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Abstract
Visual working memory (VWM) is a cognitive mechanism essential for interacting with the environment and accomplishing 
ongoing tasks, as it allows fast processing of visual inputs at the expense of the amount of information that can be stored. A 
better understanding of its functioning would be beneficial to research fields such as simulation and training in immersive 
Virtual Reality or information visualization and computer graphics. The current work focuses on the design and implemen-
tation of a paradigm for evaluating VWM in immersive visualization and of a novel image-based computational model for 
mimicking the human behavioral data of VWM. We evaluated the VWM at the variation of four conditions: set size, spatial 
layout, visual angle (VA) subtending stimuli presentation space, and observation time. We adopted a full factorial design 
and analysed participants’ performances in the change detection experiment. The analysis of hit rates and false alarm rates 
confirms the existence of a limit of VWM capacity of around 7 ± 2 items, as found in the literature based on the use of 
2D videos and images. Only VA and observation time influence performances (p<0.0001). Indeed, with VA enlargement, 
participants need more time to have a complete overview of the presented stimuli. Moreover, we show that our model has a 
high level of agreement with the human data, r>0.88 (p<0.05).
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1  Introduction

During the last few years, we have seen a growing interest in 
using immersive Virtual Reality (VR) systems for training 
and assisting specialized operators in several fields of appli-
cations. A wide literature describes such systems, evaluating 
their contribution to the learning curve and the final perfor-
mance of people working in specialized contexts (Checa and 
Bustillo 2020).

There are several technological solutions for implement-
ing VR systems, including head-mounted displays (HMDs). 
Their use in industrial, manufacturing, or medical contexts is 

favored because they enable the creation of a virtual replica 
of an industrial facility to complete a specific, complex task, 
e.g., an assembling task (Guo et al. 2020), in a controlled 
and safe setting, as well as immersing the user in an immer-
sive Virtual Environment (VE) by removing external dis-
tractions, facilitating active learning (Capasso et al. 2022).

The users usually act in virtual scenarios enriched by 
added visual information (e.g., the working instructions), 
displayed around them, exploiting the 3D environment sur-
rounding them. This is different from what happens by using 
handheld systems, like a tablet, where information is on the 
display, similarly to what happens with a book. Neverthe-
less, the actual field of view (FOV) of most HMDs is quite 
limited: it is about 90 degrees for commercial VR headsets, 
as the HTC Vive we used in our experiment. Though, there 
are HDMs with larger FOV, such as the Pimax Vision 8K 
Plus. It is thus interesting to understand how people can 
use such an amount of additional information and possibly 
to have some guidelines to put text, objects, or instruments 
where the users can see them and be aware of changes and 
modifications of the scene.
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Indeed, one of the main problems researchers in VR have 
to solve while designing an application for training/simula-
tion or in the field of visualization and computer graphics is 
where and how to present information in the immersive VE 
surrounding the users, so that they can notice and process it 
efficiently. In 2D screen applications, e.g., desktop comput-
ers or touchscreen devices, the relevant information is often 
notified using several visual factors (color, size, movement, 
duration). However, in immersive VR the space for interac-
tion and visualization is no longer limited to a 2D screen sur-
face, it is, instead, a 3D volume distributed around the user. 
Hence, additional cognitive and visual mechanisms must be 
exploited, such as visual working memory (VWM), atten-
tion, spatial memory, distance perception, and peripheral 
vision. Understanding the functioning of human perception 
in VR, the amount of information we can access and process 
efficiently consciously, the influence of the position, and the 
way information is presented over our ability to perceive it, 
can significantly improve both the quality and the quantity 
of information being displayed for it to be efficiently noticed 
and processed by the user (Seinfeld et al. 2020; Healey and 
Enns 2011).

In this paper, we analyze VWM in immersive VR by 
using an experiment that replicates the one-shot change 
detection task (Rensink 2005), in which participants are 
required to detect a change in the VR environment. Prior 
literature reports studies with 2D displays  (Luck and Vogel 
2013; Cohen et al. 2016). Here, we adapt the same paradigm 
to a simple immersive scene, considering stereoscopic visu-
alization. Specifically, we consider two 3D layout arrange-
ments: the vertical one, where the objects are at the same 
distance in front of the observer, as on a wall, and the hori-
zontal one, where the objects’ distance with respect to the 
observer changes, as on a table. We can control the 3D posi-
tion of the objects and their angular position with respect to 
the observers. Although, in principle, we can put objects all 
around the observers, completely exploiting the 3D environ-
ment, i.e., all the 360-degree scene around them, we focus 
on three visual angles (VAs) subtending stimuli presenta-
tion space: 40, 80, and 120 degrees. Specifically, the vertical 
layout and VA 40 degrees experimental condition replicates 
the standard 2D experiment with the addition of stereopsis, 
allowing us to bridge the gap with the standard literature 
and defining a baseline for the interpretation of the results 
obtained in our experiment. Moreover, we propose a com-
putational model based on the same virtual images shown 
inside the HMD, and we show that this model can replicate 
the results obtained by humans in detecting changes in an 
immersive VR scenario.

The paper has the following main contributions:

•	 Results of our experiment confirm that the limitations 
of VWM capacity (i.e., the largest number of items for 

which an observer can identify a change with a certain 
accuracy) persist in immersive visualization, that simu-
lated variations in depth have no effect on change detec-
tion ability, and that only VA and observation time affect 
the performances;

•	 An image-computable model of the VWM can be applied 
to quantify how a change in a scene could be effectively 
detected by an observer immersed in a VR scenario, 
which could be exploited to design immersive visualiza-
tion systems and find the better layout of visual informa-
tion.

2 � State of the art

2.1 � Visual working memory in the literature

Experimental results indicate that the bandwidth of human 
perception is severely limited, and this seems to have a 
physiological basis(Luck and Vogel 2013). Several theo-
ries try to explain this phenomenon (Cohen et al. 2016). We 
have a rich experience of the world, but all this information 
cannot be fully captured by our capacity-limited cognitive 
mechanisms (Block 2011). Information is not consciously 
perceived until it is accessed by higher-order systems, i.e., 
attention, VWM, and decision-making (Kouider et al. 2010; 
Lau and Rosenthal 2011).

VWM is an apparatus dedicated to actively maintaining 
visual information to serve the needs of ongoing tasks. Over 
the last decades, research within cognitive psychology and 
visual perception has demonstrated that VWM is limited in 
terms of time, it decays in some seconds unless information 
reinforcement occurs, and of capacity, i.e., the number of 
information that can be stored. In the literature, studies on 
the assessment of VWM capacity can be divided into two 
main categories: reductionist approaches and real-world or 
natural behavior paradigms (Kristjánsson and Draschkow 
2021). The former studies the mechanisms of visual cogni-
tion in a pure sense, breaking them down into fundamental 
operations measured with simple stimuli. The latter investi-
gates the functional nature of visual perception and cogni-
tion within active natural behavior.

Reductionist approaches are milestones of the research 
in cognition and perception. However, most works found 
are based on the use of 2D images or videos displayed on 
standard desktop screens occupying ∼30°–40° of the visual 
angle. An equivalent systematic approach exploiting immer-
sive 360° VE does not exist yet, at least to our knowledge.

However, research on defining how VWM capac-
ity is limited is still controversial, and the answer often 
depends on the task. Indeed, capacity estimates may not 
always generalize across tasks, and performance across 
tasks cannot be modeled by a common set of parameters 
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(Robinson et al. 2020). Many studies quantify VWM in 
terms of items and claim that a plausible value for the 
capacity could be around 4 (Cohen et al. 2016; Cowan 
2001; Luck and Vogel 1997) or 7 ± 2 (Franconeri et al. 
2007; Miller 1956) items, depending on the task. While 
other authors more generically refer to chunks (Brock-
mole and Henderson 2005), i.e., higher-order representa-
tions in which individual pieces of information are inter-
associated and stored in memory and act as a coherent, 
integrated group when retrieved. Authors in (Alvarez 
2011) found a monotonic relation between the amount of 
information per item and the reciprocal number of items 
that can be memorized, implying a trade-off between 
complexity and quantity of the remembered information. 
Moreover, people tend to vary the VWM load accordingly 
to task demand to reduce the effort involved, especially 
during longer-duration tasks (Thornton et al. 2020).

Multiple objects tracking (Pylyshyn and Storm 1988), 
visual search (Wolfe 2012), cueing studies (Posner et al. 
1978), visual foraging (Wolfe 2013), model arrangement 
reproduction (Ballard et al. 1995), recognition (Endress 
and Potter 2014; Brady and Störmer 2021; Zhang and 
Luck 2008) and change detection (Luck and Vogel 1997) 
are the most commonly diffused tasks used for VWM 
assessment (Kristjánsson and Draschkow 2021).

In change detection tasks, participants are first shown 
an array of items or a scenario, followed by a blank 
screen or a mask, and are asked to remember them. Sub-
sequently, a full set of items is presented at test (whole-
display (Rouder et al. 2011)) with or without a novel 
element, and participants are asked to judge whether a 
change occurred in the array or not. Arrays have increas-
ing size and VWM capacity is defined as the largest array 
size for which observers are able to identify a change 
with a certain accuracy. Stimuli provided can also be 
videos, in which the change occurs gradually (Simons 
et al. 2000), sequences of images, in which the change is 
contingent on an event (such as a brief flash, eye move-
ment, or occlusion) that creates a global motion signal 
that masks the transient (Rensink et al. 1997), or real life 
settings (Simons and Levin 1998). This inability to detect 
expected or unexpected change between two different 
pictures when a brief interruption occurs between them 
or the change occurs so gradually that it does not auto-
matically draw attention is called change blindness (CB). 
Change detection experiments usually fall into the cat-
egory of intentional CB, as observers are directly asked to 
look for changes. The term incidental CB, instead, refers 
to those experiments where participants are instructed 
to perform a certain task and, in the end, they are asked 
to remember if they have noticed some change (Varakin 
et al. 2007).

2.2 � Visual working memory in immersive 
visualization

The majority of articles found in the VR literature adopt 
the real-world paradigm. They usually focus on spatial 
representation construction and navigation of a VE, both 
indoor and outdoor (Read et al. 2022; Jaiswal et al. 2010; 
Meilinger et al. 2008; Gras et al. 2013), or on recognition 
tasks (La Corte et al. 2019), or on the incidental CB induc-
tion, i.e., participants are asked to accomplish a task (sort 
objects, walk or drive) and unexpected changes are applied 
to the scene (Suma et al. 2011; Karacan et al. 2010; Mar-
wecki et al. 2019). Nonetheless, studies using the reduc-
tionist approach in VR exist, i.e., multiple-object tracking 
(Lochner and Trick 2014), visual search (Li et al. 2018), 
cueing (Seinfeld et al. 2020), model arrangement reproduc-
tion (Draschkow et al. 2021).

In the literature, we can identify two paradigms for change 
detection, the flicker, and the one-shot (Rensink 2005). In 
the first case, the original and modified (test) images are 
presented in a loop, separated by a blank screen (or reten-
tion mask), until the observer finds the change. In the second 
case, the sequence is shown once, and participants have to 
answer within a certain time, usually from 1 s to a few tens 
of seconds. In both paradigms, the duration of the retention 
mask, namely, inter stimulus interval (ISI), can vary from 
20 ms to 9 s (Phillips 1974). Still, in general, experiment-
ers prefer using ∼500 ms, in order to mask the transient 
without impairing VWM. Stimulus duration, instead, is usu-
ally around 275–300 ms, i.e., the minimum time required 
to extract the gist of a scene, i.e., the observer’s experience 
of grasping the meaning of a scene with a simple glimpse, 
(Cohen et al. 2016). Authors in (Steinicke et al. 2011) found 
that the flicker paradigm causes simulation sickness when 
used for semi-immersive and immersive VR experiments 
and suggested as an alternative solution the projection of 
two different dephased images onto the two eyes.

Change detection experiments have identified differ-
ent factors influencing CB, including attention, interest, or 
visual stimulus saliency, i.e., object perceptual properties 
that catch human attention. It depends both on low-level 
features (color, shift, rotation, appearance/disappearance, 
elements distribution) and high-level characteristics (coher-
ence/incoherence of the modified element with respect to 
the semantics of the scene). Recently, a limited set of visual 
features that are detected rapidly by low-level, fast-acting 
visual processes have been identified (e.g., hue and curva-
ture). Their detection can occur in less than 200–250 ms, 
before the start of a saccade, which takes 200 ms. For this 
reason, they are referred to as preattentive processes, pre-
ceding focused attention (Healey and Enns 2011). Consid-
ering the low-level stimulus features that influence change 
detection ability, authors in (Gusev et al. 2014; Simons 
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et al. 2000) demonstrated that the appearance and disap-
pearance of an item are more easily and fast detected than 
other modifications.

2.3 � Models of visual working memory and saliency

There is a rich literature about descriptive models of VWM 
(Ma et al. 2014; Fougnie et al. 2012; Bays and Husain 2008; 
Luck and Vogel 1997) and models based on signal detection 
theory (Williams et al. 2022; Van den Berg and Ma 2018; 
Wilken and Ma 2004). In (Brady and Tenenbaum 2013) the 
authors present a probabilistic model of VWM by using 
summary parameters of the stimuli, and in (Van den Berg 
et al. 2017) a visual feature is used for leading to a Fechner 
model of VWM confidence. A normative proposal, where 
the expected performance of the task is balanced with the 
cost of spending neural resources for coding it, is presented 
in (Van den Berg and Ma 2018). In (Schneegans et al. 2020) 
the authors show that the discrete versus continuous nature 
of sampling is not critical to model fits by using a sampling 
interpretation of population coding of the visual parameters.

It is worth noting that such models do not process directly 
the same visual stimuli of the participants of an experiment.

Since visual saliency can have a role in modulating work-
ing memory storage capacity and can provide insights into 
working memory functions, an interest in neural modeling 
has emerged to understand its neural basis, e.g., (Brunel and 
Wang 2001; Compte et al. 2000). These models are based on 
low-level modeling of the neurons, e.g. biophysically realis-
tic attractor network with spiking neurons has been proposed 
in (Dempere-Marco et al. 2012). Rather, we are interested in 
proposing a functional model that is able to capture essential 
aspects of visual working memory by exploiting the scene 
saliency as the model input.

More specifically, saliency models can be used for assess-
ing the effectiveness of visualizations, e.g., (Matzen et al. 
2017; Polatsek et al. 2018), whereas few studies use the 
saliency models to mimic human behavioral data by using 
images as input: in (Fine and Minnery 2009) the authors 
assess how visual salience affects performance in a Working 
Memory task, and in (Ma et al. 2013) the authors propose a 
computational model that is able to predict degrees of CB. 
A saliency model is used in (Pedale and Santangelo 2015) 
to assess the relevance of the salience in a memory task. 
Our model is aiming to mimic more complex human out-
comes (such as hit rate and false alarm rate as a function of 
the conditions of the experiment) by using the same images 
humans observed.

In the literature, plenty of saliency detection methods 
have been proposed (Cong et al. 2018), also with deep 
learning approaches (Wang et al. 2019; Li et al. 2021; 
Fang et al. 2016). The existing models can be evaluated by 
using standard datasets (e.g., the MIT/Tuebingen Saliency 

Benchmark (Kümmerer et al. 2018)). Many saliency detec-
tion methods, which provide a topographic representation 
of the stimulus relevance for human attention (i.e., a sali-
ency map), are coherently presented and implemented in 
(Wloka et al. 2018):

–	 AIM (Attention by Information Maximization): a bot-
tom-up model that is based on the principle of maxi-
mizing information sampled from a scene and it is neu-
rally plausible (Bruce and Tsotsos 2005).

–	 AWS (Adaptive Whitening Saliency): it is based on the 
adaptation of the basis of low-level features to the sta-
tistical structure of the image (Garcia-Diaz et al. 2012).

–	 CAS (Context Aware Saliency): it detects the image 
regions that represent the scene by exploiting princi-
ples observed in the psychological literature (Goferman 
et al. 2011).

–	 CVS (Covariance-based Saliency): the method uses 
covariance matrices of simple image features as meta-
features for saliency estimation (Erdem and Erdem 
2013).

–	 DVA (Dynamic Visual Attention): it maximizes the 
entropy of the sampled visual features, which represent 
an image patch as a linear combination of sparse coding 
basis functions(Hou and Zhang 2009).

–	 FES (Fast and Efficient Saliency): the method is based 
on estimating the saliency of local feature contrast in a 
Bayesian framework (Tavakoli et al. 2011).

–	 GBVS (Graph-Based Visual Saliency): a bottom-
up saliency model based on graph computations, by 
exploiting activation map of feature vectors (Harel 
et al. 2007).

–	 IKN: (Itti-Koch-Niebur Saliency Model): the method is 
biologically inspired and it uses a linear combination of 
a set of feature maps from three complementary channels 
as intensity, color, and orientation (Itti et al. 1998).

–	 IMSIG (Image Signature): the algorithm is based on the 
image signature that approximates the foreground of 
an image within the framework of sparse signal mixing 
(Hou et al. 2011).

–	 LDS (Learning Discriminitive Subspaces): the method 
estimates saliency by learning a set of discriminative sub-
spaces that select targets and suppress distractors (Fang 
et al. 2016).

–	 QSS (Quaternion-Based Spectral Saliency): the method 
uses spectral saliency and the color space has an impor-
tant influence (Schauerte and Stiefelhagen 2012).

–	 RARE2012 (Multi-scale rarity-based saliency model): 
it is bottom-up and selects salient information based on 
multi-scale spatial rarity by using the colour and orienta-
tion features (Riche et al. 2013).

–	 SSR (Saliency Detection by Self-Resemblance): the 
method computes local regression kernels from the given 
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image and visual saliency is obtained by using a self-
resemblance measure (Seo and Milanfar 2009).

–	 SUN (Saliency Using Natural statistics): the method 
describes how to combine bottom-up and top-down 
information within a Bayesian probabilistic framework 
(Zhang et al. 2008).

3 � Experiment

3.1 � Methods

Considering our goal is to understand the quantity of infor-
mation the viewers can gather and process simultaneously 
in an immersive VE and the influence of the presentation 
modality and the information location on their ability to 
efficiently notice the information presented, we focused on 
the change detection task, adapted to immersive VR. We 
furthermore decided to adopt the reductionist approach. 
Moreover, we opted for the one-shot paradigm, ensuring we 
avoid simulation sickness while providing a well-established 
solution.

According to the prior literature, we have decided to use 
simple stimuli, i.e., light blue spheres on a plain light back-
ground, to avoid undesired effects of attention prioritization 
that would bias results, and focused on the appearance or 
disappearance of an item.

Finally, we aim to model the processing involved in 
the VWM by exploiting the same images observed by the 
experiment participants. Thus, we use the saliency maps pro-
vided by the fourteen methods (i.e, different ways of objec-
tively estimating the saliency in scene images), presented in 
Sect. 2.3, as the input to our model. From these fourteen sali-
ency maps as input, we model the behavioral data by devel-
oping the processing steps for obtaining a modeled hit rate 
and false alarm rate similar to the ones in our experiment.

3.2 � Task

The adaptation of the one-shot paradigm for VR scenarios 
introduces many aspects that were not involved in previous 
experiments with 2D stimuli visualization: such as stereop-
sis, motion parallax (if the user can move the head), possible 
occlusions, and shadows.

We consider two different layouts, see Fig. 1. In the ver-
tical case (later indicated by V), we replicate the standard 
2D experiments but replace surfaces with volumes and 2D 
stimuli with spheres, introducing stereopsis (even if dis-
played objects are at the same distance and have the same 
dimension, so there are no disparity differences). The lay-
out and VA 40° experimental condition replicate the stand-
ard 2D experiment, allowing us to bridge the gap with the 
standard literature and define a baseline for interpreting the 

results obtained in our experiment. In the horizontal case 
(later indicated by H), we exploit the 3D nature of VR, by 
adding simulated variations in object locations in depth: the 
visual size of objects decreases with distance (perspective), 
and occlusions may appear, though we designed the system 
not to have physically overlapping objects.

As shown in Fig. 1, to replicate the one-shot change 
detection paradigm, we display a memory array for an 
observation time T1 (300 ms or 900 ms), then, a gray can-
vas covers the entire headset FOV for an ISI of 500 ms. 
Finally, a test array is shown for a time T2 of 1.5 s. During 
the test, the original set of spheres is shown with or without 
any modification, e.g., a sphere could be added or removed, 
or no change is applied (control condition). In the change 
detection task, participants have to answer the question “Has 
something changed in the scene?” by pressing the trigger 
button of one of the controllers, “Yes” or “No”, within 1.5 s. 
Participants can decide in which hand they want to han-
dle them. The answer timer duration was calculated using 
the mean response time obtained in a pilot study. Once the 
participant has answered or the answer timer has expired, 
the test array disappears, and a new scene is automatically 
presented after an inter trial interval (ITI) of 2 s.

The VE, developed in Unity, is simple to prevent any 
interest prioritization based on stimulus features or the 
semantics of the scene. It comprises a bare room with no 

Fig. 1   Schematic of a single trial of the experiment. The one-shot 
change detection paradigm is implemented for the horizontal (top) 
and vertical (bottom) layout, with the interaction modality used in the 
experiment
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windows or furniture except for a green office chair and 
a semi-circular desk or a semi-cylindrical wall, on which 
items, i.e., light blue spheres, are generated. The green 
chair facilitates the localization of the starting position and 
increases the sense of presence in the VE.

As illustrated in Table 1, VWM capacity has been meas-
ured at the variation of four different factors: the set size (4, 
6, 8, 10, 12 objects), the distribution of the objects, both in 
terms of spatial layout (vertical or horizontal) and VA (40, 
80 and 120 degrees) and the observation time (300 and 900 
ms).

Since VR technologies allow us to exploit a 3D scene, i.e., 
a 360° space surrounding the viewer, stimuli presentation is 
no longer limited to a space subtending a VA of 30°–40°, 
as in the experiments with standard PC screens found in 
the literature. Indeed, we decided to gradually enlarge the 
VA, starting from 40°. In VA 40° case, stimuli are presented 
within the near peripheral vision area, where visual acuity is 
high, and humans are more sensitive to colors and shapes. 
VA 80°, instead, refers to the mid-peripheral vision, which 
is more sensitive to motion signals, and corresponds to 
exploiting entirely HTC Vive’s FOV, which is namely 110°, 
but, due to lenses distortion, is limited to 90°. In VA 120° 
trials, participants must turn their heads to get a complete 
overview of the presented stimuli. Thus, the representation 
of the scene results from integrating information across dif-
ferent views.

3.3 � Scene layout and stimuli arrangement

Items are distributed following a 6×n grid, subtending a 30° 
× VA (40°, 80° or 120°) visual angle and composed of 5° 
× 5° bins. The light blue spheres are placed at the center of 
the bins (Fig. 2a and b left). They have a radius of 2.5 cm to 
occupy around 4° of the VA at a distance of 70 cm and fit 
the 5° × 5° bins without overlapping.

The n bins columns are symmetrically arranged with 
respect to the participant center of view, from −20° to +20°, 
or from −40° to +40°, or from −60° to +60°, depending 
on the VA. The vertical 30° VA, instead, has been defined 
differently for the two layouts. In the vertical layout case, 
the head position is assumed to be 70 cm from the semi-
cylindrical wall (Obj_Dist). Hence, the height of the area 
(V_Size) subtending a VA of 30° has been calculated using 
Eq. (1),

This area has been divided into 6 rows, symmetrically 
arranged with respect to the participant’s center of view 
(Fig. 2a right). In the horizontal case, instead, the surface 
where items are spawned is not orthogonal to the partici-
pant’s eyes, thus the area subtending a vertical VA of 30° is 

(1)V_Size = 2 Obj_Dist tan
(
VA

2

)

defined by combining Eq. (1) and simple geometry. Consid-
ering the head had a fixed position of 55 cm above the table 
and the perspective of the scene, we first needed to calculate 
the minimum distance at which spheres occupy around 4° 
of the VA without overlapping, (Fig. 2b right). Then, we 
could define the area subtending a vertical VA of 30° and the 
position of the 6 rows. In both cases, the participant’s head 
position is approximated with the headset position recorded 
at the beginning of each experimental block, and the table/
wall location is adjusted accordingly.

Finally, observation times are chosen considering the pre-
vious literature: a 300 ms observation time (later indicated 
by S) is enough for participants to generate the gist of the 
scene (Cohen et al. 2016) in the VA 40° and 80° trials. It 
avoids neither preattentive processing, requiring 200–250 

Fig. 2   Spatial distribution of items in the (a) vertical and (b) hori-
zontal layout cases from the top (left) and lateral (right) points of 
view (example layout for VA 80°). In both layouts, the spheres are 
arranged in 5° × 5° bins computed as described in the text

Table 1   Independent and dependent variables of the change detection 
experiment

Independent variables
Set size (4, 6, 8, 10, 12 items)
Spatial layout (V and H)
VA (40, 80, 120 degrees)
Observation time (S and L)
Dependent variables
HR and FAR
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ms (Healey and Enns 2011), nor subitizing, i.e., the direct 
perceptual apprehension of the numerosity of a group, which 
is in the order of 30 ms for each extra element (Svenson 
and Sjöberg 1983), but prevents participants from counting 
spheres. As in the VA 120° case, participants have to turn 
their heads, a higher observation time is necessary. Con-
sidering that the VA has been tripled, we have decided to 
increase the observation time proportionally and set it to 900 
ms (later indicated by L).

3.4 � Measures

During task execution, we collect the given answers, the 
spheres’ distribution, and the head positions and rotations. 
Participants who demonstrated not having understood 
instructions properly, i.e., they could not answer on time in 
the majority of trials, were excluded from further analysis. 
We discarded 10.2% of trials in the change detection test.

Hit rate (HR), see Eq. (2), and false alarm rate (FAR), 
see Eq. (3), derived from the signal detection theory, are 
then calculated from the given answers per each participant 
and experimental condition. HR and FAR are common met-
rics for the evaluation of performance in one-shot change 
detection tasks: HR considers the number of times people 
correctly report a change (TP, i.e., true positive) divided 
by all trials with change (TP+FN), where FN denotes false 
negative; while FAR is computed as the number of times 
participants perceive a change in the control condition (FP) 
divided by all the trials without any change (FP+TN). In the 
change detection case, answers are given in a binary form 
(Yes/No).

From previous literature, we expect high HRs and near-to-
null FARs when the number of items to be remembered does 
not exceed VWM capacity. Once this capacity is overcome, 
instead, people should start answering randomly, thus HRs 
should decrease and FARs should increase (Keshvari et al. 
2013).

In order to determine the effect of set size, spatial layout, 
VA and observation time on HR and FAR (see Table 1), we 
performed an N-ways ANOVA.

After having calculated the mean HRs per experimental 
condition averaged across participants, we have defined a 
threshold of 0.75 from (Franconeri et al. 2007; Cowan et al. 
2005), slightly adapted to keep more data, and excluded 
from further analysis trials referred to the number of items 
for which the mean HR falls below the established value.

(2)HR =
TP

TP + FN

(3)FAR =
FP

FP + TN

On this subset of data, we have computed the HR associ-
ated with each possible position of the 6×n grid, in order 
to understand the influence of the absolute position of the 
modified item on the probability of correctly detecting the 
change. Subsequently, we have considered separately the 
mean HR distribution at the variation of the horizontal and 
vertical angular distance from the participant VA center.

3.5 � Image‑computable model

The human visual system has the ability to attend to only 
salient locations in an observed scene (Itti and Koch 2001). 
This ability allows humans to only allocate perceptual and 
cognitive resources on task-relevant visual input. We devel-
oped an image-based computational model that accounts 
for the human performances of our VWM experiment. This 
model takes the same images observed by the participants 
of our experiment as input and recreates the observed data 
of human VWM: specifically, HR and FAR of our experi-
ment. The proposed model aims to capture only the essen-
tial aspects of the neural and cognitive processes involved 
in VWM. Moreover, we discuss which aspects of human 
VWM are not described by the model and might be interest-
ing starting points for further investigation.

Saliency maps might be an important factor in modeling 
memory tasks, as reported in the literature (Foulsham and 
Underwood 2007, 2008; Underwood and Foulsham 2006; 
Stirk and Underwood 2007), thus we consider saliency 
methods as the front-end of our model. From this input, by 
exploiting the information embedded in the saliency map, 
we model the processing steps that allow obtaining HR and 
FAR similar to the human ones. It is worth noting that the 
model does not use saliency maps to predict where people 
will look in an image but to predict human performances in 
terms of HR and FAR.

Since we use existing methods of the literature to estimate 
saliency maps, as the input to our model, we must pay atten-
tion to ensuring consistency and procedural correctness for 
the results obtained by the different methods. With this aim, 
we use the software package SMILER provided by (Wloka 
et al. 2018). In this package, fourteen methods (from the 
classical ones, e.g., (Itti et al. 1998), to the learning ones, 
e.g. (Fang et al. 2016), see Sect. 2.3) are implemented in 
MATLAB and we use them in our simulations. It is worth 
noting that we do not consider saliency methods for dynamic 
scenes, since in one-shot change detection paradigm the 
transition between the two views is hampered.

Figure 3 shows the saliency maps of the HMD views (as 
observed by a participant of our experiment) for the VA 80°, 
horizontal and vertical layouts, by considering the methods 
LDS and SSR, as an example of the fourteen methods we 
use as input to our model (see Sect. 2.3). The spheres are 
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detected, but the table structure produces a response too. The 
saliency map values are in the range [0 − 1].

For the change detection task, we have observed that HRs 
decrease and FARs increase as a function of the set size, i.e., 
when the number of items increases, thus we devise how this 
behavior can be based on the information embedded in the 
saliency maps.

The saliency map S(x, y), where x and y are the image 
coordinates, encodes the number of spheres (i.e., items) as 
salient objects (e.g., see Fig. 3). So, the active areas of the 
saliency map can embed information about the objects in 
the scene. When the objects are close, the related salient 
areas merge into one salient region that is proportional to the 
number of objects. Since it is based on the images observed 
in the HMD, we consider the same view of the observer, 
including the perspective cue. Thus, the whole map activ-
ity could be a measure of the number of items, at least as 
observed by the participants in the experiment. Since there 
is a difference of one item in the change detection test, we 
can consider the difference D(x, y) between the saliency map 
S1(x, y) of the view of the scene before the gray canvas cov-
ers the entire participant’s view and the saliency map S2(x, y) 
of the view after the canvas. The absolute value of such a 
difference can be a measure of residual saliency and could 
drive the change detection.

To show how the considered saliency methods are able 
to detect (i) the salient elements (i.e., spheres) of the experi-
ment scenes and (ii) the differences between the two pre-
sented scenes, we consider two methods (i.e., LDS and SSR) 
in Fig. 3. The first two columns show the HMD views before 
and after the occluding canvas for the VA 80°, both horizon-
tal and vertical layouts. The absolute value of the differences 
between the saliency map S1(x, y) and S2(x, y) is shown in the 
last column of Fig. 3: there is variability among the saliency 
maps of the different methods that will reflect in their capac-
ity to account for human data.

It is worth noting that the saliency methods process the 
same stimuli viewed by the subjects during the experiments.

To sum up, the absolute value of the difference between 
the saliency maps (before and after the change) might drive 
the change detection, since it can be considered a measure 
of residual saliency. The whole map activity might take into 
account the number of items in the scene, thus it can be 
used to mimic the behavior of the HR when the number of 
items increases. However, to take into account the inherent 
uncertainty in human judgments, we have to consider also 
the noise present in the human neural processes.

The modeled HR ( HRM ) can be described by

where c1 is a normalization term to limit the modeled HR 
in the range of human HR; max(⋅) finds the maximum dif-
ference over all pixel coordinates; | ⋅ | denotes the absolute 
value; � and � are static non-linearity; n1 is the noise from 
a normal distribution, with a mean of zero and its standard 
deviation is a fraction of the average HRM.

Consequently, the modeled FAR ( FARM ) can be described 
by

where c2 is a normalization term to limit the modeled FAR in 
the range of human FAR; � and � are static non-linearity; n2 
is the noise from a normal distribution, with a mean of zero 
and its standard deviation is a fraction of the average FARM.

3.6 � Apparatus

The experimental setup is composed of the HTC Vive and 
an Alienware Aurora R5 with a 4 GHz Intel Core i7-6700K 
processor, 16 GB DDR4 RAM (2,133MHz), and an Nvidia 
GeForce GTX 1080 graphic card.

In change detection experiments, the use of a chin-rest 
is standard practice as it ensures a constant eyes-stimulus 
distance. Conversely, in some of the trials, e.g., those with 
VA 120° and long observation time, participants are required 
to rotate their heads, thus we decided not to use it. In this 
manner, the same setup is maintained in all experimental 
conditions. However, at the beginning of each experimental 
block, participants are asked to place their head in the start-
ing correct location, indicated by a white sphere in the VE, 
leaning their back against the back of the chair they are sit-
ting on. They are encouraged to find a comfortable position 
and maintain it for the entire duration of the block since 

(4)
HRM = c1

max(�S1(x, y) − S2(x, y)�)�
�∑

x

∑
y S1(x, y)

��
+ n1,

(5)

FARM = c2 max(|S1(x, y) − S2(x, y)|)�

⋅

(
∑

x

∑

y

S1(x, y)

)�

+ n2,

Fig. 3   The HMD views and the related saliency maps for the LDS 
and SSR methods. The rightmost column shows the absolute value of 
the differences between the saliency maps S1(x, y) and S2(x, y) of the 
HMD views before (view 1) and after (view 2) the change
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they are only allowed to rotate their head. Additionally, an 
experimenter supervised the experimental session to ensure 
that the instructions were correctly followed.

3.7 � Procedure

We used a full factorial design by considering the inde-
pendent variables shown in Table 1: we obtained 1080 tri-
als per experiment. In order to avoid simulator sickness and 
the negative effect of fatigue and prolonged task workload 
on results, we grouped the trials into 12 blocks of 90 tri-
als and divided the experiment into 3 sessions composed of 
4 blocks, with a minimum inter-session break of half-day. 
Each block could last a minimum of ∼6 min and a maximum 
of ∼13 min, according to the observation time (S or L) and 
the time to answer (1.5 or 5 s). In each block, the spatial lay-
out, the VA and the observation time were fixed, while the 
set size and the kind of change varied. We randomized the 
experimental runs within subjects and the block presenta-
tion order between subjects. Moreover, each participant saw 
different spheres configuration, as the arrays of items were 
randomly generated.

An optional demo scene precedes the actual trial to famil-
iarize participants with the interface and the task.

3.8 � Participants

Eighteen participants accomplished the change detection test 
(age range 20–36, 25.1 ± 3.8 years), by completing 1080 
trials each.

They were all students, PhDs, and researchers at the Uni-
versity of Genoa and had to sign an informed consent. They 
all reported having normal or corrected-to-normal vision and 
no deficit in stereo vision.

4 � Results

4.1 � Experiment: change detection test

First, we evaluated the influence of set size, layout, VA, and 
observation time on participants’ ability to detect changes. 
In all experimental conditions, the HR tends to decrease 
as the number of items increases (see Fig. 4) and reaches 
the threshold value around 6–8 items, confirming the VWM 
capacity limit found in the literature (7 ± 2 items) (Francon-
eri et al. 2007; Miller 1956).

Concurrently, the standard deviation increases, indicating 
a higher uncertainty of answers. N-ways ANOVA statistical 
analysis highlights a significant effect of the set size (F(4, 
965)=146.62, p < 0.0001), with all groups marginal means 
being significantly different from each other (p < 0.02). 
FAR, instead, slightly increases with the number of items 
(F(4, 965) = 3.68, p < 0.02). However, large standard devia-
tions highlight a high data variability and make differences 
not statistically significant. Only marginal means referred to 
4 and 12 items differ significantly (p<0.02). Layouts alone 
seem to have no influence, but we found a joint interaction of 
layout and VA over HRs (F(2, 967) = 3.99, p < 0.02): in the 
vertical layout case, the marginal mean referred to VA 120° 
is different from VA 40° (p < 0.0001) and 80° (p < 0.02) 
means. Better performance is associated to the longer obser-
vation time (HR: F(1, 968) = 33.54, p < 0.0001; FAR: F(1, 
968) = 17.17, p < 0.0001) and smaller VAs (HR: F(2, 967) 
= 11.29), p < 0.0001; FAR:F(2, 967) = 56.46), p < 0.0001). 
Results in the VA 40° and 80° trials are comparable and 
differ from those obtained with VA 120° (p < 0.02), where 
HRs decrease faster and FARs are higher. Moreover, in the 
FAR case, a joint influence of VA and observation time has 
been highlighted (F(2, 967) = 4.18, p < 0.02).

On the subset of data exceeding 0.75 accuracy, we have 
computed the mean HR distribution as a function of the 

Fig. 4   Mean and standard 
deviation of HRs and FARs 
at the variation of the set size 
in the different experimental 
conditions, considering the VA 
(40, 80 or 120), the layout (V or 
H), and the observation time (S 
or L) - e.g., 40VS is for visual 
angle (VA) 40°, vertical (V) 
layout and short (S) observation 
time. The dashed line represents 
the 0.75 threshold
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distance from the VA centre. Considering the horizontal 
VA, as each position has an equal probability to be selected 
to spawn the modified item, to guarantee the same density 
of samples, we have grouped data referred to adjacent posi-
tions, considering bins of different sizes, 5° for VA 40°, 
10° for VA 80°, 15°for VA 120°. For the vertical VA, we 
evaluate the distance from the center of view in the vertical 
layout case, and the distance from the user position in the 
horizontal layout case.

Results in Fig. 5 (HR distribution, dark lines, and gray 
areas) show that performance is better and with a lower 
variability when a longer observation time is provided and 
decreases with VA enlargement. No particular effect of the 
absolute spatial position of the modified object has been 
found, except for the VA 120° with short observation time, 
where accuracy decreases in the periphery of the horizontal 
VA (Fig. 5, 3rd and 6th column, top). Furthermore, nei-
ther the layout nor the distance from the user influences the 
results, implying that stereopsis and depth perception do not 
affect participants’ ability to detect changes.

We analysed head rotations as a measure of participants’ 
tendency to look around. As headset FOV is ∼90°, head 
rotations provide us an important information: if participants 
were actually able to see the change, in other words if the 

change was inside their view. We calculated the normalized 
histogram of head rotations around the vertical axis dur-
ing the observation of the memory array, shown in Fig. 5 
(yellow bars). As expected, with VA 40° and 80°, rotations 
are clustered around a central value because all stimuli are 
presented inside the visual field. Also in the VA 120° trial 
with short observation time, Fig. 5 (3rd and 6th column, top) 
head rotations are limited; whereas, having more time, par-
ticipants explore the entire scene and performance improves, 
especially in the periphery of the horizontal VA (Fig. 5, 6th 
column, bottom).

4.2 � Model: correlation with human data

The proposed model is tested with the same stimuli and 
procedures as the human observers (like the model was an 
individual human participant). In particular, we model the 
long observation time of our experiments.

We use the default parameters for all the methods. A fit-
ting procedure between the experiment results and the model 
outputs has been carried out to have both data in the same 
range of values. However, without an optimization proce-
dure, since we do not adapt our model to each condition, we 
use the same parameters (see Table 2) for all the conditions.

Fig. 5   Change detection test. The 4 subplots represent the combina-
tion of V layout (left), H Layout (right), S observation time (top), and 
L observation time (bottom). In each subplot, the three VA (40°, 80°, 
120°) are considered (left-middle-right). For each VA, the mean Hit 
Rate (HR black solid line) and its standard deviation (gray area) are 
plotted with respect to the horizontal angle (top, in degrees) and the 

distance (bottom, in meters). Distance is along the Y axis for the V 
layout (since the spheres are all at the same depth) and along the Z 
axis for the H layout (since the spheres are all on the table at the same 
height), see Fig.  2. Yellow bars represent the normalized histogram 
of yaw head rotations during the presentation of the memory array. 
(colour figure online)
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A visual inspection of the modeled HRs and FARs allows 
us to qualitatively assess the similarity with the correspond-
ing human data. For a quantitative evaluation of the similar-
ity between the model and human performances, we use the 
Pearson correlation score (r) and the related p value. This 
metric is widely used in saliency prediction and in assessing 
agreement with human data (Ma et al. 2013; Maiello et al. 
2020; Sitzmann et al. 2018).

Table 3 shows the correlations between modeled HRs 
(see Eq. (4)) and human HRs. Our model by using the SSR 
methods has a high level of agreement with the human data 
(r>0.88 and p<0.05). On average also the methods AIM, 
AWS, DVA, IKN and SUN show a good level of agreement. 
It seems, thus, that such methods embed information about 
the stimuli that can be exploited by our model to mimic 
human data.

Figure 6 shows the modeled HRs (blue) and human HRs 
(red) for two methods in order to allow a visual inspection 
of the correlation data of Table 3.

On the contrary with respect to the HRs, the correlations 
between modeled FARs (see Eq. (5)) and human FARs do 
not show a good agreement. The reason might be that the 
human FARs do not increase as a function of set size (there 

are some fluctuations), thus the correlation is not able to get 
a similarity. However, for some methods, specifically for 
SSR, the 95% bootstrapped confidence intervals of the mean 
are overlapped, thus the proposed model shows behaviors 
similar to human ones. Moreover, the model is able to cap-
ture the increase of human FARs as a function of the VA. 
There is a good agreement for the SSR (r=0.89, p=0.02) 
method.

5 � Discussion

In general, our experiment in immersive VR shows that HRs 
decrease and FARs increase with the number of items, con-
firming the previous literature and the hypothesis that accu-
racy is high when the number of elements to be remembered 
do not exceed VWM capacity, and decreases once the capac-
ity is overcome, as participants start guessing the answer. 
In particular, participants can correctly detect changes with 
0.75 accuracy when they are asked to memorize a maximum 
of 6–8 items.

A combined effect of time and VA positively influences 
performances. In fact, in trials with VA 40° and 80° and 300 
ms observation time, participants can only rely on preatten-
tive processes to detect changes, whereas having 900 ms to 
observe stimuli, they can build a gist of the scene, which 
usually requires around 275–300 ms (Cohen et al. 2016), 
but also try to memorize some structures or spatial distribu-
tions of elements. The similarity of performances in trials 
with VA 40° and 80° also suggests that a change in VR is 
equally detectable when it is applied to the near peripheral 
or mid-peripheral vision area. However, as we did not use 
an eye tracker, we can not ensure where the user was look-
ing at. In VA 120° case, instead, the short observation time 
does not allow participants to turn their heads, as confirmed 

Table 2   The specific values of the model parameters employed in our 
simulations. The standard deviation is std

Parameter Value Description

� 1.5 HRM non-linearity, Eq. (4)
� 1 HRM non-linearity, Eq. (4)
n1 std 0.04 Average HRM fraction, Eq. (4)
� 1.5 FARM non-linearity, Eq. (5)
� 1 FARM non-linearity, Eq. (5)
n2 std 0.08 Average FARM fraction, Eq. (5)

Table 3   Correlations r (p value) 
between modeled HRs and 
human HRs. The significant 
agreements with the human data 
are in bold

The statistically significant (p<0.05 for all VAs) agreements with the human data are in bold

Method VA40H VA40V VA80H VA80V VA120H VA120V

AIM 0.77 (0.13) 0.87 (0.05) 0.95 (0.01) 0.90 (0.04) 0.98 (0.00) 0.95 (0.01)
AWS 0.77 (0.13) 0.86 (0.06) 0.96 (0.01) 0.82 (0.09) 0.93 (0.02) 0.94 (0.02)
CVS 0.59 (0.29) 0.84 (0.08) 0.93 (0.02) 0.87 (0.06) 0.72 (0.17) 0.82 (0.09)
DVA 0.76 (0.13) 0.87 (0.05) 0.93 (0.02) 0.86 (0.06) 0.95 (0.01) 0.97 (0.01)
GBVS 0.67 (0.21) 0.76 (0.14) 0.93 (0.02) 0.83 (0.08) 0.94 (0.02) 0.89 (0.04)
IKN 0.66 (0.22) 0.74 (0.15) 0.98 (0.00) 0.88 (0.05) 0.87 (0.06) 0.88 (0.05)
IMSIG 0.67 (0.22) 0.80 (0.11) 0.85 (0.07) 0.82 (0.09) 0.80 (0.11) 0.95 (0.01)
LDS 0.64 (0.25) 0.88 (0.05) 0.83 (0.08) 0.77 (0.12) 0.84 (0.08) 0.90 (0.04)
QSS 0.61 (0.28) 0.80 (0.11) 0.91 (0.03) 0.87 (0.06) 0.80 (0.11) 0.99 (0.00)
SSR 0.93 (0.02) 0.88 (0.05) 0.96 (0.01) 0.92 (0.02) 0.90 (0.04) 0.89 (0.05)
CAS 0.59 (0.29) 0.87 (0.05) 0.92 (0.03) 0.88 (0.05) 0.41 (0.49) 0.94 (0.02)
FES − 0.73 (0.16) 0.69 (0.20) − 0.25 (0.69) 0.22 (0.72) − 0.70 (0.19) 0.28 (0.65)
RARE2012 0.68 (0.21) 0.84 (0.07) 0.91 (0.03) 0.89 (0.04) 0.94 (0.02) 0.91 (0.03)
SUN 0.93 (0.02) 0.96 (0.01) 0.87 (0.05) 0.93 (0.02) 0.83 (0.08) 0.94 (0.02)
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by Fig. 5, thus they can see two third of the scene and infer 
an answer based on what they were able to see. While in 
the long observation time condition, they can rapidly turn 
their head and have an overview of the entire scene. Perfor-
mances with VA 40° and 80° and short observation time 
are comparable to those with VA 120° and long observa-
tion time, meaning that the integration of multiple views or 
the additional workload due to head rotation required in the 
second case does not compromise participants’ ability to 
memorize items. Thus, the increase of time proportional to 
VA enlargement can be a good strategy to be also adopted in 
future experiments. Instead, the absence of an influence of 
distance and layout on results suggests that additional cues, 
such as perspective and depth perception in the horizontal 
case, do not improve participant ability to detect changes.

Furthermore, human behavioral data were modeled 
through the proposed image-computable model. Equa-
tion (4) describes the modeled HR, it takes into account the 
difference of the scene saliencies between the image before 
and after the change, modulated by the inverse of the whole 
saliency of the scene. The rationale is that the HR decreases 
as a function of the number of items, and the saliency map 
of the whole scene embeds information about the number 
of salient objects (i.e., the items), as observed by the experi-
ment participants. Moreover, we need also to consider the 
inherent uncertainty of the neural processes, thus, we add 
a normal noise. This model catches the essential aspects of 
human behavior since it can replicate human HR with a high 
level of agreement (measured by the Pearson correlation). 
It is worth noting that only a few saliency methods (e.g., the 
SSR method) can provide our model with the information 

necessary to replicate human data. We can observe that a 
high level of agreement with human data is obtained using 
a low internal noise level.

The modeled FAR is described by Eq. (5), a consequence 
of Eq. (4): we hypothesize that the effect of the whole sali-
ency of the scene should be the inverse on FAR since it 
increases as a function of the set size. Here the agreement 
with human data is low. The reason might be that the FAR 
is quite flat, and the correlation is not able to provide a reli-
able measure. By looking at the bootstrapped confidence, 
intervals of the mean are overlapped, thus, the model mimics 
the human pattern. Moreover, the model also correlates well 
with the increase of human FARs as a function of the VA.

Overall, our results show that the proposed model is able 
to replicate human data with a good level of agreement.

6 � Conclusion

The goal of the current work is to investigate people ability 
to gather and process the information presented in an immer-
sive VE. In particular, we focus on the assessment of VWM 
capacity. The literature abounds with articles concerning the 
assessment of VWM. They usually use the change detection 
paradigm, but stimuli are displayed on 2D screen surfaces, 
or when immersive VR technologies are used, they employ 
real world paradigms and focus on the ecological assessment 
of VWM.

Thus, we adopted a reductionist approach and adapted 
the standard one-shot change detection paradigm to 
be used in an immersive VR context. We devised an 

Fig. 6   The modeled HRs (blue) and human HRs (red) for the meth-
ods LDS and SSR. The mean is denoted by the line and the standard 
deviation by the shaded area. The horizontal axis denotes the set size. 

Correlations r (p value) are reported in the title of each subfigure. 
(colour figure online)
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experiment, i.e., the change detection test, and analysed 
the influence of set size, objects distribution, both in 
terms of spatial layout and VA, and observation time on 
the human ability to detect changes. The results show that 
there is a limitation of VWM capacity in immersive visu-
alization, as previously shown for 2D stimuli, and that 
depth cue does not affect change detection ability.

Furthermore, we have modeled the human behavio-
ral data of VWM through the proposed image-comput-
able model. We provided the model with the same input 
images of the experiments with human participants. The 
model aims to replicate the same human pattern of HR 
and FAR. To accomplish it, we used the saliency maps 
of the observed scenes as the input of the model, then the 
proposed model estimates the quantities of interest. To 
compute the saliency maps we use an available framework 
that provides fourteen methods since we are interested in 
modeling the VWM and not the saliency maps of the scene 
only. The proposed model can replicate the human perfor-
mances, as HR and FAR, with a good agreement.

The work has limitations and possible future improve-
ments. First, we considered a limited range of VAs, the 
maximum considered angle is 120 degrees. Further experi-
ments to test the entire 360-degree world surrounding the 
user are necessary. Another limitation is that we did not 
consider some cues, e.g., lower visual acuity in the periph-
ery and out-of-focus depth ranges that may alter users’ 
perceptual acuity, thus VWM. Moreover, we did not check 
eye movements with an eye tracker. A further develop-
ment will be to measure eye position and depth fixation to 
consider such effects.

Finally, we performed the experiment with a simple 
scene, and only blue spheres in two spatial configurations 
were considered. A more complex scene and using differ-
ent objects could enhance the influence of stereoscopy and 
the 3D layout, with respect to standard 2D stimuli. Indeed, 
the contribution of perspective cues, motion-parallax, 
visual object occlusions, and (disparity-based) stereop-
sis would become more evident. The considered stimuli 
allowed us to confirm the existence of a limit of VWM 
capacity of around 7±2 items, as found in the literature 
based on the use of 2D videos and images, and to devise an 
image-computable model capable of replicating the human 
results. The same experiment with more complex objects, 
shapes, textures, and colors, and with more complicated 
spatial arrangements, could further validate the devised 
model. The final aim is to better design the spatial arrange-
ment of information in immersive visualization.
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