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Abstract
Due to recent improvements in virtual reality (VR) technology, the number of novel applications for entertainment, edu-
cation, and rehabilitation has increased. The primary goal of these applications is to enhance the sense of belief that the 
user is “present” in the virtual environment. By tracking the user’s skeleton in real-time, it is possible to synchronize the 
avatar’s motions with the user’s motions. Although current common devices implement body tracking to a certain degree, 
most approaches are limited by either high latency or insufficient accuracy. Due to the lack of positional and rotation data, 
the current VR applications typically do not represent the user’s motions. In this paper, we present an accurate, low-latency 
body tracking approach for VR-based applications using Vive Trackers. Using a HTC Vive headset and Vive Trackers, we 
have been able to create an immersive VR experience, by animating the motions of the avatar as smoothly, rapidly and as 
accurately as possible. An evaluation showed our solution is capable of tracking both joint rotation and position with reason-
able accuracy and a very low end-to-latency of 6.71 ± 0.80 ms . Due to this merely imperceptible delay and precise tracking, 
our solution can show the movements of the user in real-time in order to create deeper immersion.

Keywords  Virtual reality · Real-time tracking · Full-body avatar · Low-latency · HTC Vive tracker · Inverse kinematics

1  Introduction

Virtual reality (VR) can be experienced wearing novel 
Head-Mounted Displays (HMDs). In the last few years, there 
has been a rapid improvement in VR technology, increasing 
the availability of HMDs to consumers (Choi et al. 2016; 
Friðriksson et al. 2016). The most advanced HMDs, like 
Oculus Rift, HTC Vive, and PlayStation VR, already have a 

high-definition resolution, a wide field-of-view, and a high 
refresh rate. Furthermore, novel VR systems are capable of 
positional and rotational tracking of the HMD as well as 
additional VR devices. Tracking systems in VR can pro-
vide new possibilities for a more comfortable, immersive 
experience and gameplay (Goradia et al. 2014). Oculus 
Rift, for example, enables tracking through an embedded 
infrared system (Farahani et al. 2016). HTC Vive has simi-
lar technical specifications to Oculus Rift Consumer Ver-
sion 1. Both HMDs provide high-definition resolution of 
2160 × 1200 pixels, split between each eye and can maintain 
a frame rate of up to 90 Hz (Farahani et al. 2016; Martindale 
2018). But the special feature of the HTC Vive is the Vive 
Tracker, which allows the developers to bring any real-world 
object into the virtual environment, e.g., by simply attaching 
it to sporting equipment like a baseball bat, a golf club or 
a weapon.1 The position and orientation of this device are 
then tracked by two “Lighthouse” stations, based on infrared 
signals. Each station consist of infrared LEDs, flashing at 
regular intervals and signaling the start of a cycle (Demp-
sey 2016). Two little motors project laser beams across the 
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room, one spinning horizontally and the other vertically. The 
sensors on the VR devices then detect these lasers and can 
determine its position based on the order its sensors receive 
the laser sweeps.

Due to this HMD development, the number of novel and 
innovative games for rehabilitation, training and exercise 
activities has greatly increased, e.g., Bolton et al. (2014), 
Collingwoode-Williams et al. (2017), Jain et  al. (2016) 
and Sra and Schmandt (2015). The primary goal of these 
applications is to give the user an illusion of the presence 
of “being there” in the VR (Desai et al. 2014; Goradia et al. 
2014). To create an immersive experience, the connection 
between the user and the VR, as well as between the player 
and the avatar, has to be established. Immersive VR can 
be used to induce ownership over a virtual body that sub-
stitutes the real body, as seen from the first-person view 
(Banakou et al. 2013; Peck et al. 2013). The person explor-
ing VR would then be able to look down and perceive the 
avatar as her/his own body. Hence, by synchronizing the 
body movement of the user and their avatar, a positive effect 
on the cognitive ability of the user as well as the feeling 
of agency over the avatar can be achieved (Collingwoode-
Williams et al. 2017; Peck et al. 2013). In particular, mul-
tiplayer VR games have the requirement of synchronizing 
the whole body in real time in order to create deeper immer-
sion (Jiang et al. 2016). Recent commercial approaches use 
infrared VR devices to track the full-body movements in 
real-time.2 Furthermore, other developers provided Unity 
3D game engine-based asset packages to achieve full-body 
tracking, e.g., Vive IK Demo3 and Final IK.4 However, to 
the best of our knowledge, there is no research on evaluating 
these existing commercial kinematic solutions, particularly 
regarding its accuracy and latency.

Tracking and representing body movements, regardless of 
the user orientation, can be challenging. Although common 
devices implement body tracking to a certain degree, most 
approaches are limited by either high latency or insufficient 
accuracy. Due to this lack of data about a user’s position and 
orientation in the world, the current VR games typically do 
not track or represent the body of the user (Farahani et al. 
2016).

In this paper, we implement a low-latency body tracking 
approach for immersive VR-based applications. By using 
only infrared VR controllers, e.g., Vive Tracker it is possible 
to transfer full-body player’s motions onto a virtual avatar. 

Additionally, we measure the end-to-end latency. The main 
research contributions of our work are the following:

–	 We develop a latency measurement tool in order to evalu-
ate the total delay of the proposed method. Using this 
tool, we want to show that the end-to-end latency of the 
developed system stays below 20 ms since this satisfies 
the requirement of the VR experiences.

–	 In contrast to systems using motion capture suits, we only 
use a small number of sensors to avoid high initial costs 
as well as complex setup. We do not explicitly track each 
body joint. In our research, we only track the position and 
orientation of the end-effectors (e.g., hands). We then 
solve the inverse kinematics (IK) problem to determine 
the angle of other joints in order to enable full-body 
tracking. This approach satisfies the desire to reduce the 
amount of sensor.

–	 We use infrared VR controller, which do not suffer from 
occlusion and high latency, such as the Kinect sensor.

–	 Our system is entirely based on low-cost hardware and 
low-level game API. We can easily access the lowest 
level in order to achieve maximal performance. Addition-
ally, because our body tracking solution should be avail-
able, e.g., for researchers to create immersive VR experi-
ences, we include source code, which can be accessed on 
GitHub.5

The rest of this paper is structured as follows. Section 2 
provides the related work. In Sect. 3, the approach of body 
tracking using infrared sensors and a latency measure-
ment tool are described. An experimental evaluation of the 
deployed system is given in Sect. 4. A discussion of the 
results and a conclusion follows in Sect. 5.

2 � Related work

2.1 � Full‑body tracking

Many recent research publications add a growing base of 
evidence to support the use of VR and full-body tracking. 
Examples recently showed the benefits of having a full-body 
avatar in a virtual environment by demonstrating the impor-
tant role of realistic looking virtual humans (Latoschik et al. 
2017). Furthermore, owning a virtual body and perceiving 
it from the first-person perspective is also essential when 
performing reaching tasks in VR (Thomas et al. 2016).

2  IKinema Orion: https​://ikine​ma.com/orion​, last visited on April 
3rd, 2018.
3  Vive IK Demo: https​://githu​b.com/James​Bear/vive_ik_demo, last 
visited on April 3rd, 2018.
4  Final IK: https​://asset​store​.unity​.com/packa​ges/tools​/anima​tion/
final​-ik-14290​, last visited on April 3rd, 2018.

5  Body Tracking Demo: https​://githu​b.com/CatCu​ddler​/BodyT​racki​
ng, last visited on April 4th, 2018.

https://ikinema.com/orion
https://github.com/JamesBear/vive_ik_demo
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://github.com/CatCuddler/BodyTracking
https://github.com/CatCuddler/BodyTracking
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The most popular game systems, capable of motion-sens-
ing such as Microsoft Kinect6 or Nintendo Wii7 already pro-
vided significant evidence that exergames are entertaining 
and motivating (Lange et al. 2011). However, both Kinect 
versions suffer from inconsistent tracking, jittering, and 
unreliable data (Friðriksson et al. 2016). Kinect V1 sensor 
is only accurate when tracking gross movements such as sit-
to-stand, but is very poor for fine movements such as hand 
clapping, toe or finger tapping (Galna et al. 2014). Due to 
the new technology, the Kinect V2 which is based on the 
time-of-flight principle is more accurate in detecting small 
movements and provides better tracking results. However, 
the latency of the new version remains high, approximately 
at 170 ms when combined with the Oculus Rift (Botev and 
Rothkugel 2017). An additional disadvantage of a single 
Kinect sensor is that it can only poorly track the rotation of 
body parts and is incapable of tracking when the user stands 
sideways (Friðriksson et al. 2016).

Although the Kinect suffers from occlusion, provides 
noise in skeleton tracking and has a high latency, it is the 
most popular device for body tracking. Due to its adequate 
accuracy and low cost, many researchers are using this tech-
nology to track the user’s movements. Shum and Ho (2012) 
investigated the major problems of Kinect and developed 
a framework for a best-matched posture from the captured 
motion. The proposed solution can overcome the problem 
of missing Degree of Freedom (DoF) due to occlusions and 
noises. Sra and Schmandt (2015) used Kinect V2 devices 
to track objects and users. An Oculus Rift DK2 is used for 
tracking of the head rotation. Collingwoode-Williams et al. 
(2017) used Kinect V1 to research the effect of limb and arm 
synchronization on body ownership in VR. In their study, 
the user wearing a HMD was able to see a gender-matched 
avatar in a virtual mirror, that moved its limbs synchronously 
with the user. Bolton et al. (2014) developed a VR-based 
exergame, based on the game Paperboy, where the player is 
wearing a VR headset and driving a bicycle. A Kinect cam-
era tracked the user movements of throwing newspapers into 
the neighborhood mailboxes. The arms were synchronized 
to create a high level of immersion. To overcome occlusion 
problems, other studies even use multiple Kinect devices to 
track a single user (Desai et al. 2017).

Unfortunately, the Kinect sensor in combination with VR 
it inaccurate and will eventually show a false avatar posture 
(Tao et al. 2013). To provide a more accurate tracking, other 
recent studies have attempted to use a suit-based motion 
capture technology. These body tracking suits have attached 

infrared LED markers which can be then detected by a high-
speed camera. Peck et al. (2013) developed a VR experience, 
whereby the motions were tracked by the OptiTrack8 system 
with 12 cameras. The movements could be reconstructed at 
100 Hz and synchronized with the virtual avatar. The users 
wearing the HMD could see their virtual body from the first-
person perspective as well as a reflection in a virtual mirror. 
Likewise, Banakou et al. (2013) used 34 cameras to track 
user’s motions. Chan et al. (2011) proposed a dance system 
using a similar optical motion capture system. The user, 
wearing the motion capture suit, can learn new dance move-
ments by imitating the motions demonstrated by a virtual 
teacher and listening to the feedback. Since suit-based track-
ing technology is capable of real-time full-body tracking 
of multiple users, some authors developed VR multiplayer 
applications or games, e.g., creating a physical condition 
control for athletes and dancers (Kasahara et al. 2017). In 
contrast to a single infrared camera, such as Kinect, a wear-
able motion capture suit is capable of a very accurate body 
tracking. However, it is very expensive and complicated to 
use. Using a suit with LED markers for tracking requires a 
setup area and multiple high-speed cameras. Due to the high 
initial cost and complex setup, such a motion capture system 
is in general not applicable for home-based usage.

For tracking full-body movements also Inertial Measure-
ment Units (IMUs) can be attached to the user’s body. Dif-
ferent commercial tracking systems, such as PrioVR9, Per-
ception Neuron10, or Xsense11 are based on IMU. Perception 
Neuron furthermore utilizes a special data glove with a Vive 
Tracker in order to track hand position as well as individual 
fingers. Tsai et a. (2015) developed an own wearable sensor 
to determine the skeleton posture in real-time. Moreover, 
measurement values of the integrated sensors of a HMD can 
be used to recognize steps (Caserman et al. 2016). Applying 
this step detector, the researchers were able to synchronize 
the feet of the user while walking on a treadmill. The user 
can then look down and see her/his virtual body from the 
first-person perspective as she/he would in the real world. In 
another work, an IMU is attached to a bicycle to detect the 
steering and breaking information (Melo et al. 2016). The 
player movements have been detected while the player was 
sitting on the bicycle with the feet on the pedals and hands 
on the handlebar.

6  Microsoft Kinect: https​://devel​oper.micro​soft.com/en-us/windo​ws/
kinec​t, last visited on January 28th, 2018.
7  Nintendo Wii: https​://www.ninte​ndo.co.uk/Wii/Wii-94559​.html, 
last visited on January 28th, 2018.

8  OptiTrack system: http://www.optit​rack.com, last visited on Janu-
ary 17th, 2018.
9  PrioVR: https​://yostl​abs.com/priov​r/, last visited on July 31st, 2018.
10  Perception Neuron: https​://neuro​nmoca​p.com, last visited on July 
31st, 2018.
11  Xsense: https​://www.xsens​.com/, last visited on 31st July, 2018.

https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
https://www.nintendo.co.uk/Wii/Wii-94559.html
http://www.optitrack.com
https://yostlabs.com/priovr/
https://neuronmocap.com
https://www.xsens.com/
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2.2 � Inverse kinematics

Recent studies have attempted to use IK to determine a set 
of appropriate joint configurations based upon the desired 
end-effector position. IK approaches based on Jacobian are 
originally used in robotics in order to control (industrial) 
manipulators and were already presented in the 80’s (Orin 
and Schrader 1984; Nakamura and Hanafusa 1986). The IK 
problem, to provide a solution that satisfies the positional 
and orientational constraints of each specific joint, has been 
well studied. Kenwright (2012) presented a realistic and 
robust method for solving nonlinear IK problems with angu-
lar limits using the Gauss–Seidel iterative method. The pro-
posed method merely requires a small number of iterations 
and needs only a few milliseconds to compute the solution. 
Aristidou and Lasenby (2011) proposed a novel heuristic 
method, combining forward and backward IK. Other recent 
studies improved IK solutions using a multivariate Gaussian 
distribution model, which precisely specifies the joint con-
straints of a kinematic skeleton by integrating biomechanical 
properties and physical capacity of a human (Huang et al. 
2017). Additionally, IK systems based on a probabilistic 
model of learned human poses were presented (Grochow 
et al. 2004). However, such a system can only produce the 
most likely pose satisfying the constraints. Other research-
ers try to improve tracking quality by taking advantage of 
neural networks to reconstruct the motions, such as walking, 
jogging, jumping, crouching and turning (Jiang et al. 2016).

2.3 � Latency

To improve the feeling of the presence in the VR, merely 
tracking user movements in order to synchronize the move-
ments with those in VR is not sufficient (Collingwoode-Wil-
liams et al. 2017; Jain et al. 2016). Similarly, the total delay 
from the time movement occurs, to the time the results of 
that motion are displayed, should be well considered. A high 
frame rate and low HMD latency must be ensured in order to 
create an immersive VR experience (Farahani et al. 2016). 
On the one hand, a high latency of the HMD can contrib-
ute to cybersickness symptoms of disorientation, headache, 
nausea, and dizziness (Choi et al. 2016; Steed 2008). On 
the other hand, a significant delay between a physical move-
ment and an output image can decrease the user’s sense of 
immersion (Farahani et al. 2016; Friston and Steed 2014). 
In particular, in VR, the end-to-end latency should not be 
higher than 20ms (Raaen and Kjellmo 2015). Kasahara et al. 
(2017) also showed similar results. The researchers found 
that a high latency ( > 30 ms ) will break the sense of agency 
and body ownership. Therefore, when developing VR expe-
riences, it is essential to keep the end-to-end latency as low 
as possible.

Previous works have shown that one or more synchro-
nized cameras can be used to measure the latency in an 
immersive virtual environment (Friston and Steed 2014; 
Roberts et al. 2009). By filming the tracked real object and 
the associated output of the virtual environment, the delay 
can be determined using image processing techniques.

3 � Approach

To develop a reliable real-time body tracking system, that 
can be used in an immersive VR experience, the HTC 
Vive HMD and the Vive Tracker are used to track the 
movements of the user. By using two base stations and the 
VR devices with a large number of infrared sensors, such 
a system suffers much less from occlusion than a single 
Kinect device. With this technology, we can develop a reli-
able full-body tracking system which can provide accurate 
user posture, regardless of the user orientation. Thereby, 
the technical requirements of using only a small number of 
sensors and avoiding high costs as well as complex setup 
(see Sect. 1) are satisfied. With an accurate real-time body 
tracking solution and an efficient IK solver, the virtual 
character can be synchronized with the user. The person 
wearing a HMD is then able to view the virtual body from 
the first-person perspective.

3.1 � Development of the body tracking system

In this section, the approach of the real-time body tracking 
system to determine user movements will be described. 
Because this system should be used to synchronize the 
virtual avatar with the body movements of the user, an 
articulated character model with a skeleton must be cre-
ated. Then, by obtaining the positional and rotational data 
of the Vive Trackers that are bound to the hands and feet, 
the full-body motions of the user can be continuously 
tracked. Through the efficient implementation of the itera-
tive method for solving the IK problem, a set of appro-
priate joint configurations in an articulated model based 
upon a desirable end-effector position can be determined 
in only a few iterations. Finally, the skeleton is animated 
according to the calculated positions and orientations of 
the bones. In the following, a detailed description of these 
individual steps will be given. The flowchart for the body 
tracking system is presented in Fig. 1.
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3.1.1 � Character model

An articulated character with a skeleton was modeled with 
the MakeHuman12 open source tool. A skeleton of a small 
number of bones was consciously chosen in order to easily 
define joint constraints to solve the IK problem and to ani-
mate the user’s motions, which will be described later. To 
facilitate the transfer of the character model to the Kore13 
framework, the Open Game Engine Exchange format 
(OpenGEX14) is used. Both, the OpenGEX format and the 
Kore framework are open source projects. OpenGEX exports 
skinned meshes (vertex data, skeleton, bind-pose transforms, 
bone influence weighting data) in a human-readable text-
based file. Kore is a low-level game library and hardware 
abstraction framework, which is implemented in the C++ 

programming language. It provides the necessary functional-
ity to develop games and multimedia applications with high 
performance.

A skeleton is defined as a tree structure of bone nodes, 
where each of these nodes is described by a 4 × 4 trans-
formation matrix. The transformation matrix describes the 
bind-pose of a bone node. Thus,  the default pose of the 
character mesh is stored before any bone transformation is 
applied. When the animation is applied, this matrix is used 
to calculate the new position and orientation. However, in 
order to prevent unnatural-looking poses while animating 
the character, we have to define a DoF for each joint. We 
have to restrict the possible rotations, i.e., rotations around 
the x-, y-, and z-axis. The generated skeleton gives us 56 
DoF in total, as it can be seen in Table 1.

The constraints are defined by creating an axis vector 
� ∈ ℝ

3×1 for each joint and setting the angular limits for each 
of the axes. To prevent such an abnormal pose, like it can be 
seen in Fig. 2, a constraint for the knee has to be specified, 

Fig. 1   A flowchart for the body tracking system. After obtaining the position and rotation of the Vive Tracker, we solve the IK problem in order 
to determine the appropriate joint configurations. In the last step, we animate the character

Table 1   DoF of the articulated character model

The number in the brackets indicates how many of these joints exist 
in the skeleton

Joint DoF Joint DoF

Head (1) 3 Foot (2) 3
Neck (1) 3 Ball (2) 3
Pelvis (1) 3 Clavicle (2) 2
Spine (3) 3 Upper arm (2) 3
Thigh (2) 3 Lower arm (2) 2
Calf (2) 1 Hand (2) 2
Total 56

Fig. 2   Character foot reached the desired end position in both vari-
ants. However, only the left body posture is natural. On the right, an 
unnatural pose is shown

12  MakeHuman: http://www.makeh​uman.org, last visited on Febru-
ary 3rd, 2018.
13  Kore: https​://githu​b.com/Kode/Kore, last visited on April 3rd, 
2018.
14  OpenGEX: http://openg​ex.org, last visited on February 21st, 2018.

http://www.makehuman.org
https://github.com/Kode/Kore
http://opengex.org


160	 Virtual Reality (2019) 23:155–168

1 3

i.e., �knee =
[
1 0 0

]T with angular limits minknee = 0 and 
maxknee = 2 . Hence, the knee can rotate only around the x-axis 
and the angle can be only in the range of 0 and 2 radians. 
When a joint rotates around multiple axes, consequently angu-
lar limits for each axis have to be specified.

3.1.2 � Position and rotation tracking

The position and rotation tracking is the core task of the full-
body tracking system to represent the movements of the user 
in the VR. For tracking Vive Trackers are strapped to hands 
and feet. The sensors can accurately track the yaw, pitch and 
roll movements as well as the spatial position.

The coordinate system of the avatar is attached on the floor 
and is a right-handed coordinate system, where the x-axis 
points to the left, the y-axis points backward and the z-axis 
points upward. To locate the character so that the user wear-
ing HMD can look down and see her/his virtual body, the 
character has to be transformed, rotated and scaled. First, the 
character is scaled by a �init ∈ ℝ

4×4 matrix so that the eye 
height of the character corresponds to the height of the HMD. 
The sensor measurements of the HMD are provided in a head-
fixed coordinate system, where the x-axis points to the right, 
the y-axis points upward and the z-axis points backward. To 
calculate the scale factor, we can divide the current height 
of the user (y position of the HMD, py,hmd ) by the charac-
ter height (z position of the character head bone, pz,head ), i.e., 
s = py,hmd∕pz,head.

In addition, we have to rotate the character so that its 
orientation coincides with the orientation of the user. Let 
�init ∈ ℝ

4×1 be the initial quaternion that rotates the charac-
ter so that the virtual body looks in the same direction as the 
user. Quaternions are used because they are very simple, effi-
cient and do not suffer from Gimbal lock (Shoemake 1985). 
However, because the local transformation of the character is 
calculated by applying the scale, rotation and lastly transla-
tion matrix, we have to convert the quaternion to a matrix. 
To include quaternion calculations in a regular, matrix-based 
transformation pipeline, we can represent the quaternion 
q =

[
x y z w

]T as a matrix (Shoemake 1985):

Finally, we translate the character to the position of the 
HMD, represented by a vector �hmd ∈ ℝ

3×1 . Let �init ∈ ℝ
4×4 

be the initial transformation matrix and is described as:

(1)

�init =

⎡⎢⎢⎣

1 − 2y2 − 2z2 2xy − 2zw 2xz + 2yw

2xy + 2zw 1 − 2x2 − 2z2 2yz − 2xw

2xz − 2yw 2yz + 2xw 1 − 2x2 − 2y2

⎤⎥⎥⎦

(2)�init =

⎡⎢⎢⎢⎣

1 0 0 px,hmd

0 1 0 0

0 0 1 pz,hmd

0 0 0 1

⎤⎥⎥⎥⎦

Combining all three matrices, the coordinate system of the 
character is placed so that the user can look down and see 
her/his virtual body. Multiplying the raw positional vector 
�raw[t] ∈ ℝ

4×1 of the Vive Tracker at time step t with the 
inverse transformation matrix �† will transform the sensor 
measurements to the character local coordinate system:

Similar, the orientation of the Vive Tracker �raw[t] ∈ ℝ
4×1 , 

has to be transformed as:

3.1.3 � Implementation of inverse kinematics with reduced 
Jacobian matrix

To solve the IK problem, we use the transformed positional 
vector and the quaternion (rotation) computed in the previ-
ous step. With the known desired position and orientation 
of the end-effector (e.g., a hand or a foot), the angle of each 
predecessor joint (e.g., an elbow or a knee) can be computed 
using an iterative, numerical method. An overview of the 
algorithm is as follows:

1.	 Calculate error between desired and actual position as 
well as rotation

2.	 Check for convergence
3.	 Calculate Jacobian
4.	 Calculate Pseudo-Inverse
5.	 Calculate joint angles for each bone joint
6.	 Apply quaternions to the transformation matrix
7.	 Update new positions.

In each iteration, in the first step, an error between the 
desired and actual position Δ�pos as well as the desired and 
current rotation Δ�rot of the end-effector has to be calcu-
lated. Subsequently, the error Δ� = [Δ�pos;Δ�rot] is normal-
ized. When checking for convergence in the second step, 
the error is compared with the maximum error threshold, 
i.e., ||Δ�|| < 𝜖 . When the end-effector is close enough to 
the desired location or when there is no significant change 
between current and desired rotation, the algorithm will ter-
minate. Because the end-effector may not be able to reach 
the desired position, we have to specify the maximal itera-
tion number. This can happen when the desired position is 
out of range and therefore too far away to be reached. Oth-
erwise, the Jacobian matrix � is calculated in the third step. 
The position and rotation values of the required axes can be 
obtained from a combined transformation matrix:

(3)�†
=

(
�init ⋅ �init ⋅ �init

)−1
, �†

∈ ℝ
4×4

(4)�trans[t] = �†
⋅ �raw[t], �trans[t] ∈ ℝ

4×1

(5)�trans[t] = �−1
init

⋅ �raw[t], �trans[t] ∈ ℝ
4×1

(6)0�j =

[
0�xj

0�yj
0�zj

0�j
0 0 0 1

]
∈ ℝ

4×4,
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where 0�j ∈ ℝ
3×1 represents the global rotation around the 

x-, y- and z-axis and 0�j ∈ ℝ
3×1 represents the global posi-

tion of the jth joint with respect to the origin.
The Jacobian � is defined by the partial derivatives of the 

joint angles and the difference between the current position 
and the desired position of the end-effector. It can be deter-
mined by computing the cross-product of the joint angle and 
the change in end-effector location:

where 0�n ∈ ℝ
3×1 represents the current position of the 

end-effector, 0�j ∈ ℝ
3×1 the rotation axis and 0�j ∈ ℝ

3×1 the 
position vector of the jth joint. In order to minimize the 
computational effort, we calculate for each end-effector only 
three partial derivatives. In other words, e.g., for a hand to 
reach the final position, we only determine the position and 
orientation of the three predecessor joints. The Jacobian � 
is then build as:

where the 0th joint specifies the root node and the 3rd joint 
the end-effector. Thus, to manipulate the hand, we rotate 
the three predecessor joints, i.e., lower arm, upper arm, and 
clavicle.

In the fourth step, the pseudo-inverse of the Jacobian � has 
to be computed. Due to our adjustment of the Jacobian matrix, 
it will always have the same dimensionality:

The calculation of the left pseudo-inverse will lead to the 
determination of a smaller inverse matrix ( 3 × 3 ) and is 
therefore advantageous.

In the fifth step, the joint angles are calculated by multiply-
ing the inverse Jacobian with the difference between desired 
and current position as well as rotation of the end-effector, as 
it can be seen in Eq. 10:

In the sixth step, we can apply the new rotation to the joints:

Before the quaternion can be applied to the transformation 
matrix, the angular limits have to be ensured as described 
in Sect. 3.1.1. Otherwise, the character hand or foot will 
reach the desired position; however, the individual joints 
within the kinematic chain can cause unnatural movements. 
The joint rotations are enforced through clamping between 
a lower bound (LB) and an upper bound (UB):

(7)0�n,j =
�0�n

��j

=

[
0�j × (

0�n −
0�j)

0�j

]
, 0�n,j ∈ ℝ

6×1

(8)0�3 =
[
0�3,1

0�3,2
0�3,3

]
∈ ℝ

6×3,

(9)
�−1
left

=

(
�T�

)−1
⏟⏟⏟

3×3

�T.

(10)Δ� = �−1 ⋅ Δ�, Δ� ∈ ℝ
3×1

(11)�
(k+1)

= �
(k)

+ Δ�

To apply the rotation to a joint, the quaternion is first rep-
resented as a matrix (see Eq. 1). The local transformation 
matrix is then computed by multiplying the bind transforma-
tion matrix with the new rotation matrix.

Finally, in the last iteration step, the new rotation of each 
joint in the skeleton is calculated by updating the combined 
transformation matrix:

where 0�i is the combined transformation matrix, �i is the 
local transformation matrix of the ith bone and 0�i is the 
combined transformation matrix of the ith bone’s parent. 
Thus, a bone’s combined transformation matrix is deter-
mined by first applying its local transformation and then by 
applying the local transform of its parent. If the maximum 
number of iterations is not yet reached, we go back to the 
first step. Otherwise, the algorithm terminates.

3.1.4 � Animation

To animate the avatar, the calculated new orientations have 
to be applied to the bone joints. While solving the IK, the 
quaternion of each joint was updated, depending on the 
desired position and orientation of the end-effector. How-
ever, the difference between the new joint orientation, com-
pared to the joint orientation from the previous frame, is 
eventually large. In this case, we have to interpolate between 
the quaternions by applying the SLERP method. Then, to 
calculate the new skinned vertex position, we first have to 
calculate a final transformation 0�j by multiplying the com-
bined transform 0�j with the inverse transform matrix.

By iterating over all vertices, we calculate the new 
position of every vertex with respect to the bone rotation. 
Because each vertex and, above all, vertices near the joint 
can be influenced by several bones, the new position of the 
vertex is determined by a weighted average of the influen-
tial bone transformations. Therefore, for each vertex, the 
new position vector is determined by multiplying the final 
transform matrix of the bone influencing this vertex with 
the current position vector and the bone weight. The final 
vertex position �new is computed as proposed by Kavan et al. 
(2010):

(12)�
(k+1)

=

⎧
⎪⎨⎪⎩

LB if �(k)
+ �−1Δ� < LB

UB if �(k)
+ �−1Δ� > UB

�
(k)

+ �−1Δ� otherwise

(13)0�i =
0�i ⋅ �i, �i ∈ ℝ

3×3

(14)�new =

n−1∑
n=0

(
0�n ⋅ �

)
⋅ wn, �new ∈ ℝ

3×1
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where � is the current vertex position, �n is the final trans-
form of the nth bone, that influences vertex � and wn is the 
weight of the nth bone.

Finally, the vertex buffer is updated with the new cal-
culated vertex positions and normals. The vertex shader 
then uses this buffer to draw indexed vertices. In the current 
implementation, the vertex skinning calculation is done on a 
Central Processing Unit (CPU), that runs the sequential code 
as fast as possible. However, especially in the context of VR 
games, the execution speed has to be considered. Therefore, 
these computations could also be carried out by a Graphical 
Processing Unit (GPU), that can do hundreds of calculations 
in parallel. These would eventually speed-up the calculations 
of the animation system.

The currently developed prototype can track multiple end-
effectors in order to animate the virtual body. In Fig. 3, the 
actual posture of the user and the corresponding VR image 
is shown. In this case, the Vive Tracker was attached to the 
foot in order to synchronize the virtual leg with the user’s 
motions.

3.2 � Development of a latency measurement tool

In the second part, a latency measurement tool was imple-
mented to measure the total delay of the implemented body 
tracking system. The total delay of a VR-based tracking sys-
tem represents the time at which the motion occurs, to the 
time the tracking system detects this motion, and the results 
are displayed on the HMD. Using this latency measurement 
tool, we expect to show that the total delay of the developed 
method stays below 20 ms . This would satisfy the require-
ment for a real-time VR experience (Raaen and Kjellmo 
2015; Kasahara et al. 2017).

The easiest way to measure the latency is to record the Vive 
Tracker and the output screen at the same time with a high-
speed camera. When the Tracker moves in a specific pattern, 
a video can be analyzed frame by frame in order to identify 

distinctive motions and to calculate the delay between events. 
As proposed by Steed (2008), the Tracker can be bind to a 
string in order to swing it. Applying this approach, the fea-
tures can be identified by extracting the horizontal positions 
of both objects and detecting the local minima and maxima. 
By calculating the deviation between the local minimum or 
maximum of the Tracker and the local minimum or maximum 
of the virtual object, the frame difference between them can 
be calculated and finally, the total delay can be determined. 
Using this approach of identifying the frames at which the 
Tracker changes the direction and calculating the difference 
between them, the measurements include only the end-to-end 
latency of the developed application. However, we cannot 
make any statement about the accuracy.

To measure the end-to-end latency, the steps described 
below should be followed:

1.	 Load the video and select two bounding boxes, that 
contain the Vive Tracker and the corresponding virtual 
object

2.	 Extract the horizontal position of both bounding boxes 
in each frame

3.	 Apply the Gaussian kernel to smooth the data and nor-
malize the samples

4.	 Identify distinctive motions by detecting local peaks
5.	 Calculate the frame difference and determine the latency.

Once a capture of the targets in motion has been taken, an 
algorithm tracks their locations throughout the video. For 
this purpose, we use a KCF tracking algorithm, which is 
already implemented by OpenCV15 and is able to track mul-
tiple objects simultaneously. After the KCF tracker is initial-
ized, a video can be loaded and two initial bounding boxes, 
one for the marker and one for the VR object, are defined.

To detect distinctive motions, the horizontal positions 
of both bounding boxes are smoothed and normalized. By 
applying the Gaussian kernel at different scales, we reduce 
the noise and ensure smooth data. Then the peaks, thus, the 
minima and maxima of both curves have to be identified. 
When a peak is detected, the frame number is saved in an 
array. This results in two equally long arrays, one contain-
ing frame numbers of the peaks for the Vive Tracker and 
the other containing frame numbers for the virtual object.

Once all frames have been processed and the features 
were extracted, the time difference between the two events 
tmotion − tdisplay is calculated. The latency is calculated as 
follows:

(15)t =
1

N

N∑
i=0

(
Xi − X̃i

)
⋅

1000

FPS
ms,

Fig. 3   The user’s actual posture (left) and a first-person perspective of 
the user looking down at the virtual body (right)

15  KCF Tracker: http://docs.openc​v.org/trunk​/d2/dff/class​cv_1_1Trac​
kerKC​F.html, last visited on February 17th, 2017.

http://docs.opencv.org/trunk/d2/dff/classcv_1_1TrackerKCF.html
http://docs.opencv.org/trunk/d2/dff/classcv_1_1TrackerKCF.html


163Virtual Reality (2019) 23:155–168	

1 3

where N is the number of peaks identified in a video, Xi 
is the frame number of the ith peak for the Vive Tracker, 
and X̃i is the frame number of the ith peak for the virtual 
object. The total delay is then determined by multiplying 
the mean difference between two events with the time, the 
camera needs to capture a new image. The flowchart of the 
latency measurement tool, including the entire calculation, 
is presented in Fig. 4.

4 � Results

The main objective of this research is to evaluate the end-to-
end latency of the proposed method as well as the accuracy 
and reliability of motions tracking with a Vive Tracker. To 
evaluate the performance of the tracking system, we deter-
mined the total delay with the developed latency measure-
ment tool. We analyzed which limitations and errors can 
occur and how we can minimize them. Additionally, we 
evaluated if the person exploring VR can perceive the avatar 
movements as her/his own.

For the evaluation, an HTC Vive was connected to a 
computer running Microsoft Windows 10 to enable full-
body tracking of the user. The computer has an 3.30 GHz 
Intel CoreTM i7-5820K processor with 16 GB RAM and a 
NVIDIA GeForceTM GTX 980 graphics card. It has sufficient 
processing power and it fulfills the minimal requirements for 
the HTC Vive.16

4.1 � Evaluation of the body tracking system

The evaluation of the body tracking system was conducted 
in the TU Darmstadt, Germany. A total of 13 subjects par-
ticipated, 1 female and 12 males with an average age of 
27 years. First, the participants were asked to fill out the 
pre-study questionnaire, which included personal questions 
about gender, age, game consumption habits, VR experi-
ence, and body tracking. Afterward, the participants tried 
out the simulation. They strapped the Vive Tracker to the 
left and right wrist, as it can be seen in Fig. 5. The bands 
were able to fix the Tracker strongly enough so that it could 
not slip away and could remain in place for the time of the 
evaluation. For the immersive experience, the subjects were 
wearing an HTC Vive HMD to view the virtual character 
from the first-person perspective. The simulation was then 
run for approximately 5 min. Finally, the participants were 
again asked to fill out the post-study questionnaire.

The results of the pre-study questionnaire (see Fig. 6) 
showed, that almost the two-fifths ( 38.5% ) play video games 
more than 7 h/week. However, almost one-third ( 30.8% ) 
never play video games. Furthermore, the majority ( 84.6% ) 
had already prior experience with HMDs, e.g., Oculus Rift 

Fig. 4   A flowchart of the latency measurement tool. The blue curve 
corresponds to the horizontal positions of the Vive Tracker and the 
red curve corresponds to the horizontal positions of the virtual object. 
One can easily recognize, that the red curve is shifted to the right. 
This horizontal difference of both curves indicates the latency of the 
distinctive motions (color figure online)

Fig. 5   For hand tracking, the Vive Tracker must be attached to the 
wrist (left). To track the leg movements, an additional Tracker must 
be strapped to the ankle (right)

Fig. 6   The results of the pre-study questionnaire

16  Minimum requirements: https​://www.vive.com/us/ready​/, last vis-
ited on February 5th, 2018.

https://www.vive.com/us/ready/
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or HTC Vive. On the one hand, some subjects reported, 
that they already suffered from cybersickness, such as diz-
ziness, nausea or a headache while wearing a HMD for a 
longer time. On the other hand, some of them also explic-
itly stated, that they never feel side effects of any kind. The 
majority, however, criticized an insufficiently low resolution 
of the currently available HMDs. Most of the participants 
( 84.6% ) can imagine body tracking in the context of VR-
based games. Three-fourth ( 76.9% ) would like to have an 
avatar, which synchronizes the movements and one-fourth 
( 23.1% ) is not sure if they want an avatar. However, the 
results of the post-study questionnaire reveal that almost all 
participants ( 92.3% ) would like to have body tracking in VR 
games. Body tracking has been proposed in various applica-
tion scenarios, e.g., goalkeeper, ego-shooter games and other 
first-person games, where the player can interact with virtual 
objects. The subjects furthermore suggested body tracking 
in medicine, where the user can remotely control the surgery 
with her/his own movements. VR in a combination with the 
body tracking could be used to train the users to complete a 
certain task correctly. Further scenarios could include virtual 
video calls or meetings.

Figure 7 shows the mean response of selected questions 
from the post-study questionnaire, along with their associ-
ated standard deviations. The results show that the majority 
in general likes the VR as well as the idea of body track-
ing in the VR.17 Furthermore, it was found that the subjects 
could feel as if they were “present” in the virtual environ-
ment and could also identify themselves with the avatar.18 

The subjects wanted to see the full-body avatar and not only 
the arms, as in the most current first-person games. Some 
subjects stated they liked that the avatar reflects the move-
ments of the arms; however, they missed the tracking of the 
legs. Since the current implementation can handle multiple 
end-effectors, we would only need additional Vive Tracker 
in order to track the hands and legs simultaneously.

The results of the body tracking show that the movements 
of the avatar corresponded to the real movements of the user 
and that tracking provided accurate positions.19 However, the 
orientation of the elbow did not always correspond to the 
reality. Some subjects reported, that the elbow was some-
times twisted or that they could perceive some inaccura-
cies in arm tracking. To evaluate the accuracy, the subjects 
were asked to perform various movements, including small 
and large movements at different speeds. Although the most 
subject stated that the tracking was quite accurate, some-
times the position of the virtual hands was different from 
the position of the real hands. This was especially noticeable 
when touching the own arms or hands. Subjects reported that 
while the fingers were touching in the real world, the vir-
tual fingers were too far away from each other or they were 
overlapping. In order to improve the accuracy, the length 
of the upper and lower arm could be considered. Moreo-
ver, collision detection should be incorporated in order to 
prevent self-collision.

The results of the tracking itself suggest that the subjects 
only perceived a low latency.20 A low latency was identified 
for very fast movements by only one participant, who plays 
the games more than 7 h a week. As it will be described 

Fig. 7   Rating the simulation, where 1 stands for totally incorrect, 2 for kind of incorrect, 3 for not sure, 4 for kind of correct and 5 for totally cor-
rect. The bar shows the mean responses to questions from the post-study questionnaire and the error bars indicate the standard deviations

20  Question: “The movements of the avatar were delayed”, five-level 
Likert scale, N = 13 , AVR = 1.23 , SD = ± 0.43.

17  Question: “I find the VR in general exciting”, five-level Likert 
scale, N = 13 , AVR = 4.92 , SD = ± 0.27 , question: “I like the idea of 
body tracking in VR”, five-level Likert scale, N = 13 , AVR = 4.92 , 
SD = ± 0.27.
18  Question: “I felt like I was a part of the VR”, five-level Likert 
scale, N = 13 , AVR = 4.3 , SD = ± 0.48 , question: “I could identify 
myself with the avatar”, five-level Likert scale, N = 13 , AVR = 4.07 , 
SD = ± 0.49.

19  Question: “The movements in the VR have corresponded to the 
real movements”, five-level Likert scale, N = 13 , AVR = 4.23 , 
SD = ± 0.59 , question: “The tracking was accurate”, five-level Likert 
scale, N = 13 , AVR = 4.07 , SD = ± 0.64.
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in the next section, the total delay of the tracking remains 
very low, at 6.71 ± 0.80 ms . Some subjects reported that the 
tracking had some jitter problems.21 This sometimes hap-
pened, when the Vive Tracker was not able to detect enough 
laser sweeps from the base stations. When holding an arm in 
a steady position, no noise or other tracking errors could be 
identified. Three subjects, however, reported, that the arm 
was for a short moment locked at some position. Then, after 
the subjects stretched the arm again, the arm “jumped” to 
the right position.

Finally, the results show that almost all subjects would 
like to have body tracking also in other VR games.22 For 
a more immersive experience, finger recognition should 
be included, e.g., using a Leap Motion23 device or spe-
cial gloves such as Hi5 VR Gloves,24 VRgluv,25 HaptX,26 
and VRtouch27), which can detect the motion of each indi-
vidual finger. Some subjects stated that they liked to have 
nothing to hold in their hands. However, the Vive Tracker 
that was fixed to a hand, is big and is actually developed to 
be attached to sporting equipment. In the future work, we 
could also create a smaller and lighter Tracker, e.g., using 
only a few infrared sensors in a bracelet that can be attached 
to the hand as well as ankle.

The total number of 13 participants is too low for any 
statistical conclusions. In addition to the problem of too 
few participants, some of them were friends or colleagues. 
Although the study participants were asked to answer the 
questions honestly, one cannot rule out that the feedback 
still was more beneficial. Therefore, an evaluation with more 
subjects should be carried out in future work.

4.2 � Evaluation of latency measurements

For the second part of the evaluation, an estimation using a 
latency measuring tool based on an automatic frame count-
ing method using a video camera was made. The Vive 
Tracker and the output of the virtual environment were cap-
tured by a single phone camera (iPhone SE) at 240 FPS and 
1280 × 720 pixels resolution. The virtual environment was 
rendered on a gaming monitor with a 144 Hz refresh rate and 

G-Sync support. Thanks to G-Sync, the frame rate of the 
output device can be adapted which allows us to maintain the 
frame rate at the highest possible value of the VR system. 
Thus, it was possible to ensure a frame rate of 90 FPS.

In the first step, the latency of the Vive Tracker itself was 
determined. Thus, the latency of the Tracker as provided by 
the Vive system, without further processing (thus, without 
IK or other calculations), was measured. The measurements 
have shown a latency of 6.07 ± 1.36 ms . Since the developed 
system cannot obtain a better latency than the one provided 
by the Vive system, we want to get as close to the value as 
possible.

In the second step, the latency of the developed body 
tracking system using a Vive Tracker is measured. That is 
the total time between making a movement, sensing it by 
the Vive system, solving the IK problem and displaying the 
motion. Table 2 shows the mean and standard deviation of 
the measured latency due to the different maximum number 
of iterations. For each trial (5, 10, 30, 50 and 100 maximum 
number of iterations), nine measurements were provided 
and the average (AVG), as well as the standard deviation 
(STD), were calculated. As one can see, the body track-
ing system with five maximum number of iterations shows 
the worst results with an average delay of almost 200 ms . 
With a higher iteration number (10, 30, 50 and 100), the 
delay will significantly decrease. From these results, we can 

Table 2   Measured latency due 
to the different maximal steps of 
the IK solver

Max iterations Latency (ms)

5 185.59 ± 1.30

10 55.24 ± 1.62

30 33.33 ± 0.52

50 23.78 ± 0.30

100 6.71 ± 0.80

Fig. 8   The  measured latency. With the higher iteration number, the 
latency will exponentially fall. However, with a higher maximum 
number of iteration, the frame rate will drop since we would not be 
able to complete all computations before the next frame needs to be 
rendered

21  Question: “The tracking had some jitter problems”, five-level Lik-
ert scale, N = 13 , AVR = 2.37 , SD = ± 1.25.
22  Question: “I would like body tracking also in other VR games”, 
five-level Likert scale, N = 13 , AVR = 4.92 , SD = ± 0.27.
23  Leap Motion: https​://www.leapm​otion​.com, last visited on January 
19th, 2018.
24  Hi5 VR Glove: https​://hi5vr​glove​.com, last visited on January 
19th, 2018.
25  VRgluv: https​://vrglu​v.com, last visited on January 19th, 2018.
26  HaptX: https​://haptx​.com, last visited on January 19th, 2018.
27  VRtouch: https​://www.gotou​chvr.com/order​_vrtou​ch/, last visited 
on January 19th, 2018.

https://www.leapmotion.com
https://hi5vrglove.com
https://vrgluv.com
https://haptx.com
https://www.gotouchvr.com/order_vrtouch/
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assume, that with a very small maximum number of itera-
tions, the end-effector will move toward the desired position, 
but the joint angle will change over time only very slowly. 
In this case, the IK solver will not be able to provide an 
appropriate set of joint configurations in order to reach the 
desired position as smoothly, rapidly and as accurately as 
possible. The results of the latency evaluation suggest that 
the maximum number of iterations is very important for the 
performance of the IK solver.

As presented in Fig. 8, with a higher iteration number, the 
latency will exponentially fall. One would normally expect 
increasing computational costs in terms of time. As already 
mentioned before, with fast movements, a very small number 
of iterations will indeed move the end-effector toward the 
desired position. However, it will always stay too far away 
from this desired position. Thus, for fast movements, we 
obtain better results with a higher number of iterations. If the 
speed of the movement is very slow, even a lower number of 
iterations is enough for the convergence because the position 
in the current frame is almost the same as in the previous 
frame. As described in Sect. 3.1.3, the IK solver converges 
if the end-effector is close enough to the desired location 
or when there is no significant change between current and 
desired rotation. However, on average after 95 iterations 
there is no significant change between desired and current 
position as well as orientation. If the algorithm would ter-
minate at much higher iteration number, without checking 
if the end-effector is close enough to the desired position, 
the latency would increase. Due to many calculations (e.g., 
calculating an inverse of a non-square matrix), it would not 
be possible to complete the computations before the next 
frame needs to be rendered. Thus, the frame rate would drop 
rapidly, which would decline the performance.

The end-to-end latency of 6.71 ms shows that the imple-
mented solution can reconstruct the motions in real-time. 
Since the result stays well below 20 ms , it meets the require-
ments for real-time VR experiences (Raaen and Kjellmo 
2015; Kasahara et al. 2017). Compared to the results based 
on the publication by Jiang et al. (2016) with a total latency 
of 7 ms , our solution provides a slightly better result. In this 

work, two Vive Controllers were used. Similarly, Seele et al. 
(2017) also used two Vive Controller. However, only the 
upper body was reconstructed and no latency was measured. 
Table 3 summarizes the end-to-end latencies of the related 
work. All these publications tracked full-body movements 
and visualized an avatar. As it can be seen, we could achieve 
similar results or even much lower latency.

Compared to the latency of the Vive system (without IK 
solution) with 6.07 ms , we can still improve our method. We 
expected a total delay below 11.11 ms since this would sat-
isfy the refresh rate of the HTC Vive HMD, which is 90 Hz . 
Thus, the latency measurements fulfill our expectations. 
However, because the tracked and the corresponding VR 
objects were captured with a camera at 240 FPS, a latency 
below 4.16 ms cannot be detected at all. In the future work, 
an even better camera, which is capable of recording at a 
high-speed, could be used in order to measure the latency 
even more accurately.

The overall evaluation results suggest that the algorithm 
can be further optimized. On the one hand, the current per-
formance of the implementation can be improved, so that 
a smaller number of iterations would be needed to obtain 
the best solution. Therefore, we must first evaluate the per-
formance of computing the Jacobian inverse. In the current 
implementation, a pseudo-inverse method is used to approxi-
mate the inverse of the Jacobian matrix. By applying a more 
computationally efficient approach to calculate the inverse, 
e.g., damped least squares, we could reduce the computa-
tional cost, complex matrix calculations, and singularity 
problems. On the other hand, we could minimize the user’s 
experience of latency by predicting their movements. More 
specifically, we could analyze the posture of the user and 
their movements in order to predict the actions in the virtual 
environment to further reduce the latency.

5 � Conclusion

In this paper, a novel body tracking system using IK 
approach with reduced Jacobian Matrix was developed. Such 
a real-time solution can be used for immersive VR-based 
games. By strapping only a small number of Vive Tracker to 
the player, the full-body motions of the player can be trans-
formed into a virtual avatar. With the tracked motions, even 
the gestures can be recognized in order to create multiplayer 
VR experiences. The evaluation with the latency measure-
ment tool showed a very low delay of only 6.71 ± 0.80 ms . 
Thus, the results show that the proposed method is satis-
fied with the technical requirement of the HTC Vive HMD 
and fulfill our expectations. Furthermore, compared to the 
related work, our latency evaluation shows similar or even 
better results. Our system can provide an appropriate set of 
joint configuration in order to reach the desired position as 

Table 3   Latency results of the related work

Authors Latency (m)

Latoschik et al. (2016) 73
Desai et al. (2017) < 50

Kasahara et al. (2017) ≈ 70

Latoschik et al. (2017) < 150

Jiang et al. (2016) 7
Schmidt et al. (2015) < 100

Thomas et al. (2016) 39
Johnson et al. (2016) > 300
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smoothly, rapidly and as accurately as possible in real-time. 
The evaluation with the participants revealed that the posi-
tion and orientation of the arms were accurately tracked. 
Because the movements of the virtual body corresponded to 
the real movements of the users, the user could feel like they 
were a part of the VR and could identify themselves with 
the avatar. The evaluation with the subjects also validated 
that a minority could perceive only a low end-to-end latency.

Future research will focus on making the body tracking 
even more robust and reliable. The effectiveness of the itera-
tive method to solve the IK should be improved. Therefore, 
we should reduce the computational cost by minimizing the 
maximum number of iterations that are needed to calculate 
the appropriate orientation of bones. In particular, because 
there is no objective evaluation on the accuracy in this 
research (the accuracy was only evaluated with the subjects), 
in future work a tool should be developed in order to meas-
ure how accurate the developed body tracking system is.

Since in the current evaluation the participants could see 
the full-body avatar, but only the hands were animated, also 
feet should be animated in the future work. By attaching an 
additional Vive Tracker to the back or hip as well as feet, the 
user should be able to see an animated avatar while walk-
ing, dancing or jumping. To further improve the immersion 
in the VR experience, the steps of the user could be iden-
tified in order to create stepping sound. Furthermore, we 
could do a comparative study, comparing different presence 
approaches, e.g., full-body animated avatar versus only ani-
mated hands as well as even showing only the Vive Control-
ler or Tracker.

Additionally, collision detection should be considered, 
e.g., to interact with the environment. Collision detection is 
also important in the detection of body movements since we 
do not want the body limbs to intersect. When the user tries 
to touch the virtual body, the collision detection should pre-
vent that the hands go through the body. Another important 
aspect is the appearance of the avatar. Therefore, a tool to 
personalize the avatar body, e.g., based on muscles, clothes 
and skin color should be integrated into the pipeline, to cre-
ate an even more immersive VR experience.
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