such matches.)10 The man-optimal solution chooses the
stable match that is best for each man in the set of all stable matches. (There always
is such a match.) The woman-optimal solution is defined in a symmetric way.

Given a match chosen by a solution for a particular matching problem, we imagine
agents leaving in matched pairs, and in a reduced economy, we define the preferences
of each remaining agent to be the restriction of his or her preferences over his or
her remaining possible partners. It is easy to see that as usual, the Pareto solution is

10 This says that the match is not “blocked” by a pair of a man and a woman; requiring that the no-blocking
conditions be met for each group, as in the usual definition of the core, is actually not more restrictive: the
stable solution coincides with the core.
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consistent. So is the stable solution. The man-optimal solution is not however, and of
course neither is the woman-optimal solution.

3.1.5 Closedness of domains under the reduction operation

According to our definition of consistency, nothing is required of a solution if the
reduced problem does not belong to its domain of definition. A stronger definition is
obtained by adding the requirement that the reduced problem be in the domain.

How restrictive this additional requirement is depends on the situation. There are
domains such that, for each feasible outcome, the natural way to define the reduction
produces a problem that is automatically included. We then say that the domain is
closed under the reduction operation. An example here are classical problems of
fair division (Domain 1): if (R,�) is admissible and z is a feasible allocation for
it, then (RN ′ ,

∑
N ′ zi ) is admissible too. On the other hand, suppose that instead of

thinking of the departing agents leaving with their components of z, we had imag-
ined them leaving with the commitment that whatever allocation is eventually chosen
should give them the welfare levels they experience at z. Then, the reduced problem
of (R,�) with respect to N ′ and z would consists of all the lists (z′

i )i∈N ′ ∈ R
�N ′
+ such

that for some list (z′
i )i∈N\N ′ ∈ R

�N\N ′
+ , we have (i)

∑
N z′

i = � and (ii) for each
i ∈ N\N ′, z′

i Ii zi (as discussed in Subsubsect. 3.1.3). Such a reduced economy
could not be described as a pair (RN ′ ,�′) for some �′ ∈ R

�+. Closedness would fail.
For another example, consider economies with production. There, what first comes

to mind in defining the production set of a reduced economy is to translate that of the
initial economy by the vector of goods taken with them by the departing agents. But
it is unlikely that this resulting set will satisfy the same regularity conditions, such as
“no free lunch”, “increasing returns to scale”, . . ., that may have been imposed on the
initial production set.

In other cases, the reduced problem is admissible only if the outcome is chosen in
a certain way. If this happens for the outcomes chosen by a particular solution, we
say that the domain is closed under the reduction operation for the solution. This is
illustrated by our next domain.

Domain 7 A claims problem (O’Neill 1982; Thomson 2003, is a survey) is a list
(c, E) ∈ R

N+ × R+ such that
∑

ci ≥ E. The number ci is the claim of agent i on
the endowment E (for example, the liquidation value of a bankrupt firm). A feasible
allocation, called an awards vector, for (c, E) is a list x ∈ R

N+ such that
∑

xi = E.

Examples of solutions for Domain 7 The proportional solution chooses the awards
vector of (c, E) proportional to the claim vector. The constrained equal awards
solution chooses the awards vector such that for some λ ∈ R+, each claimant i ∈ N
receives min{ci , λ}. The constrained equal losses solution chooses the awards vector
such that for some λ ∈ R+, each claimant i ∈ N receives max{ci − λ, 0}. Concede-
and-divide, a solution defined for the two-claimant case, assigns to each claimant
i ∈ N the difference max{E − c j , 0} between the endowment and the other agent’s
claim (or 0 if this difference is negative)—this amount is conceded by that agent—and
divides the remainder equally between them. For the random arrival solution, imag-
ine agents arriving in random order, and calculate for each of them the minimum of
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his claim and whatever remains when he arrives. Assign to each claimant the average
of these amounts under the assumption that all orders of arrival are equally likely.

Here, the most natural way of defining the reduced problem of (c, E) with respect to
N ′ ⊂ N and an awards vector x is (cN ′, E−∑

N\N ′ xi ), or equivalently, (cN ′ ,
∑

N ′ xi ).
It is easy to see that the proportional solution is consistent, and that so are the con-
strained equal awards and constrained equal losses solutions. On the other hand, simple
examples can be constructed that reveal that the random arrival solution is not.

Now, note that in general, in a reduced problem associated with an arbitrary fea-
sible allocation for (c, E), we may not have

∑
N ′ ci ≥ ∑

N ′ xi . However it makes
sense to require of a solution S that if x = S(c, E), then for each i ∈ N , xi ≤ ci .
If this property of claims boundedness is satisfied, then for each N ′ ⊂ N , we have∑

N ′ ci ≥ ∑
N ′ xi . Thus, we can say that the domain of claims problems is closed

under the reduction operation for any solution satisfying claims boundedness.
A surplus sharing problem (Moulin 1987) is defined like a claims problem except

that the inequality
∑

ci ≤ E is imposed instead. The number ci is interpreted as the
investment made by agent i ∈ N in a successful venture whose worth is E . A feasible
allocation for (c, E) is a vector x ∈ R

N+ such that
∑

xi = E . For a solution that
chooses vectors x satisfying the natural requirement that for each i ∈ N , xi ≥ ci ,
closedness of the domain under the reduction operation holds.

Finally, consider the domain consisting of all claims problems and all surplus-
sharing problems; for a problem in this enlarged domain, no relation is imposed be-
tween

∑
ci and E . Starting from a surplus-sharing problem, and given a feasible

allocation for it, an associated reduced problem may be a claims problem, and con-
versely. But all of these problems being admissible, the solution is applicable in each
case.

3.2 Constructing consistent solutions

Here, we identify several operations preserving consistency. These operations will
permit us to construct new consistent solutions using as building blocks solutions
known to have the property.

We start with an informal observation that should provide some intuition for some
of the assertions made in the remainder of this subsection: suppose that a solution is
progressively “more and more restrictive” for groups of agents of increasing sizes.
Then, starting from an alternative that it chooses for some problem, it has a better
chance of choosing the restrictions of the alternative for the reduced problems associ-
ated with it. Still speaking informally, a consistent solution is more and more “tapered”
for problems involving more and more agents (Fig. 5a).

3.2.1 Constructing new consistent solutions by intersecting existing ones

Consistency is preserved under intersections: given two consistent solutions, if their
intersection (the “inner envelope” of Fig. 5b) is well-defined, that is, if it is non-empty
for each admissible problem, then it is consistent. To illustrate, for classical problems
of fair division (Domain 1), both the Pareto solution and the no-envy solution are
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(a) (b) (c)

Fig. 5 The “shape” of consistent solutions. For each of these three panels, the range of possible alterna-
tives is schematically indicated horizontally, and for each population, the subset of alternatives chosen by a
solution is shown as a horizontal segment. The union of these segment as population varies is the “profile”
of the solution. It is the shaded area of panel a. This panel shows that a consistent solution is more and
more restrictive for groups of agents with larger and larger populations. This results in a “tapered” shape.
Starting from some alternative a chosen for some problem with n agents, we symbolize consistency of
the solution by indicating that the restriction of the alternative to a subgroup of agents, say to a subgroup
of four agents—this restriction is symbolized by the vertical downward arrow to b—is an alternative that
is chosen by the solution at that level for the associated reduced problem. We also show how some other
alternative c chosen for a four-agent problem when the reduction is to a two-agent problem, is an alternative
(denoted d in the figure) that would be chosen for it. b If two solutions S1 and S2 are consistent, then so
is their intersection, if well defined: the “inner envelope” of the two tapered solutions, which represents
this intersection, is also tapered. c If two solutions S1 and S2 are consistent, so is their union: the outer
“envelope” of the two solutions is tapered

consistent. Thus, their intersection, which under standard assumptions on preferences
is well-defined, is consistent too.

In fact, consistency is preserved under arbitrary intersections, and this permits
us to define a consistent inner envelope to a solution that may not be consistent, as
follows. Let S be a solution. In most situations of interest, the solution that asso-
ciates with each problem its whole feasible set is consistent. Therefore, the family
of consistent solutions containing S is non-empty. Let S̄ denote the intersection of
all of its members. Since they all contain S, so does S̄. As we just argued, S̄ is
also consistent. Obviously then, it is the smallest consistent solution to contain S
(Fig. 6a). Formally, the minimal consistent enlargement11 of a solution S is defined
as

⋂
S′∈S S′, where S ≡ {S′ : S′ ⊇ S, S′ is consistent}.

3.2.2 Constructing new consistent solutions by taking the union of existing ones

Similarly, consistency is preserved under arbitrary unions (the outer envelope of
Fig. 5c), so that if a solution is not consistent but has at least one consistent sub-
solution, it has a maximal subsolution that is consistent, simply the union of all of
its consistent subsolutions. Formally, the maximal consistent subsolution of a solu-

11 This notion, and the notion of the maximal consistent subsolution of a given solution, presented next,
are proposed and studied in Thomson (1994b). To say that the minimal consistent enlargement of a solution
“approximates” it, as we did above, is not always justified however since a solution may differ considerably
from its minimal consistent enlargement. Nevertheless, it represents the closest we can get to the solution
so as to recover consistency.
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(a) (b) (c)

Fig. 6 Constructing consistent solutions. In each of the three panels, the solution that is constructed is
indicated by the thicker lines. a Minimal consistent enlargement of S, mce(S). b Maximal consistent sub-
solution of S, Mcs(S). c If several solutions ordered by inclusion are consistent, any solution obtained by
successively switching to less and less permissive ones as the number of agents increases is also consistent

tion S that contains at least one consistent solution is defined as
⋃

S′∈S ′ S′, where
S ′ ≡ {S′ : S′ ⊆ S, S′ is consistent}.

3.2.3 Constructing new consistent solutions from consistent solutions ordered by
inclusion

Let (S�)�∈{1,...,k} be a list of consistent solutions ordered by inclusion, S1 ⊆ · · · ⊆ Sk ,
and (n�)�∈{1,··· ,k−1} a list of natural numbers such that n1 < · · · < nk−1. Now, con-
sider the solution that coincides with S1 for each problem involving no more than n1

agents, with S2 for each problem involving between n1 + 1 and n2 agents, . . ., and
with Sk for each problem involving more than nk−1 agents. This solution is clearly
consistent. The operation is illustrated in Figs. 1c and 6c.

3.2.4 Constructing new consistent solutions by partitioning the domain into
subdomains each of which is closed under the reduction operation for a
particular consistent solution

Let (S�)�∈{1,2,...,k} be a list of consistent solutions having a common domain of def-
inition D that can be partitioned into subdomains (D�)�∈{1,2,...,k} such that (i) for
each � ∈ {1, 2, . . . , k}, D� is closed under the reduction operation for the solution
S�. Then, the solution that, for each � ∈ {1, 2, . . . , k}, coincides with S� on D�, is
consistent.

3.3 Conversely consistent solutions

Our second central property of a solution permits us to deduce that it chooses an alter-
native x for some problem involving some group of agents if it chooses the restriction
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of x to each two-agent subgroup for the reduced problem associated with the subgroup
and x .

Converse consistency: For each group N ∈ N , each problem D ∈ DN , and each
feasible alternative x of D, if for each two-agent subgroup N ′ of N , the restriction xN ′
of x to N ′ is S-optimal for the reduced problem r x

N ′(D) obtained from D by assigning
to each agent in N\N ′ his component of x , then x is S-optimal for D.

This property does not appear as normatively compelling as consistency but it is
of great computational interest, as it permits us to determine whether an alternative
would be chosen for a problem possibly involving a large number of agents from
the knowledge that its restrictions to subgroups of two agents, for which calculations
are generally less complicated, are chosen for the associated reduced problems. Of
course, if there are many agents initially, there are many reduced problems for which
this simpler calculation has to be carried out.12 Also, converse consistency does not
help us discover S-optimal alternatives, but simply check whether a proposed alterna-
tive is S-optimal. Yet, the property suggests algorithms that sometimes converge to an
S-optimal alternative. Starting from some alternative for some problem, visit pairs of
agents in succession, and for each pair, adjust the alternative by replacing the compo-
nents pertaining to the members of the pair by one of the two-agent alternatives that
the solution would recommend for the reduced problem associated with the pair and
the revised overall alternative of the previous stage. The possibility of convergence is
explored by Thomson (2010b) who gives examples of models for which it occurs and
others for which it does not.

A different formulation consists in writing the hypothesis for each reduced problem
of cardinality up to |N | − 1, but it turns out that for many models, this amounts to the
same thing.

For some models, the hypothesis for the two-agent case is actually no restriction
on the solution. The property should then be rewritten with the hypothesis stated for
the smallest number of agents for which it does constitute a meaningful restriction.
An example of such a model is matching (Domain 6).

Converse consistency too is preserved under intersections and unions. Thus, the
minimal conversely consistent enlargement and the maximal conversely consistent
subsolution of a given solution can be defined analogously to the way we defined the
notions of minimal consistent enlargement and maximal consistent subsolution. An
example is calculated by Özkal-Sanver (2009) for matching (Domain 6).

Here are a few examples of conversely consistent solutions: for bargaining
(Domain 3) the Nash solution is not in general conversely consistent, but it is on
the subdomain of problems whose boundary is smooth; the egalitarian solution enjoys
this property even if this assumption is not made.

For classical problems of fair division (Domain 1), the Pareto solution and the equal-
division Walrasian solution are conversely consistent on the subdomain of economies
with smooth preferences (Fig. 7a shows how the latter would violate the property with-
out the smoothness assumption). The equal-division lower bound solution is not, and

12 Sometimes, it is enough that the hypothesis be met for a (sufficient rich) class of pairs however.

123



Consistency and its converse: an introduction 273

(a) (b)

(c)

Fig. 7 Converse consistency. a For classical problems of fair division, the equal-division Walrasian solu-
tion is not conversely consistent. Consider the economy (R, �) with agent set {1, 2, 3}, and the allocation
z. Note that for each two-agent group {i, j}, the restriction of z to the subgroup is an equal-division Walr-
asian for the reduced economy (Ri , R j , zi + z j ), but z is not an equal-division Walrasian allocation for
(R1, R2, R3, �). (Under smoothness of preferences, the property holds however.) b The equal-division
lower bound solution is not conversely consistent either. Again, we consider an economy (R, �) with agent
set N ≡ {1, 2, 3}. For each {i, j} ∈ N , we have (zi , z j ) ∈ Bed (Ri , R j , zi + z j ) but it is not true that
z ∈ Bed (R, �). c For the problem of allocating indivisible goods and one infinitely divisible good, the
Pareto solution is not conversely consistent. Indeed, let (M, A, R) with agent set N ≡ {1, 2, 3} be such
that M = 6, A ≡ {a, b, c}, and that preferences R are such that (2, a) I1 (4, b) I1 (1, c), and that
the following statements, obtained by “rotation”, hold for agents 2 and 3 : (2, b) I2 (4, c) I2 (1, a) and
(2, c) I3 (4, a) I3 (1, b). It is easy to see that no Pareto improving trade can take place in any of the three
two-agent reduced economies associated with the allocation z represented here, which is feasible. However,
the allocation (z2, z3, z1) Pareto-dominates z in the three-agent economy

neither is its intersection with the Pareto solution (Fig. 7b). Here, no natural restric-
tion on preferences exists under which the property can be recovered. In any context
where permutations of bundles across agents are meaningful, such as for various prob-
lems of fair allocation of privately appropriable goods, including classical problems
of fair division (Domain 1), fair division problems with single-peaked preferences
(Domain 2), or economies with indivisible goods and some infinitely divisible good
(Domain 5), the no-envy solution is conversely consistent, precisely because it is based
on two-agent tests. Whenever the notion of proportionality is well-defined, such as
for fair division problems with single-peaked preferences (Domain 2), or for taxation
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(Domain 7), the proportional solution is conversely consistent. For the allocation of
indivisible goods and some infinitely divisible good (Domain 5), the Pareto solution
is not conversely consistent (Fig. 7c).

3.4 Logical relations between consistency and its converse

Consistency and its converse are not logically related in general. Indeed, for bargain-
ing (Domain 3) we already noted the following facts: the Nash solution is consistent
(Fig. 3a) but not conversely consistent, and the reverse holds for the egalitarian solu-
tion. Both are single-valued, so these solutions can serve to answer, in the negative,
a question that is often raised, namely whether this property helps relate consistency
and its converse. However, for some models, interesting logical relations do hold, or
hold under minor additional conditions (Domain 7) (Chun 1999).

A property that bears an interesting conceptual relation to consistency and its con-
verse is flexibility: starting from an S-optimal allocation for some economy, suppose
that a subgroup redistributes between its members what they have jointly received.
Then, provided it performs these redistributions according to S, the conjunction of the
list of resulting bundles for its members together with the bundles initially assigned
to the complementary group, defines an allocation for the initial economy that is also
S-optimal (Balinski and Young 1982).

It is easy to see that a single-valued solution is consistent if and only if it is flexible.

3.5 Lifting properties across cardinalities by means of consistency

It is often the case that if a certain property is imposed on a bilaterally consistent
solution for the two-agent case, then the property is transferred, we say lifted, to the
other cardinalities.

For instance, consider the requirement of equal treatment of equals, which says
that two agents with the same characteristics should be treated in the same way; for
resource allocation problems, this means that they should receive bundles that are
indifferent to each other according to their common preferences.13 Let S be a consis-
tent solution. Let e be an economy in which two agents i and j ∈ N have the same
characteristics. Then, we claim that at an allocation x that is S-optimal for e, the two
agents should receive indifferent bundles. Indeed, by consistency of S, in the reduced
economy of e with respect to {i, j} and x , the two agents still receive their components
of x ; since they have the same characteristics and S satisfies equal treatment of equals
in the two-agent case, these components of x are indifferent bundles for them.

Other properties are lifted by consistency. As a result, theorems involving con-
sistency can often be stated with these properties being only required for the two-
agent case. Lifting results for claims problems (Domain 7), are established in Hokari
and Thomson (2008). Examples of properties that are lifted are certain continuity
and invariance properties. However, lifting does not occur as generally as one might

13 A stronger requirement can be expressed in physical terms.
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expect, as illustrated there. Occasionally, properties are lifted provided a solution sat-
isfies some other basic properties. Still in the context of claims problems, a property
that is particularly helpful in that regard is endowment monotonicity, the requirement
that, if the endowment increases, each claimant should receive at least as much as he
received initially (again, see Hokari and Thomson).

Similarly, one can define the lifting of an order defined on a space of solutions. An
order is lifted by consistency if given two solutions that are related in that order in the
two-agent case, if both are consistent, then they are related in the same way for any
number of agents. Here too, lifting can be assisted by certain properties of the solu-
tions. An application to the Lorenz order on the space of solutions to claims problems
(Domain 7) is proposed and studied by Thomson (2011a). Indeed, the Lorenz order
can be used to compare the awards vectors of a problem, but it can also be used to
compare solutions: a rule Lorenz dominates another one if for each problem, the
awards vector it chooses Lorenz dominates the awards vector the other one chooses.
If two solutions are consistent, endowment monotonic, order awards as claims are
(given two claimants, both always assign at least as much to the larger claimant as
they do to the smaller claimant), and one Lorenz dominates the other in the two-agent
case, this domination extends to all cardinalities. Thus, the Lorenz order is lifted with
the assistance of these two basic properties.

4 The Elevator Lemma

Consistency and its converse are versatile principles and they have been studied in
models exhibiting great diversity in their mathematical structures. An unfortunate
consequence of this diversity is that few theorems are available that apply across
all, or most models. However, we can offer two extremely useful lemmas that are
“model-free”. We illustrate them in several contexts. In Sect. 6, where we present a
number of characterizations, we will see that much of the work in proving them often
consists in showing that the Lemmas are applicable.

4.1 Statement of the Elevator Lemma

The first lemma identifies conditions on two solutions guaranteeing that if an inclusion
relation holds between them for two agents, then this relation holds for any number of
agents: if S ⊆ S̄ for the two-agent case, S is consistent, and S̄ is conversely consistent,
then S ⊆ S̄ for each cardinality. Given a problem involving an arbitrary number of
agents, and an alternative that is S-optimal for it, its proof consists in applying the
consistency of S to deduce the S-optimality of its restrictions to each of the two-agent
associated reduced problems, invoking the inclusion relation that holds in the two-
agent case to derive a parallel list of statements for S̄, and deriving the S̄-optimality
of the alternative by means of the converse consistency of S̄. Using the image of a
building whose floors are indexed by the cardinalities of problems (Fig. 8), we refer to
this lemma as the “Elevator Lemma”: consistency is the “Down” button and converse
consistency the “Up” button. Fig. 8 shows no first floor because for most models,
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Fig. 8 The Elevator Lemma. Classes of problems involving increasing numbers of agents are stacked up
like the floors of a building. The Elevator Lemma states that if a consistent solution S is a subsolution of a
conversely consistent solution S′ in the two-agent case, then this inclusion holds in general

nothing is learned from how a solution behaves on the class of one-agent problems.
Therefore, no generality is lost in excluding these problems from the domain.14

Lemma 1 (The “Elevator Lemma”) Let S and S̄ be two solutions defined on a do-
main D that is closed under the reduction operation for S. If (i) on the subdomain of
two-agent problems, S is a subsolution of S̄, (ii) S is consistent, and (iii) S̄ is conversely
consistent, then S is a subsolution of S̄ on the entire domain D.

Proof Let N ∈ N , D ∈ DN , and x be S-optimal for D. We need to show that x is
S̄-optimal for D. Since S is consistent, then for each subgroup N ′ of N , the restriction
xN ′ of x to N ′ is S-optimal for the associated reduced problem r x

N ′(D). This is true
in particular for each N ′ ⊂ N such that |N ′| = 2. Since in the two-agent case, S is a
subsolution of S̄, then for each subgroup N ′ of N such that |N ′| = 2, the restriction
xN ′ of x to N ′ is S̄-optimal for r x

N ′(D). Thus, x satisfies the hypotheses of converse
consistency for S̄. Since S̄ is conversely consistent, x is S̄-optimal for D. ��

Note that bilateral consistency would suffice in the Elevator Lemma. We stated
earlier that converse consistency may not be as compelling as consistency, but as we
have seen, many solutions do satisfy the former property and the Elevator Lemma
shows how this fact can be profitably exploited.15

14 An important exception is the domain of strategic games (Peleg and Tijs 1996) where the objective
is precisely to relate the way multi-agent interactions are resolved from the knowledge of how one-agent
decision problems are solved. We will not discuss strategic games here, but only note that consistency has
played an important role in linking the study of such games to the study of cooperative games. See for
example, Serrano (1995).
15 In Subsect. 3.5, we explained how consistency helps extend properties from the two-agent case to the gen-
eral case. At the risk of causing the cable holding that elevator snapping under the weight of our metaphor,
we will say that consistency “lifts” the property from the second floor to the other floors.
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4.2 Applications of the Elevator Lemma

The importance of the Elevator Lemma stems from the fact that there are many models
for which an inclusion relation, or even coincidence, holds between certain solutions
in the two-agent case that do not hold for more agents. We give three examples:

1. For classical problems of fair division (Domain 1) or fair division problems with
single-peaked preferences (Domain 2), in the two-agent case, any allocation that
meets the equal-division lower bound is envy-free.

2. For coalitional games (Domain 4), requiring that a solution be a subsolution of the
core is very mild in the two-agent case; it simply means that the chosen payoff vec-
tors are “imputations”, namely that they meet the individual rationality conditions
and are efficient. (There are no coalitions of intermediate size then.)

3. For claims problems (Domain 7), a number of different ways of thinking about
the problem give us concede-and-divide in the two-claimant case.

5 The Bracing Lemma

We now turn to the second lemma, which identifies conditions on two solutions only
assumed to be related by inclusion, guaranteeing that in fact they coincide.

5.1 Statement of the Bracing Lemma

Let S be a consistent solution and suppose that it is a subsolution of some solution S̄.
Given a problem D and an alternative x that is S̄-optimal for D, there will in general
be some freedom to move away from x without leaving the S̄-optimal set. However,
suppose that additional agents can be introduced and D augmented so as to include
the additional agents in such a way that (i) only one alternative is S̄-optimal for the
augmented problem, (ii) the restriction of that alternative to the initial group is pre-
cisely x—we will say that this alternative is an augmentation of x—, and (iii) the
reduction of the augmented problem with respect to the initial group of agents and
that augmented alternative is D. Now, since S ⊆ S̄ and (i) holds, the augmented alter-
native is the only S-optimal alternative for the augmented problem. Then, since S is
consistent, and since (ii) and (iii) hold, we conclude that x is S-optimal for D. If this
can be done for each N ∈ N , each D ∈ DN and each x ∈ S̄(D), we conclude that
S = S̄.

We will illustrate the Bracing Lemma with another building metaphor. Consider
the “house” of Fig. 9a, constructed by nailing boards together. This structure will not
be very stable because the nails will serve as axes of rotation for the boards. Two of
their infinitely many possible configurations are indicated. However, it is possible to
eliminate the unwanted degrees of freedom by adding “braces”, as shown in Fig. 9b.
In the example, we have several choices of where to place braces but note that two of
them are needed. If the structure to be stabilized were more complex, we could need
more. These braces are the additional agents of the lemma.
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(a) (b)

Fig. 9 The Bracing Lemma. a The house on the left is not stable because the boards it is made of have
several degrees of freedom. One of the possible configurations is indicated by the solid lines and another
one by the dotted lines. b To stabilize it, we add two boards connecting two pairs of corners. Note that if
only one of the two boards were added, the structure would not be completely stabilized. In fact, one board
would not be sufficient no matter where it would be placed. On the other hand, there are other ways to
position two new boards so as to obtain a stable structure. Also, a third board would be redundant

Lemma 2 (The “Bracing Lemma”) Let S be a consistent subsolution of some solution
S̄. Suppose that S̄ is such that for each N ∈ N , each D ∈ DN , and each x ∈ S̄(D),
there are N ′ ⊃ N , D′ ∈ DN ′

, and x ′ in the feasible set of D′, such that (i) x ′ is
the only S̄-optimal alternative for D′, (ii) the restriction of x ′ to N ′ is x, and (iii) the
reduced problem of D′ with respect to N and x ′ is D. Then, S = S̄.

The proof follows directly from the definitions and in fact we have essentially given
it in the paragraph preceding the lemma. Perhaps, it is not so much a bracing “lemma”
as a bracing “construction”.

Sometimes bracing requires only one additional agent—we will see an illustra-
tion in the context of allocation of indivisible goods and an infinitely divisible good
(Domain 5)— sometimes two are required, as for the allocation of identical indivisible
goods and an infinitely divisible good (a special case of Domain 5) and sometimes
almost as many agents as are present initially are needed; an example here can be found
in the context of fair division problems with single-peaked preferences (Domain 2). In
some situations, instead of working with an infinite set of potential agents, it is natural
to impose an upper bound on the size of the set; then, the Bracing Lemma only applies
to a restricted class of situations.

5.2 Applications and variants of the Bracing Lemma

In applications, the question is when the “augmentation to uniqueness” of the Brac-
ing Lemma is possible, and this depends on the richness of the domain of problems
over which the solution is defined. To return to our architectural metaphor, bracing
is possible there only if we have available a board that is long enough to be nailed
diagonally. Of course, it will also depend on the solution under consideration.
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(a) (b) (c)

Fig. 10 Illustrating the Bracing Lemma. a If both envy constraints are met strictly (as they are at z), reallo-
cations are possible in any direction without envy being violated, provided they are small enough (z′ is just
one example of an allocation that can be reached). b Here, one of the envy constraints is met at indifference
and redistributions in certain directions would lead to violations of envy (a move to z′ would create envy).
c This figure illustrates a natural attempt at augmenting an economy with agent set {1, 2} that admits many
envy-free allocations, by introducing agent 3 and additional resources z3 so as to obtain a unique such
allocation. This attempt will be unsuccessful however. Indeed the equal-division Walrasian solution is a
consistent subsolution of the no-envy solution

5.2.1 When bracing is not possible

The following example will make it obvious that an augmentation to uniqueness is not
always possible. For classical problems of fair division with strictly monotonic and
strictly convex preferences, consider the Pareto solution. Starting from some economy
and an arbitrary Pareto-optimal allocation for it, there is in general no way to introduce
additional agents and additional resources—these resources being intended to provide
bundles for them, thereby defining an augmented allocation, the allocation obtained by
concatenating the allocation that is the point of departure with the list of bundles cre-
ated for the new agents—so that in the augmented economy, this augmented allocation
is the only one to be Pareto-optimal.16 If this augmentation were possible, then by the
Bracing Lemma, there would be no consistent subsolution of the Pareto solution, but
we know this not to be true: the equal-division Walrasian solution is one (of course,
we have other information about the structure of the set of Pareto-optimal allocations
that confirms this).

Here is an example, in the same context of classical problems of fair division, for
which the answer is a little less clear. It involves the no-envy solution (Fig. 10). Let
us say that the “envy constraints are met at an allocation for an agent” if he finds his
bundle at least as desirable as each of the bundles assigned to the other agents. If the
envy constraints are all met strictly for each agent, then reallocations will be possible
within the envy-free set in each direction (Fig. 10a) (except when the boundary of
the consumption spaces would get in the way). If some of them are met as indiffer-
ences, such reallocations may still be feasible but we will have to be more careful

16 It is of course easy to perform the augmentation in such a way that there is a Pareto-optimal allocation
whose restriction to the initial set of agents is z. For instance, add an arbitrary agent and no new resources;
assign nothing to the new agent.
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(a) (b)

Fig. 11 The Bracing Lemma for the allocation of indivisible goods. a An economy with agent set {1, 2}
and an envy-free allocation z for it at which the no-envy constraints are met strictly: by redistributing the
divisible good (to z′ for example), we do not violate the no-envy constraints. b This freedom to move in the
envy-free set is eliminated up to a neutral exchange by adding one object (object c in the figure) and some
arbitrary amount of the divisible good (given by the abscissa of z3), introducing a new agent (agent 3) and
specifying his preferences so that he is indifferent between the bundle of additional resources (z3)—this
bundle is intended for him—and the components z1 and z2 of z; finally, extending the preferences of agents
1 and 2 so that each of them is indifferent between his old bundle and z3

(Fig. 10b), and it may be that if sufficiently many of the no-envy constraints are met
as indifferences, there will be no freedom to move at all. Figure 10c illustrates then
a natural way to go about augmenting a two-agent economy with agent set {1, 2} in
an attempt to obtain a unique envy-free allocation in the augmented economy that
results. Starting from an envy-free allocation z ≡ (z1, z2), introduce agent 3, and let
z3 designate a bundle of additional resources. These resources are intended for him,
which is the reason for designating them as z3. As we just noted, the augmented allo-
cation (z, z3) will have a chance to be the only envy-free allocation in the augmented
economy only if sufficiently many of the envy constraints are met as indifferences.
Since we can choose z3 as well as agent 3′s preferences, we should probably make
these choices in such a way that he is indifferent between z3 and as many as possible
of the bundles received by the agents initially present, and this is what we have done
in the figure. If that does not work, the option of introducing more than one agent
gives us the opportunity of increasing the proportion of the envy constraints that are
met as indifferences, thereby getting us closer to our objective of creating a structure
in which all degrees of freedom are eliminated.

However, once again, this construction will not work because the equal-division
Walrasian solution is a consistent subsolution of the no-envy solution too. Neverthe-
less, we proceeded in essentially the right way to brace an allocation, and our approach
will be successful for other models: for the allocation of indivisible goods and an infi-
nitely divisible good for example (Domain 5), it does allow bracing, as explained in
Subsubsect. 5.2.4 (Figs. 11 and 12).

5.2.2 A model in which the Bracing Lemma is directly applicable

An important model illustrating the usefulness of the Bracing Lemma is the domain
of coalitional games, but we will not go into details as it is a more difficult domain
with which to work.
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(a) (b)

Fig. 12 Lemma 3 applied to the allocation of a prize. a We start with an economy with agent set {1, 2, 3}.
At z, agent 1 is the winner of the prize. By no-envy, agents 2 and 3′s bundles are the same (they consist
of the same amount of the divisible good and the null object), and their indifference curves through this
common bundle pass to the right of z1; also, agent 1′s indifference curve through z1 passes to the right
of z2. The allocation z′ is another envy-free allocation, obtained from z by transferring the divisible good
from the losers to the winner. The allocation z cannot be braced. b The allocation at which the winner is
indifferent between his bundle and the common bundle of the losers can be braced. By introducing a new
agent, agent 4 and specifying his preferences so that he is indifferent between z1 and z2, adding m4 ≡ m2
units of the divisible good, and giving him the bundle z4 ≡ (m4, ν), we obtain an augmented allocation
(z, z4) that in the augmented economy, is the only envy-free allocation up to a neutral exchange (between
agents 1 and 4)

5.2.3 Bracing requiring an augmentation of the consumption spaces

We saw earlier that for some models, the reduction operation is most naturally accom-
panied by a reduction of consumption spaces and a restriction to the reduced spaces of
the preferences of the agents who stay. This means that conversely, an augmentation
of a problem will have to involve an augmentation of the consumption spaces of the
agents initially present and an extension of their preferences to the augmented spaces.
Examples of domains illustrating this operation are the allocation of indivisible goods
and an infinitely divisible good (Domain 5) and matching (Domain 6).

5.2.4 Bracing “up to neutral exchanges” or “up to indifferent exchanges”

For a number of economic domains and for certain solutions S̄ of interest, the
S̄-optimal set is often not a singleton but the allocations it contains are Pareto-indiffer-
ent. A useful variant of the Bracing Lemma in such situations involves the requirement
that the solution S should also satisfy Pareto-indifference: if x and x ′ are feasible
alternatives of D such that x is S-optimal for D and x ′ is Pareto-indifferent to x , then
x ′ should also be S-optimal for D. This requirement, which seems innocuous enough,
is not always met however.17 Nevertheless, if imposed on S and if satisfied by S̄, the
conclusion S = S̄ of the Bracing Lemma is obtained by a slight modification of the
proof given above.

For the allocation of indivisible goods and an infinitely divisible good (Domain 5),
each envy-free allocation can be braced but only up to a “neutral exchange”: the
allocation z′ is related to the allocation z by such an exchange if its components are
obtained by reshuffling the components of z but each agent is indifferent between his

17 For instance, for classical problems of fair division, the no-envy solution violates it.
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old and new bundles (in Fig. 11b, (z1, z3, z2) is obtained from (z1, z2, z3) by a neutral
exchange).18

5.2.5 When bracing is possible only for distinguished alternatives

In some cases, not all S̄-optimal alternatives can be braced but only distinguished ones.
If these distinguished alternatives exist for each problem, they provide the basis for
defining a solution—let us call it S∗—and our conclusion will be a containment of S∗,
as formally stated in the following lemma:

Lemma 3 (Variant of the Bracing Lemma). Let S be a consistent subsolution of some
solution S̄. Let S∗ be a subsolution of S̄. If the “augmentation to uniqueness” described
in the Bracing Lemma is possible for each x ∈ S∗(D), then S ⊇ S∗. Therefore, if S∗
is consistent, it is the minimal consistent subsolution of S.

An illustration of Lemma 3 is provided by the allocation of a single indivisible
good (a prize, say) and an infinitely divisible good, the equality between the numbers
of objects and agents being reestablished by introducing “null objects”. Getting a null
object simply means not getting the prize (Fig. 12).

Domain 8 A problem of allocating a single indivisible good and an infinitely divis-
ible good is the simple version of Domain 5 when there is only one real object.
The domain also includes economies where only some of the divisible good is to be
allocated.

Examples of solutions for Domain 8 The winner’s curse solution (Tadenuma and
Thomson 1993) chooses the envy-free allocation(s) at which the winner, the agent
who is assigned the real object, is indifferent between his bundle and the common
bundle of the losers.

See the legend of Fig. 12 for an explanation of how Lemma 3 applies. There, we
use the notation ν for the null object.

5.2.6 When bracing is achieved approximately

In some situations, bracing is achievable only approximately but with a “tolerance”
that can be chosen arbitrarily small. Then, another useful variant of the Bracing Lemma
is obtained by imposing some form of continuity on the solution. This possibility is
illustrated by fair division problems with single-peaked preferences (Domain 2).

We refer to Fig. 13 for a sketch of the analysis of this domain. It pertains to a solution
assumed to be a consistent subsolution of the no-envy and Pareto solution. It shows
that for each economy, allocations that are arbitrarily close to its uniform allocation
has to be chosen. It represents a two-agent economy for which

∑
p(Ri ) ≥ � and

whose uniform allocation is denoted by z (there, λ = z2). The proof uses the obvious

18 Note that this is a special case of a Pareto-indifferent exchange. For this model the no-envy solution in
invariant under such exchanges.
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Fig. 13 Approximate bracing. a We start with an economy e ≡ (R, �) with agent set {1, 2} for which∑
p(Ri ) > �, and we identify its uniform allocation, (z1, z2). b We introduce two new agents, agents

3 and 4. Given ν ∈ N, we specify their preferences Rν
3 and Rν

4 so that p(Rν
3 ) = p(R1), p(Rν

4 ) =
z2, (z1 − 1

ν ) I ν
3 2�, and (z2 − 1

ν ) I ν
4 2�. We double the social endowment. We consider a solution that is

a selection from the no-envy and Pareto solution. Let yν be an allocation that it chooses for the augmented
economy (R1, R2, Rν

3 , Rν
4 , 2�). By efficiency, for each i ∈ {1, . . . , 4}, yν

i ≤ p(Ri ). Then by no-envy,
yν

1 = yν
3 and yν

2 = yν
4 . This implies that at least one of agents 2 and 4 consumes more than p(Rν

3 ), and

for agent 3 not to envy him, he should consume at least p(Rν
3 ) − 1

ν = p(Rν
1 ) − 1

ν = z1 − 1
ν . So, agent 1

should consume at least that amount. Similarly, agent 4 should consume at least p(R4)− 1
ν = x2 − 1

ν , and
therefore agent 2 should consume at least that amount. We then deduce that agent 2 should not consume
more than z2 + 3

ν . Altogether, yν
1 belongs to the interval [z1 − 1

ν , z1] and yν
2 to the interval [z2 − 1

ν , z2 + 3
ν ],

so that (yν
1 , yν

2 ) converges to (z1, z2) as ν → ∞

fact that at an efficient allocation, if
∑

p(Ri ) ≥ �, then each agent receives at most
his satiation amount, and if

∑
p(Ri ) ≤ �, each agent receives at least his satiation

amount.

6 Characterizations: a sampler

In this section, we state a few results involving consistency and its converse. They
constitute but a small fraction of the literature, but we have selected them so as to give
a flavor of the range of existing applications of the principles and whet the reader’s
appetite. Several of them use one or the other of the two Lemmas and variants. In some
cases, very little work is required beyond showing that the hypotheses of the Lemmas
are met.

6.1 Bargaining

Our first result, which pertains to bargaining (Domain 3), involves two basic properties.
One is Pareto-optimality, whose definition we will not repeat. The other is anonymity,
which says that the solution should be invariant under renamings of agents. We also
impose scale invariance, according to which a linear rescaling, independent agent by
agent, of their utilities, should be accompanied by a similar rescaling of the outcome.

Theorem 1 (Lensberg 1988) The Nash solution is the only solution satisfying single-
valuedness, Pareto-optimality, anonymity, scale invariance, and consistency.
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(a) (b)

Fig. 14 Characterization of the Nash solution (Theorem 1). a We start with a problem U with agent set
{1, 2}. By scale invariance, we can assume that its Nash outcome has equal coordinates, (a, a). b We intro-
duce a third agent, agent 3, and construct a three-agent problem as follows. First, we translate U along the
third axis by the amount a. Let U ′ denote the result (shaded area). Next, we replicate U ′ twice by having
the roles played by agents 1 and 2 in U ′ be played by agents 2 and 3 respectively, and then by agents 3 and 1
respectively. Finally, we construct the smallest convex and comprehensive problem, T , containing U ′ and
its two replicas. Now, by Pareto-optimality and anonymity, the point chosen for T is (a, a, a). The reduced
problem of T with respect to {1, 2} and (a, a, a) happens to be U ′. By consistency, the solution outcome
of U ′ is (a, a). Since U = U ′, we are done

The proof, illustrated in Fig. 14, and sketched in its caption, involves an operation
that can be described as an “augmentation to anonymity”. Starting from an arbitrary
problem S that may not have any particular symmetry, we augment it so as to obtain
a problem T that has enough symmetries so that we can deduce by Pareto-optimality
and anonymity the point that that it should choose; moreover, the reduced problem of
T with respect to the initial group of agents and that point is S.

The construction works for any S whose boundary contains a segment centered at
its Nash outcome that “extends sufficiently” on both sides. (By scale invariance, this
outcome can be given equal coordinates, (a, a) in Fig. 14a). Otherwise, the section of
T through (a, a, a)—which is the point the solution has to choose for the three-agent
problem T of Fig. 14b—contains S′ = S as a strict subset, and we cannot derive what
we want about S. However, the desired conclusion can be obtained then by introducing
more than one new agent and extending the replication. The number of new agents
that are needed is all the greater, the shorter the segment centered at the Nash outcome
of S in relation to a. A continuity argument is required for a problem whose boundary
is strictly convex at its Nash outcome.

A very general result that involves neither symmetry nor scale invariance is given
by Lensberg (1987). He obtains a characterization of a class of solutions defined by
maximizing a sum of functions of the agents’ utilities having certain properties. A
study of converse consistency for this model is Chun (2002).
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6.2 Coalitional games with transferable utility

The literature on consistency for coalitional games (Domain 4) is extensive, partly
because on this domain, as we have already seen, the reduction operation can be
defined in more than one way. We list three basic results involving one or the other
of the two notions of consistency introduced in Subsubsect. 3.1.3. The hypotheses of
Theorems 2 and 3 include individual rationality, the requirement that at each of the
payoff vectors chosen by a solution, each agent’s payoff should be at least as large as
his individual worth. The proofs of both theorems rely on the Bracing Lemma.

Theorem 2 (Tadenuma 1992) On the domain of TU coalitional games whose core is
non-empty, the core is the only solution satisfying individual rationality and comple-
ment consistency.

The next result includes the condition of super-additivity, which says that if x is
chosen for some game v and y is chosen for some game w, then x + y should be
chosen for the game v + w.

Theorem 3 (Peleg 1985) On the domain of TU coalitional games whose core is non-
empty, the core is the only solution satisfying individual rationality, super-additivity
and max consistency.

Zero independence and invariance under common rescaling of utilities which
appears in the next theorem is the requirement that if arbitrary constants are added
to all utilities and utilities are scaled by the same positive number, the chosen payoff
vector should be subjected to the same transformation. The proof of the theorem is
by means of an augmentation to anonymity analogous, although considerably more
complex, to that carried out in the proof of Theorem 1.19

Theorem 4 (Sobolev 1975) The prenucleolus is the only solution satisfying single-
valuedness, anonymity, zero independence and invariance under common rescaling
of utilities, and max consistency.

A third notion of consistency in which the solution itself appears, is proposed by
Hart and Mas-Colell (1988), and it essentially leads to a characterization of the Shapley
value.

Counterparts of Theorems 2 and 3 for the more general class of coalitional games
without transferable utility are available (Tadenuma 1992; Peleg 1985). Numerous
other contributions have been made to the analysis of consistency for coalitional games.
Examples are Maschler and Owen (1989), Dutta (1990), Hokari and Kıbrıs (2003) and
Hokari (2005).

6.3 Fair division

To present the results of this section, which pertain to classical problems of fair divi-
sion (Domain 1), we need two additional properties. Given a natural number k, in a

19 It is a weak form of scale invariance encountered earlier.
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Fig. 15 Characterization of the equal-division Walrasian solution (Theorem 5). Given a solution satisfying
the assumptions of the theorem, suppose that there are an economy and an efficient allocation chosen for it
by the solution, z, at which the values of the bundles assigned to two agents, say agents i and j , calculated at
the prices supporting z (these prices exist and they are unique), are not equal. By smoothness of preferences,

there is k ∈ N such that y0 Pj zi , where y0 ≡ kzi +z j
ki +1 . Then, we replicate the economy k times. Let k ∗ z be

the corresponding k-replica of z. Since z is chosen for the initial economy, then, by replication-invariance,
k ∗ z is chosen for (k ∗ R, k�). Let N ′ be a subgroup of the augmented set of agents consisting of the k
agents of type i and agent j . By consistency, (k ∗ zi , z j ) is chosen for ((R�)�∈N ′ , kzi + z j ). Since the
solution is a subsolution of the equal-division lower bound solution, we should have zi Ri y0, but this is in
contradiction with the way we specified y0

k-replica of an economy, each of the preference relations is represented k times and the
social endowment is multiplied by k. Replication-invariance says that if an allocation
is chosen for some economy, then for each k ∈ N, and each economy obtained by
replicating the economy k times, the corresponding k-replica of the allocation should
be chosen.

Theorem 5 (Thomson 1988) Suppose that preferences are smooth. If a subsolution
of the equal-division lower bound and Pareto solution satisfies replication invariance
and consistency, then it is a subsolution of the equal-division Walrasian solution.

The proof is sketched in the legend of Fig. 15a, where the replication operation is
denoted with a star (k ∗ z being obtained by replicating z k times and (k ∗ R, k�)

by replicating (R,�) k times). It involves a variant of the Elevator Lemma, in which
the role of converse consistency is played by replication invariance, which is a (very)
weak form of it.

We also have the following result, in which anonymity appears: this is the require-
ment that the chosen allocations should be independent of the names of agents:

Theorem 6 (Thomson 1994a) Suppose that preferences are smooth. If a subsolution
of the equal-division lower bound and Pareto solution satisfies anonymity and con-
verse consistency, then in the two-agent case, it is a subsolution of the equal-division
Walrasian solution. If for the two-agent case, equality holds, then it is a subsolution
of the equal-division Walrasian solution for each cardinality.
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(a) (b)

Fig. 16 Parametric representations of two solutions. a The proportional solution. b The constrained equal
awards solution

Other results for this domain are due to Maniquet (1996) and Fleurbaey and Mani-
quet (1996). Roemer (1988) formulates and studies a notion of consistency where it
is the number of commodities that varies.

6.4 Claims problems

To state our next result, which pertains to claims problems (Domain 7), we need the
concept of a parametric solution. Consider a family of real-valued, continuous, and
nowhere decreasing functions f ≡ { f (c0, .)}c0∈R+ defined on some interval [λ, λ̄] of
the extended reals and such that for each c0 ∈ R+, f (c0, λ) = 0 and f (c0, λ̄) = c0.
Now, for each N ∈ N and each claims problem (c, E) with agent set N , let x ∈ R

N+
be such that

∑
N xi = E and for some λ ∈ [λ, λ̄] and each i ∈ N , f (ci , λ) = xi :

this is the choice made by the parametric solution associated with f . It is easy to
see that the proportional, constrained equal awards, constrained equal losses, and Tal-
mud solutions (defined next), are parametric solutions. Figure 16 gives parametric
representations for two of them. To define the Talmud solution, we distinguish two
cases: if

∑ ci
2 ≥ E , each claimant i ∈ N receives what he would be assigned by the

constrained equal awards solution applied to the problem ( c
2 , E); if

∑ ci
2 ≤ E , each

claimant i ∈ N receives ci
2 plus what he would be assigned by the constrained equal

losses solution applied to the problem ( c
2 , E − ∑ ci

2 ).
The following is a simple application of the Elevator Lemma. Many solutions

coincide with concede-and-divide in the two-claimant case, but only one of them is
consistent. The proof uses the fact that the parametric solutions are conversely con-
sistent.

Theorem 7 (Aumann and Maschler 1985) The Talmud solution is the only consistent
solution to coincide with concede-and-divide in the two-claimant case.

The following theorem describes the structure of the class of consistent solutions
very completely. Equal treatment of equals is the requirement that two agents with
equal claims should be assigned equal amounts.
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Theorem 8 (Young 1987) A solution satisfies continuity, equal treatment of equals,
and consistency if and only if it is a parametric solution.

By imposing additional properties on solutions, interesting subfamilies of the para-
metric family can be identified (Young 1988), including several solutions that have
played a prominent role in the public finance literature (as the model can also be
seen as a cost sharing model). Another relevant contribution, in which the notion of
consistency on average is developed (Sect. 3.1), is due to Dagan and Volij (1997).

6.5 Allocation of indivisible goods and some amount of an infinitely divisible good

The two theorems below, which pertain to the allocation of indivisible goods and an
infinitely divisible good (Domains 5 and 8), involve bracing up to neutral exchanges
(operations illustrated in Figs. 10 and 11).

Theorem 9 (Tadenuma and Thomson 1993) In the one-object case, there is a minimal
(in terms of inclusion) subsolution of the no-envy solution satisfying neutrality and
consistency. It is the winner’s curse solution.

Theorem 10 (Tadenuma and Thomson 1991) In the multiple-object case, if a subso-
lution of the no-envy solution satisfies neutrality and consistency, then in fact, it is the
no-envy solution.

If several identical objects have to be allocated, any envy-free allocation can be
braced by introducing two agents, specifying their preferences in such a way that they
are indifferent between the two bundles initially received by the losers and the winners
(all members of each group have to receive the same bundle, by no-envy), and adding
resources so that one of these new agents can be given the winners’ initial bundle
and the other can be given the losers’ initial bundle (that is, adding one object and an
amount of the divisible good equal to the sum of the amounts of the good contained
initially in the losers’ common bundle and the winners’ common bundle).

Bevia (1996) studies consistency in situations where each agent may receive more
than one object. The case of economies with only indivisible goods is treated by Ergin
(2000).

6.6 Allocation with single-peaked preferences

For fair division problems with single-peaked preferences (Domain 2), we have the
following characterization:

Theorem 11 (Thomson 1994a) There is a minimal subsolution of the no-envy and
Pareto solution satisfying upper semi-continuity with respect to the social endowment
and consistency. It is the uniform rule. The same conclusion holds when no-envy is
replaced by the equal-division lower bound.

The proof for a solution S required to be a subsolution of the no-envy solution relies
on the approximate bracing illustrated in Fig. 13. Using the notation introduced there,
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it concludes as follows. Let �ν ≡ ∑
{1,2} yν

i and eν ≡ (R1, R2,�
ν). By consistency,

yν{1,2} ∈ S(eν). Since yν{1,2} → z as ν → ∞, it follows that �ν → ∑
{1,2} zi = �. By

upper semi-continuity with respect to the social endowment, z ∈ S(e).
When no-envy is replaced by the equal-division lower bound solution, the conclu-

sion is obtained as a direct consequence of the Elevator Lemma and of the fact that for
the two-agent case, the no-envy solution is a subsolution of the equal-division lower
bound solution.

A counterpart of Theorem 6 holds for this model, and its form is even a little simpler
since the uniform rule is single-valued. A result related to Theorem 11 is due to Dagan
(1996).

6.7 Matching

For matching problems (Domain 6), we will impose both consistency and converse
consistency, but note that here, for this condition to make sense, we need its hypotheses
to hold for each problem involving two men and two women. The following theorem
involves the Bracing Lemma.

Theorem 12 (Sasaki and Toda 1992) The stable solution is the only subsolution of
the Pareto solution satisfying anonymity, consistency, and converse consistency.

Additional results are obtained by Toda (2006) for variants of this model, (remaining
single may be an option; the reduction operation can be defined differently.) Results
for the model in which the formation of each pair creates a monetary value, and the
sum of the values created at a match has to be shared are developed by Sasaki (1995)
and Toda (2003).
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