
Vol.:(0123456789)1 3

Virtual Reality (2019) 23:155–168
https://doi.org/10.1007/s10055-018-0374-z

ORIGINAL ARTICLE

Real‑time body tracking in virtual reality using a Vive tracker

Polona Caserman1  · Augusto Garcia‑Agundez1 · Robert Konrad1 · Stefan Göbel1 · Ralf Steinmetz1

Received: 4 April 2018 / Accepted: 14 November 2018 / Published online: 23 November 2018
© Springer-Verlag London Ltd., part of Springer Nature 2018

Abstract
Due to recent improvements in virtual reality (VR) technology, the number of novel applications for entertainment, edu-
cation, and rehabilitation has increased. The primary goal of these applications is to enhance the sense of belief that the
user is “present” in the virtual environment. By tracking the user’s skeleton in real-time, it is possible to synchronize the
avatar’s motions with the user’s motions. Although current common devices implement body tracking to a certain degree,
most approaches are limited by either high latency or insufficient accuracy. Due to the lack of positional and rotation data,
the current VR applications typically do not represent the user’s motions. In this paper, we present an accurate, low-latency
body tracking approach for VR-based applications using Vive Trackers. Using a HTC Vive headset and Vive Trackers, we
have been able to create an immersive VR experience, by animating the motions of the avatar as smoothly, rapidly and as
accurately as possible. An evaluation showed our solution is capable of tracking both joint rotation and position with reason-
able accuracy and a very low end-to-latency of 6.71 ± 0.80 ms . Due to this merely imperceptible delay and precise tracking,
our solution can show the movements of the user in real-time in order to create deeper immersion.

Keywords  Virtual reality · Real-time tracking · Full-body avatar · Low-latency · HTC Vive tracker · Inverse kinematics

1  Introduction

Virtual reality (VR) can be experienced wearing novel
Head-Mounted Displays (HMDs). In the last few years, there
has been a rapid improvement in VR technology, increasing
the availability of HMDs to consumers (Choi et al. 2016;
Friðriksson et al. 2016). The most advanced HMDs, like
Oculus Rift, HTC Vive, and PlayStation VR, already have a

high-definition resolution, a wide field-of-view, and a high
refresh rate. Furthermore, novel VR systems are capable of
positional and rotational tracking of the HMD as well as
additional VR devices. Tracking systems in VR can pro-
vide new possibilities for a more comfortable, immersive
experience and gameplay (Goradia et al. 2014). Oculus
Rift, for example, enables tracking through an embedded
infrared system (Farahani et al. 2016). HTC Vive has simi-
lar technical specifications to Oculus Rift Consumer Ver-
sion 1. Both HMDs provide high-definition resolution of
2160 × 1200 pixels, split between each eye and can maintain
a frame rate of up to 90 Hz (Farahani et al. 2016; Martindale
2018). But the special feature of the HTC Vive is the Vive
Tracker, which allows the developers to bring any real-world
object into the virtual environment, e.g., by simply attaching
it to sporting equipment like a baseball bat, a golf club or
a weapon.1 The position and orientation of this device are
then tracked by two “Lighthouse” stations, based on infrared
signals. Each station consist of infrared LEDs, flashing at
regular intervals and signaling the start of a cycle (Demp-
sey 2016). Two little motors project laser beams across the

Electronic supplementary material  The online version of this
article (https​://doi.org/10.1007/s1005​5-018-0374-z) contains
supplementary material, which is available to authorized users.

 *	 Polona Caserman
	 Polona.Caserman@kom.tu‑darmstadt.de

	 Augusto Garcia‑Agundez
	 Augusto.Garcia‑Agundez@kom.tu‑darmstadt.de

	 Robert Konrad
	 Robert.Konrad@kom.tu‑darmstadt.de

	 Stefan Göbel
	 Stefan.Gobel@kom.tu‑darmstadt.de

	 Ralf Steinmetz
	 Ralf.Steinmetz@kom.tu‑darmstadt.de

1	 Multimedia Communications Lab, Technische Universität
Darmstadt, 64283 Darmstadt, Germany

1  Vive Tracker: https​://www.vive.com/us/vive-track​er/, last visited on
April 3rd, 2018.

http://orcid.org/0000-0002-3252-4533
http://crossmark.crossref.org/dialog/?doi=10.1007/s10055-018-0374-z&domain=pdf
https://doi.org/10.1007/s10055-018-0374-z
https://www.vive.com/us/vive-tracker/

156	 Virtual Reality (2019) 23:155–168

1 3

room, one spinning horizontally and the other vertically. The
sensors on the VR devices then detect these lasers and can
determine its position based on the order its sensors receive
the laser sweeps.

Due to this HMD development, the number of novel and
innovative games for rehabilitation, training and exercise
activities has greatly increased, e.g., Bolton et al. (2014),
Collingwoode-Williams et al. (2017), Jain et al. (2016)
and Sra and Schmandt (2015). The primary goal of these
applications is to give the user an illusion of the presence
of “being there” in the VR (Desai et al. 2014; Goradia et al.
2014). To create an immersive experience, the connection
between the user and the VR, as well as between the player
and the avatar, has to be established. Immersive VR can
be used to induce ownership over a virtual body that sub-
stitutes the real body, as seen from the first-person view
(Banakou et al. 2013; Peck et al. 2013). The person explor-
ing VR would then be able to look down and perceive the
avatar as her/his own body. Hence, by synchronizing the
body movement of the user and their avatar, a positive effect
on the cognitive ability of the user as well as the feeling
of agency over the avatar can be achieved (Collingwoode-
Williams et al. 2017; Peck et al. 2013). In particular, mul-
tiplayer VR games have the requirement of synchronizing
the whole body in real time in order to create deeper immer-
sion (Jiang et al. 2016). Recent commercial approaches use
infrared VR devices to track the full-body movements in
real-time.2 Furthermore, other developers provided Unity
3D game engine-based asset packages to achieve full-body
tracking, e.g., Vive IK Demo3 and Final IK.4 However, to
the best of our knowledge, there is no research on evaluating
these existing commercial kinematic solutions, particularly
regarding its accuracy and latency.

Tracking and representing body movements, regardless of
the user orientation, can be challenging. Although common
devices implement body tracking to a certain degree, most
approaches are limited by either high latency or insufficient
accuracy. Due to this lack of data about a user’s position and
orientation in the world, the current VR games typically do
not track or represent the body of the user (Farahani et al.
2016).

In this paper, we implement a low-latency body tracking
approach for immersive VR-based applications. By using
only infrared VR controllers, e.g., Vive Tracker it is possible
to transfer full-body player’s motions onto a virtual avatar.

Additionally, we measure the end-to-end latency. The main
research contributions of our work are the following:

–	 We develop a latency measurement tool in order to evalu-
ate the total delay of the proposed method. Using this
tool, we want to show that the end-to-end latency of the
developed system stays below 20 ms since this satisfies
the requirement of the VR experiences.

–	 In contrast to systems using motion capture suits, we only
use a small number of sensors to avoid high initial costs
as well as complex setup. We do not explicitly track each
body joint. In our research, we only track the position and
orientation of the end-effectors (e.g., hands). We then
solve the inverse kinematics (IK) problem to determine
the angle of other joints in order to enable full-body
tracking. This approach satisfies the desire to reduce the
amount of sensor.

–	 We use infrared VR controller, which do not suffer from
occlusion and high latency, such as the Kinect sensor.

–	 Our system is entirely based on low-cost hardware and
low-level game API. We can easily access the lowest
level in order to achieve maximal performance. Addition-
ally, because our body tracking solution should be avail-
able, e.g., for researchers to create immersive VR experi-
ences, we include source code, which can be accessed on
GitHub.5

The rest of this paper is structured as follows. Section 2
provides the related work. In Sect. 3, the approach of body
tracking using infrared sensors and a latency measure-
ment tool are described. An experimental evaluation of the
deployed system is given in Sect. 4. A discussion of the
results and a conclusion follows in Sect. 5.

2 � Related work

2.1 � Full‑body tracking

Many recent research publications add a growing base of
evidence to support the use of VR and full-body tracking.
Examples recently showed the benefits of having a full-body
avatar in a virtual environment by demonstrating the impor-
tant role of realistic looking virtual humans (Latoschik et al.
2017). Furthermore, owning a virtual body and perceiving
it from the first-person perspective is also essential when
performing reaching tasks in VR (Thomas et al. 2016).

2  IKinema Orion: https​://ikine​ma.com/orion​, last visited on April
3rd, 2018.
3  Vive IK Demo: https​://githu​b.com/James​Bear/vive_ik_demo, last
visited on April 3rd, 2018.
4  Final IK: https​://asset​store​.unity​.com/packa​ges/tools​/anima​tion/
final​-ik-14290​, last visited on April 3rd, 2018.

5  Body Tracking Demo: https​://githu​b.com/CatCu​ddler​/BodyT​racki​
ng, last visited on April 4th, 2018.

https://ikinema.com/orion
https://github.com/JamesBear/vive_ik_demo
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://assetstore.unity.com/packages/tools/animation/final-ik-14290
https://github.com/CatCuddler/BodyTracking
https://github.com/CatCuddler/BodyTracking

157Virtual Reality (2019) 23:155–168	

1 3

The most popular game systems, capable of motion-sens-
ing such as Microsoft Kinect6 or Nintendo Wii7 already pro-
vided significant evidence that exergames are entertaining
and motivating (Lange et al. 2011). However, both Kinect
versions suffer from inconsistent tracking, jittering, and
unreliable data (Friðriksson et al. 2016). Kinect V1 sensor
is only accurate when tracking gross movements such as sit-
to-stand, but is very poor for fine movements such as hand
clapping, toe or finger tapping (Galna et al. 2014). Due to
the new technology, the Kinect V2 which is based on the
time-of-flight principle is more accurate in detecting small
movements and provides better tracking results. However,
the latency of the new version remains high, approximately
at 170 ms when combined with the Oculus Rift (Botev and
Rothkugel 2017). An additional disadvantage of a single
Kinect sensor is that it can only poorly track the rotation of
body parts and is incapable of tracking when the user stands
sideways (Friðriksson et al. 2016).

Although the Kinect suffers from occlusion, provides
noise in skeleton tracking and has a high latency, it is the
most popular device for body tracking. Due to its adequate
accuracy and low cost, many researchers are using this tech-
nology to track the user’s movements. Shum and Ho (2012)
investigated the major problems of Kinect and developed
a framework for a best-matched posture from the captured
motion. The proposed solution can overcome the problem
of missing Degree of Freedom (DoF) due to occlusions and
noises. Sra and Schmandt (2015) used Kinect V2 devices
to track objects and users. An Oculus Rift DK2 is used for
tracking of the head rotation. Collingwoode-Williams et al.
(2017) used Kinect V1 to research the effect of limb and arm
synchronization on body ownership in VR. In their study,
the user wearing a HMD was able to see a gender-matched
avatar in a virtual mirror, that moved its limbs synchronously
with the user. Bolton et al. (2014) developed a VR-based
exergame, based on the game Paperboy, where the player is
wearing a VR headset and driving a bicycle. A Kinect cam-
era tracked the user movements of throwing newspapers into
the neighborhood mailboxes. The arms were synchronized
to create a high level of immersion. To overcome occlusion
problems, other studies even use multiple Kinect devices to
track a single user (Desai et al. 2017).

Unfortunately, the Kinect sensor in combination with VR
it inaccurate and will eventually show a false avatar posture
(Tao et al. 2013). To provide a more accurate tracking, other
recent studies have attempted to use a suit-based motion
capture technology. These body tracking suits have attached

infrared LED markers which can be then detected by a high-
speed camera. Peck et al. (2013) developed a VR experience,
whereby the motions were tracked by the OptiTrack8 system
with 12 cameras. The movements could be reconstructed at
100 Hz and synchronized with the virtual avatar. The users
wearing the HMD could see their virtual body from the first-
person perspective as well as a reflection in a virtual mirror.
Likewise, Banakou et al. (2013) used 34 cameras to track
user’s motions. Chan et al. (2011) proposed a dance system
using a similar optical motion capture system. The user,
wearing the motion capture suit, can learn new dance move-
ments by imitating the motions demonstrated by a virtual
teacher and listening to the feedback. Since suit-based track-
ing technology is capable of real-time full-body tracking
of multiple users, some authors developed VR multiplayer
applications or games, e.g., creating a physical condition
control for athletes and dancers (Kasahara et al. 2017). In
contrast to a single infrared camera, such as Kinect, a wear-
able motion capture suit is capable of a very accurate body
tracking. However, it is very expensive and complicated to
use. Using a suit with LED markers for tracking requires a
setup area and multiple high-speed cameras. Due to the high
initial cost and complex setup, such a motion capture system
is in general not applicable for home-based usage.

For tracking full-body movements also Inertial Measure-
ment Units (IMUs) can be attached to the user’s body. Dif-
ferent commercial tracking systems, such as PrioVR9, Per-
ception Neuron10, or Xsense11 are based on IMU. Perception
Neuron furthermore utilizes a special data glove with a Vive
Tracker in order to track hand position as well as individual
fingers. Tsai et a. (2015) developed an own wearable sensor
to determine the skeleton posture in real-time. Moreover,
measurement values of the integrated sensors of a HMD can
be used to recognize steps (Caserman et al. 2016). Applying
this step detector, the researchers were able to synchronize
the feet of the user while walking on a treadmill. The user
can then look down and see her/his virtual body from the
first-person perspective as she/he would in the real world. In
another work, an IMU is attached to a bicycle to detect the
steering and breaking information (Melo et al. 2016). The
player movements have been detected while the player was
sitting on the bicycle with the feet on the pedals and hands
on the handlebar.

6  Microsoft Kinect: https​://devel​oper.micro​soft.com/en-us/windo​ws/
kinec​t, last visited on January 28th, 2018.
7  Nintendo Wii: https​://www.ninte​ndo.co.uk/Wii/Wii-94559​.html,
last visited on January 28th, 2018.

8  OptiTrack system: http://www.optit​rack.com, last visited on Janu-
ary 17th, 2018.
9  PrioVR: https​://yostl​abs.com/priov​r/, last visited on July 31st, 2018.
10  Perception Neuron: https​://neuro​nmoca​p.com, last visited on July
31st, 2018.
11  Xsense: https​://www.xsens​.com/, last visited on 31st July, 2018.

https://developer.microsoft.com/en-us/windows/kinect
https://developer.microsoft.com/en-us/windows/kinect
https://www.nintendo.co.uk/Wii/Wii-94559.html
http://www.optitrack.com
https://yostlabs.com/priovr/
https://neuronmocap.com
https://www.xsens.com/

158	 Virtual Reality (2019) 23:155–168

1 3

2.2 � Inverse kinematics

Recent studies have attempted to use IK to determine a set
of appropriate joint configurations based upon the desired
end-effector position. IK approaches based on Jacobian are
originally used in robotics in order to control (industrial)
manipulators and were already presented in the 80’s (Orin
and Schrader 1984; Nakamura and Hanafusa 1986). The IK
problem, to provide a solution that satisfies the positional
and orientational constraints of each specific joint, has been
well studied. Kenwright (2012) presented a realistic and
robust method for solving nonlinear IK problems with angu-
lar limits using the Gauss–Seidel iterative method. The pro-
posed method merely requires a small number of iterations
and needs only a few milliseconds to compute the solution.
Aristidou and Lasenby (2011) proposed a novel heuristic
method, combining forward and backward IK. Other recent
studies improved IK solutions using a multivariate Gaussian
distribution model, which precisely specifies the joint con-
straints of a kinematic skeleton by integrating biomechanical
properties and physical capacity of a human (Huang et al.
2017). Additionally, IK systems based on a probabilistic
model of learned human poses were presented (Grochow
et al. 2004). However, such a system can only produce the
most likely pose satisfying the constraints. Other research-
ers try to improve tracking quality by taking advantage of
neural networks to reconstruct the motions, such as walking,
jogging, jumping, crouching and turning (Jiang et al. 2016).

2.3 � Latency

To improve the feeling of the presence in the VR, merely
tracking user movements in order to synchronize the move-
ments with those in VR is not sufficient (Collingwoode-Wil-
liams et al. 2017; Jain et al. 2016). Similarly, the total delay
from the time movement occurs, to the time the results of
that motion are displayed, should be well considered. A high
frame rate and low HMD latency must be ensured in order to
create an immersive VR experience (Farahani et al. 2016).
On the one hand, a high latency of the HMD can contrib-
ute to cybersickness symptoms of disorientation, headache,
nausea, and dizziness (Choi et al. 2016; Steed 2008). On
the other hand, a significant delay between a physical move-
ment and an output image can decrease the user’s sense of
immersion (Farahani et al. 2016; Friston and Steed 2014).
In particular, in VR, the end-to-end latency should not be
higher than 20ms (Raaen and Kjellmo 2015). Kasahara et al.
(2017) also showed similar results. The researchers found
that a high latency ( > 30 ms ) will break the sense of agency
and body ownership. Therefore, when developing VR expe-
riences, it is essential to keep the end-to-end latency as low
as possible.

Previous works have shown that one or more synchro-
nized cameras can be used to measure the latency in an
immersive virtual environment (Friston and Steed 2014;
Roberts et al. 2009). By filming the tracked real object and
the associated output of the virtual environment, the delay
can be determined using image processing techniques.

3 � Approach

To develop a reliable real-time body tracking system, that
can be used in an immersive VR experience, the HTC
Vive HMD and the Vive Tracker are used to track the
movements of the user. By using two base stations and the
VR devices with a large number of infrared sensors, such
a system suffers much less from occlusion than a single
Kinect device. With this technology, we can develop a reli-
able full-body tracking system which can provide accurate
user posture, regardless of the user orientation. Thereby,
the technical requirements of using only a small number of
sensors and avoiding high costs as well as complex setup
(see Sect. 1) are satisfied. With an accurate real-time body
tracking solution and an efficient IK solver, the virtual
character can be synchronized with the user. The person
wearing a HMD is then able to view the virtual body from
the first-person perspective.

3.1 � Development of the body tracking system

In this section, the approach of the real-time body tracking
system to determine user movements will be described.
Because this system should be used to synchronize the
virtual avatar with the body movements of the user, an
articulated character model with a skeleton must be cre-
ated. Then, by obtaining the positional and rotational data
of the Vive Trackers that are bound to the hands and feet,
the full-body motions of the user can be continuously
tracked. Through the efficient implementation of the itera-
tive method for solving the IK problem, a set of appro-
priate joint configurations in an articulated model based
upon a desirable end-effector position can be determined
in only a few iterations. Finally, the skeleton is animated
according to the calculated positions and orientations of
the bones. In the following, a detailed description of these
individual steps will be given. The flowchart for the body
tracking system is presented in Fig. 1.

159Virtual Reality (2019) 23:155–168	

1 3

3.1.1 � Character model

An articulated character with a skeleton was modeled with
the MakeHuman12 open source tool. A skeleton of a small
number of bones was consciously chosen in order to easily
define joint constraints to solve the IK problem and to ani-
mate the user’s motions, which will be described later. To
facilitate the transfer of the character model to the Kore13
framework, the Open Game Engine Exchange format
(OpenGEX14) is used. Both, the OpenGEX format and the
Kore framework are open source projects. OpenGEX exports
skinned meshes (vertex data, skeleton, bind-pose transforms,
bone influence weighting data) in a human-readable text-
based file. Kore is a low-level game library and hardware
abstraction framework, which is implemented in the C++

programming language. It provides the necessary functional-
ity to develop games and multimedia applications with high
performance.

A skeleton is defined as a tree structure of bone nodes,
where each of these nodes is described by a 4 × 4 trans-
formation matrix. The transformation matrix describes the
bind-pose of a bone node. Thus, the default pose of the
character mesh is stored before any bone transformation is
applied. When the animation is applied, this matrix is used
to calculate the new position and orientation. However, in
order to prevent unnatural-looking poses while animating
the character, we have to define a DoF for each joint. We
have to restrict the possible rotations, i.e., rotations around
the x-, y-, and z-axis. The generated skeleton gives us 56
DoF in total, as it can be seen in Table 1.

The constraints are defined by creating an axis vector
� ∈ ℝ

3×1 for each joint and setting the angular limits for each
of the axes. To prevent such an abnormal pose, like it can be
seen in Fig. 2, a constraint for the knee has to be specified,

Fig. 1   A flowchart for the body tracking system. After obtaining the position and rotation of the Vive Tracker, we solve the IK problem in order
to determine the appropriate joint configurations. In the last step, we animate the character

Table 1   DoF of the articulated character model

The number in the brackets indicates how many of these joints exist
in the skeleton

Joint DoF Joint DoF

Head (1) 3 Foot (2) 3
Neck (1) 3 Ball (2) 3
Pelvis (1) 3 Clavicle (2) 2
Spine (3) 3 Upper arm (2) 3
Thigh (2) 3 Lower arm (2) 2
Calf (2) 1 Hand (2) 2
Total 56

Fig. 2   Character foot reached the desired end position in both vari-
ants. However, only the left body posture is natural. On the right, an
unnatural pose is shown

12  MakeHuman: http://www.makeh​uman.org, last visited on Febru-
ary 3rd, 2018.
13  Kore: https​://githu​b.com/Kode/Kore, last visited on April 3rd,
2018.
14  OpenGEX: http://openg​ex.org, last visited on February 21st, 2018.

http://www.makehuman.org
https://github.com/Kode/Kore
http://opengex.org

160	 Virtual Reality (2019) 23:155–168

1 3

i.e., �knee =
[
1 0 0

]T with angular limits minknee = 0 and
maxknee = 2 . Hence, the knee can rotate only around the x-axis
and the angle can be only in the range of 0 and 2 radians.
When a joint rotates around multiple axes, consequently angu-
lar limits for each axis have to be specified.

3.1.2 � Position and rotation tracking

The position and rotation tracking is the core task of the full-
body tracking system to represent the movements of the user
in the VR. For tracking Vive Trackers are strapped to hands
and feet. The sensors can accurately track the yaw, pitch and
roll movements as well as the spatial position.

The coordinate system of the avatar is attached on the floor
and is a right-handed coordinate system, where the x-axis
points to the left, the y-axis points backward and the z-axis
points upward. To locate the character so that the user wear-
ing HMD can look down and see her/his virtual body, the
character has to be transformed, rotated and scaled. First, the
character is scaled by a �init ∈ ℝ

4×4 matrix so that the eye
height of the character corresponds to the height of the HMD.
The sensor measurements of the HMD are provided in a head-
fixed coordinate system, where the x-axis points to the right,
the y-axis points upward and the z-axis points backward. To
calculate the scale factor, we can divide the current height
of the user (y position of the HMD, py,hmd ) by the charac-
ter height (z position of the character head bone, pz,head ), i.e.,
s = py,hmd∕pz,head.

In addition, we have to rotate the character so that its
orientation coincides with the orientation of the user. Let
�init ∈ ℝ

4×1 be the initial quaternion that rotates the charac-
ter so that the virtual body looks in the same direction as the
user. Quaternions are used because they are very simple, effi-
cient and do not suffer from Gimbal lock (Shoemake 1985).
However, because the local transformation of the character is
calculated by applying the scale, rotation and lastly transla-
tion matrix, we have to convert the quaternion to a matrix.
To include quaternion calculations in a regular, matrix-based
transformation pipeline, we can represent the quaternion
q =

[
x y z w

]T as a matrix (Shoemake 1985):

Finally, we translate the character to the position of the
HMD, represented by a vector �hmd ∈ ℝ

3×1 . Let �init ∈ ℝ
4×4

be the initial transformation matrix and is described as:

(1)

�init =

⎡⎢⎢⎣

1 − 2y2 − 2z2 2xy − 2zw 2xz + 2yw

2xy + 2zw 1 − 2x2 − 2z2 2yz − 2xw

2xz − 2yw 2yz + 2xw 1 − 2x2 − 2y2

⎤⎥⎥⎦

(2)�init =

⎡⎢⎢⎢⎣

1 0 0 px,hmd

0 1 0 0

0 0 1 pz,hmd

0 0 0 1

⎤⎥⎥⎥⎦

Combining all three matrices, the coordinate system of the
character is placed so that the user can look down and see
her/his virtual body. Multiplying the raw positional vector
�raw[t] ∈ ℝ

4×1 of the Vive Tracker at time step t with the
inverse transformation matrix �† will transform the sensor
measurements to the character local coordinate system:

Similar, the orientation of the Vive Tracker �raw[t] ∈ ℝ
4×1 ,

has to be transformed as:

3.1.3 � Implementation of inverse kinematics with reduced
Jacobian matrix

To solve the IK problem, we use the transformed positional
vector and the quaternion (rotation) computed in the previ-
ous step. With the known desired position and orientation
of the end-effector (e.g., a hand or a foot), the angle of each
predecessor joint (e.g., an elbow or a knee) can be computed
using an iterative, numerical method. An overview of the
algorithm is as follows:

1.	 Calculate error between desired and actual position as
well as rotation

2.	 Check for convergence
3.	 Calculate Jacobian
4.	 Calculate Pseudo-Inverse
5.	 Calculate joint angles for each bone joint
6.	 Apply quaternions to the transformation matrix
7.	 Update new positions.

In each iteration, in the first step, an error between the
desired and actual position Δ�pos as well as the desired and
current rotation Δ�rot of the end-effector has to be calcu-
lated. Subsequently, the error Δ� = [Δ�pos;Δ�rot] is normal-
ized. When checking for convergence in the second step,
the error is compared with the maximum error threshold,
i.e., ||Δ�|| < 𝜖 . When the end-effector is close enough to
the desired location or when there is no significant change
between current and desired rotation, the algorithm will ter-
minate. Because the end-effector may not be able to reach
the desired position, we have to specify the maximal itera-
tion number. This can happen when the desired position is
out of range and therefore too far away to be reached. Oth-
erwise, the Jacobian matrix � is calculated in the third step.
The position and rotation values of the required axes can be
obtained from a combined transformation matrix:

(3)�†
=

(
�init ⋅ �init ⋅ �init

)−1
, �†

∈ ℝ
4×4

(4)�trans[t] = �†
⋅ �raw[t], �trans[t] ∈ ℝ

4×1

(5)�trans[t] = �−1
init

⋅ �raw[t], �trans[t] ∈ ℝ
4×1

(6)0�j =

[
0�xj

0�yj
0�zj

0�j
0 0 0 1

]
∈ ℝ

4×4,

161Virtual Reality (2019) 23:155–168	

1 3

where 0�j ∈ ℝ
3×1 represents the global rotation around the

x-, y- and z-axis and 0�j ∈ ℝ
3×1 represents the global posi-

tion of the jth joint with respect to the origin.
The Jacobian � is defined by the partial derivatives of the

joint angles and the difference between the current position
and the desired position of the end-effector. It can be deter-
mined by computing the cross-product of the joint angle and
the change in end-effector location:

where 0�n ∈ ℝ
3×1 represents the current position of the

end-effector, 0�j ∈ ℝ
3×1 the rotation axis and 0�j ∈ ℝ

3×1 the
position vector of the jth joint. In order to minimize the
computational effort, we calculate for each end-effector only
three partial derivatives. In other words, e.g., for a hand to
reach the final position, we only determine the position and
orientation of the three predecessor joints. The Jacobian �
is then build as:

where the 0th joint specifies the root node and the 3rd joint
the end-effector. Thus, to manipulate the hand, we rotate
the three predecessor joints, i.e., lower arm, upper arm, and
clavicle.

In the fourth step, the pseudo-inverse of the Jacobian � has
to be computed. Due to our adjustment of the Jacobian matrix,
it will always have the same dimensionality:

The calculation of the left pseudo-inverse will lead to the
determination of a smaller inverse matrix ( 3 × 3 ) and is
therefore advantageous.

In the fifth step, the joint angles are calculated by multiply-
ing the inverse Jacobian with the difference between desired
and current position as well as rotation of the end-effector, as
it can be seen in Eq. 10:

In the sixth step, we can apply the new rotation to the joints:

Before the quaternion can be applied to the transformation
matrix, the angular limits have to be ensured as described
in Sect. 3.1.1. Otherwise, the character hand or foot will
reach the desired position; however, the individual joints
within the kinematic chain can cause unnatural movements.
The joint rotations are enforced through clamping between
a lower bound (LB) and an upper bound (UB):

(7)0�n,j =
�0�n

��j

=

[
0�j × (

0�n −
0�j)

0�j

]
, 0�n,j ∈ ℝ

6×1

(8)0�3 =
[
0�3,1

0�3,2
0�3,3

]
∈ ℝ

6×3,

(9)
�−1
left

=

(
�T�

)−1
⏟⏟⏟

3×3

�T.

(10)Δ� = �−1 ⋅ Δ�, Δ� ∈ ℝ
3×1

(11)�
(k+1)

= �
(k)

+ Δ�

To apply the rotation to a joint, the quaternion is first rep-
resented as a matrix (see Eq. 1). The local transformation
matrix is then computed by multiplying the bind transforma-
tion matrix with the new rotation matrix.

Finally, in the last iteration step, the new rotation of each
joint in the skeleton is calculated by updating the combined
transformation matrix:

where 0�i is the combined transformation matrix, �i is the
local transformation matrix of the ith bone and 0�i is the
combined transformation matrix of the ith bone’s parent.
Thus, a bone’s combined transformation matrix is deter-
mined by first applying its local transformation and then by
applying the local transform of its parent. If the maximum
number of iterations is not yet reached, we go back to the
first step. Otherwise, the algorithm terminates.

3.1.4 � Animation

To animate the avatar, the calculated new orientations have
to be applied to the bone joints. While solving the IK, the
quaternion of each joint was updated, depending on the
desired position and orientation of the end-effector. How-
ever, the difference between the new joint orientation, com-
pared to the joint orientation from the previous frame, is
eventually large. In this case, we have to interpolate between
the quaternions by applying the SLERP method. Then, to
calculate the new skinned vertex position, we first have to
calculate a final transformation 0�j by multiplying the com-
bined transform 0�j with the inverse transform matrix.

By iterating over all vertices, we calculate the new
position of every vertex with respect to the bone rotation.
Because each vertex and, above all, vertices near the joint
can be influenced by several bones, the new position of the
vertex is determined by a weighted average of the influen-
tial bone transformations. Therefore, for each vertex, the
new position vector is determined by multiplying the final
transform matrix of the bone influencing this vertex with
the current position vector and the bone weight. The final
vertex position �new is computed as proposed by Kavan et al.
(2010):

(12)�
(k+1)

=

⎧
⎪⎨⎪⎩

LB if �(k)
+ �−1Δ� < LB

UB if �(k)
+ �−1Δ� > UB

�
(k)

+ �−1Δ� otherwise

(13)0�i =
0�i ⋅ �i, �i ∈ ℝ

3×3

(14)�new =

n−1∑
n=0

(
0�n ⋅ �

)
⋅ wn, �new ∈ ℝ

3×1

162	 Virtual Reality (2019) 23:155–168

1 3

where � is the current vertex position, �n is the final trans-
form of the nth bone, that influences vertex � and wn is the
weight of the nth bone.

Finally, the vertex buffer is updated with the new cal-
culated vertex positions and normals. The vertex shader
then uses this buffer to draw indexed vertices. In the current
implementation, the vertex skinning calculation is done on a
Central Processing Unit (CPU), that runs the sequential code
as fast as possible. However, especially in the context of VR
games, the execution speed has to be considered. Therefore,
these computations could also be carried out by a Graphical
Processing Unit (GPU), that can do hundreds of calculations
in parallel. These would eventually speed-up the calculations
of the animation system.

The currently developed prototype can track multiple end-
effectors in order to animate the virtual body. In Fig. 3, the
actual posture of the user and the corresponding VR image
is shown. In this case, the Vive Tracker was attached to the
foot in order to synchronize the virtual leg with the user’s
motions.

3.2 � Development of a latency measurement tool

In the second part, a latency measurement tool was imple-
mented to measure the total delay of the implemented body
tracking system. The total delay of a VR-based tracking sys-
tem represents the time at which the motion occurs, to the
time the tracking system detects this motion, and the results
are displayed on the HMD. Using this latency measurement
tool, we expect to show that the total delay of the developed
method stays below 20 ms . This would satisfy the require-
ment for a real-time VR experience (Raaen and Kjellmo
2015; Kasahara et al. 2017).

The easiest way to measure the latency is to record the Vive
Tracker and the output screen at the same time with a high-
speed camera. When the Tracker moves in a specific pattern,
a video can be analyzed frame by frame in order to identify

distinctive motions and to calculate the delay between events.
As proposed by Steed (2008), the Tracker can be bind to a
string in order to swing it. Applying this approach, the fea-
tures can be identified by extracting the horizontal positions
of both objects and detecting the local minima and maxima.
By calculating the deviation between the local minimum or
maximum of the Tracker and the local minimum or maximum
of the virtual object, the frame difference between them can
be calculated and finally, the total delay can be determined.
Using this approach of identifying the frames at which the
Tracker changes the direction and calculating the difference
between them, the measurements include only the end-to-end
latency of the developed application. However, we cannot
make any statement about the accuracy.

To measure the end-to-end latency, the steps described
below should be followed:

1.	 Load the video and select two bounding boxes, that
contain the Vive Tracker and the corresponding virtual
object

2.	 Extract the horizontal position of both bounding boxes
in each frame

3.	 Apply the Gaussian kernel to smooth the data and nor-
malize the samples

4.	 Identify distinctive motions by detecting local peaks
5.	 Calculate the frame difference and determine the latency.

Once a capture of the targets in motion has been taken, an
algorithm tracks their locations throughout the video. For
this purpose, we use a KCF tracking algorithm, which is
already implemented by OpenCV15 and is able to track mul-
tiple objects simultaneously. After the KCF tracker is initial-
ized, a video can be loaded and two initial bounding boxes,
one for the marker and one for the VR object, are defined.

To detect distinctive motions, the horizontal positions
of both bounding boxes are smoothed and normalized. By
applying the Gaussian kernel at different scales, we reduce
the noise and ensure smooth data. Then the peaks, thus, the
minima and maxima of both curves have to be identified.
When a peak is detected, the frame number is saved in an
array. This results in two equally long arrays, one contain-
ing frame numbers of the peaks for the Vive Tracker and
the other containing frame numbers for the virtual object.

Once all frames have been processed and the features
were extracted, the time difference between the two events
tmotion − tdisplay is calculated. The latency is calculated as
follows:

(15)t =
1

N

N∑
i=0

(
Xi − X̃i

)
⋅

1000

FPS
ms,

Fig. 3   The user’s actual posture (left) and a first-person perspective of
the user looking down at the virtual body (right)

15  KCF Tracker: http://docs.openc​v.org/trunk​/d2/dff/class​cv_1_1Trac​
kerKC​F.html, last visited on February 17th, 2017.

http://docs.opencv.org/trunk/d2/dff/classcv_1_1TrackerKCF.html
http://docs.opencv.org/trunk/d2/dff/classcv_1_1TrackerKCF.html

163Virtual Reality (2019) 23:155–168	

1 3

where N is the number of peaks identified in a video, Xi
is the frame number of the ith peak for the Vive Tracker,
and X̃i is the frame number of the ith peak for the virtual
object. The total delay is then determined by multiplying
the mean difference between two events with the time, the
camera needs to capture a new image. The flowchart of the
latency measurement tool, including the entire calculation,
is presented in Fig. 4.

4 � Results

The main objective of this research is to evaluate the end-to-
end latency of the proposed method as well as the accuracy
and reliability of motions tracking with a Vive Tracker. To
evaluate the performance of the tracking system, we deter-
mined the total delay with the developed latency measure-
ment tool. We analyzed which limitations and errors can
occur and how we can minimize them. Additionally, we
evaluated if the person exploring VR can perceive the avatar
movements as her/his own.

For the evaluation, an HTC Vive was connected to a
computer running Microsoft Windows 10 to enable full-
body tracking of the user. The computer has an 3.30 GHz
Intel CoreTM i7-5820K processor with 16 GB RAM and a
NVIDIA GeForceTM GTX 980 graphics card. It has sufficient
processing power and it fulfills the minimal requirements for
the HTC Vive.16

4.1 � Evaluation of the body tracking system

The evaluation of the body tracking system was conducted
in the TU Darmstadt, Germany. A total of 13 subjects par-
ticipated, 1 female and 12 males with an average age of
27 years. First, the participants were asked to fill out the
pre-study questionnaire, which included personal questions
about gender, age, game consumption habits, VR experi-
ence, and body tracking. Afterward, the participants tried
out the simulation. They strapped the Vive Tracker to the
left and right wrist, as it can be seen in Fig. 5. The bands
were able to fix the Tracker strongly enough so that it could
not slip away and could remain in place for the time of the
evaluation. For the immersive experience, the subjects were
wearing an HTC Vive HMD to view the virtual character
from the first-person perspective. The simulation was then
run for approximately 5 min. Finally, the participants were
again asked to fill out the post-study questionnaire.

The results of the pre-study questionnaire (see Fig. 6)
showed, that almost the two-fifths ( 38.5% ) play video games
more than 7 h/week. However, almost one-third ( 30.8% )
never play video games. Furthermore, the majority ( 84.6% )
had already prior experience with HMDs, e.g., Oculus Rift

Fig. 4   A flowchart of the latency measurement tool. The blue curve
corresponds to the horizontal positions of the Vive Tracker and the
red curve corresponds to the horizontal positions of the virtual object.
One can easily recognize, that the red curve is shifted to the right.
This horizontal difference of both curves indicates the latency of the
distinctive motions (color figure online)

Fig. 5   For hand tracking, the Vive Tracker must be attached to the
wrist (left). To track the leg movements, an additional Tracker must
be strapped to the ankle (right)

Fig. 6   The results of the pre-study questionnaire

16  Minimum requirements: https​://www.vive.com/us/ready​/, last vis-
ited on February 5th, 2018.

https://www.vive.com/us/ready/

164	 Virtual Reality (2019) 23:155–168

1 3

or HTC Vive. On the one hand, some subjects reported,
that they already suffered from cybersickness, such as diz-
ziness, nausea or a headache while wearing a HMD for a
longer time. On the other hand, some of them also explic-
itly stated, that they never feel side effects of any kind. The
majority, however, criticized an insufficiently low resolution
of the currently available HMDs. Most of the participants
( 84.6% ) can imagine body tracking in the context of VR-
based games. Three-fourth ( 76.9% ) would like to have an
avatar, which synchronizes the movements and one-fourth
( 23.1% ) is not sure if they want an avatar. However, the
results of the post-study questionnaire reveal that almost all
participants ( 92.3% ) would like to have body tracking in VR
games. Body tracking has been proposed in various applica-
tion scenarios, e.g., goalkeeper, ego-shooter games and other
first-person games, where the player can interact with virtual
objects. The subjects furthermore suggested body tracking
in medicine, where the user can remotely control the surgery
with her/his own movements. VR in a combination with the
body tracking could be used to train the users to complete a
certain task correctly. Further scenarios could include virtual
video calls or meetings.

Figure 7 shows the mean response of selected questions
from the post-study questionnaire, along with their associ-
ated standard deviations. The results show that the majority
in general likes the VR as well as the idea of body track-
ing in the VR.17 Furthermore, it was found that the subjects
could feel as if they were “present” in the virtual environ-
ment and could also identify themselves with the avatar.18

The subjects wanted to see the full-body avatar and not only
the arms, as in the most current first-person games. Some
subjects stated they liked that the avatar reflects the move-
ments of the arms; however, they missed the tracking of the
legs. Since the current implementation can handle multiple
end-effectors, we would only need additional Vive Tracker
in order to track the hands and legs simultaneously.

The results of the body tracking show that the movements
of the avatar corresponded to the real movements of the user
and that tracking provided accurate positions.19 However, the
orientation of the elbow did not always correspond to the
reality. Some subjects reported, that the elbow was some-
times twisted or that they could perceive some inaccura-
cies in arm tracking. To evaluate the accuracy, the subjects
were asked to perform various movements, including small
and large movements at different speeds. Although the most
subject stated that the tracking was quite accurate, some-
times the position of the virtual hands was different from
the position of the real hands. This was especially noticeable
when touching the own arms or hands. Subjects reported that
while the fingers were touching in the real world, the vir-
tual fingers were too far away from each other or they were
overlapping. In order to improve the accuracy, the length
of the upper and lower arm could be considered. Moreo-
ver, collision detection should be incorporated in order to
prevent self-collision.

The results of the tracking itself suggest that the subjects
only perceived a low latency.20 A low latency was identified
for very fast movements by only one participant, who plays
the games more than 7 h a week. As it will be described

Fig. 7   Rating the simulation, where 1 stands for totally incorrect, 2 for kind of incorrect, 3 for not sure, 4 for kind of correct and 5 for totally cor-
rect. The bar shows the mean responses to questions from the post-study questionnaire and the error bars indicate the standard deviations

20  Question: “The movements of the avatar were delayed”, five-level
Likert scale, N = 13 , AVR = 1.23 , SD = ± 0.43.

17  Question: “I find the VR in general exciting”, five-level Likert
scale, N = 13 , AVR = 4.92 , SD = ± 0.27 , question: “I like the idea of
body tracking in VR”, five-level Likert scale, N = 13 , AVR = 4.92 ,
SD = ± 0.27.
18  Question: “I felt like I was a part of the VR”, five-level Likert
scale, N = 13 , AVR = 4.3 , SD = ± 0.48 , question: “I could identify
myself with the avatar”, five-level Likert scale, N = 13 , AVR = 4.07 ,
SD = ± 0.49.

19  Question: “The movements in the VR have corresponded to the
real movements”, five-level Likert scale, N = 13 , AVR = 4.23 ,
SD = ± 0.59 , question: “The tracking was accurate”, five-level Likert
scale, N = 13 , AVR = 4.07 , SD = ± 0.64.

165Virtual Reality (2019) 23:155–168	

1 3

in the next section, the total delay of the tracking remains
very low, at 6.71 ± 0.80 ms . Some subjects reported that the
tracking had some jitter problems.21 This sometimes hap-
pened, when the Vive Tracker was not able to detect enough
laser sweeps from the base stations. When holding an arm in
a steady position, no noise or other tracking errors could be
identified. Three subjects, however, reported, that the arm
was for a short moment locked at some position. Then, after
the subjects stretched the arm again, the arm “jumped” to
the right position.

Finally, the results show that almost all subjects would
like to have body tracking also in other VR games.22 For
a more immersive experience, finger recognition should
be included, e.g., using a Leap Motion23 device or spe-
cial gloves such as Hi5 VR Gloves,24 VRgluv,25 HaptX,26
and VRtouch27), which can detect the motion of each indi-
vidual finger. Some subjects stated that they liked to have
nothing to hold in their hands. However, the Vive Tracker
that was fixed to a hand, is big and is actually developed to
be attached to sporting equipment. In the future work, we
could also create a smaller and lighter Tracker, e.g., using
only a few infrared sensors in a bracelet that can be attached
to the hand as well as ankle.

The total number of 13 participants is too low for any
statistical conclusions. In addition to the problem of too
few participants, some of them were friends or colleagues.
Although the study participants were asked to answer the
questions honestly, one cannot rule out that the feedback
still was more beneficial. Therefore, an evaluation with more
subjects should be carried out in future work.

4.2 � Evaluation of latency measurements

For the second part of the evaluation, an estimation using a
latency measuring tool based on an automatic frame count-
ing method using a video camera was made. The Vive
Tracker and the output of the virtual environment were cap-
tured by a single phone camera (iPhone SE) at 240 FPS and
1280 × 720 pixels resolution. The virtual environment was
rendered on a gaming monitor with a 144 Hz refresh rate and

G-Sync support. Thanks to G-Sync, the frame rate of the
output device can be adapted which allows us to maintain the
frame rate at the highest possible value of the VR system.
Thus, it was possible to ensure a frame rate of 90 FPS.

In the first step, the latency of the Vive Tracker itself was
determined. Thus, the latency of the Tracker as provided by
the Vive system, without further processing (thus, without
IK or other calculations), was measured. The measurements
have shown a latency of 6.07 ± 1.36 ms . Since the developed
system cannot obtain a better latency than the one provided
by the Vive system, we want to get as close to the value as
possible.

In the second step, the latency of the developed body
tracking system using a Vive Tracker is measured. That is
the total time between making a movement, sensing it by
the Vive system, solving the IK problem and displaying the
motion. Table 2 shows the mean and standard deviation of
the measured latency due to the different maximum number
of iterations. For each trial (5, 10, 30, 50 and 100 maximum
number of iterations), nine measurements were provided
and the average (AVG), as well as the standard deviation
(STD), were calculated. As one can see, the body track-
ing system with five maximum number of iterations shows
the worst results with an average delay of almost 200 ms .
With a higher iteration number (10, 30, 50 and 100), the
delay will significantly decrease. From these results, we can

Table 2   Measured latency due
to the different maximal steps of
the IK solver

Max iterations Latency (ms)

5 185.59 ± 1.30

10 55.24 ± 1.62

30 33.33 ± 0.52

50 23.78 ± 0.30

100 6.71 ± 0.80

Fig. 8   The measured latency. With the higher iteration number, the
latency will exponentially fall. However, with a higher maximum
number of iteration, the frame rate will drop since we would not be
able to complete all computations before the next frame needs to be
rendered

21  Question: “The tracking had some jitter problems”, five-level Lik-
ert scale, N = 13 , AVR = 2.37 , SD = ± 1.25.
22  Question: “I would like body tracking also in other VR games”,
five-level Likert scale, N = 13 , AVR = 4.92 , SD = ± 0.27.
23  Leap Motion: https​://www.leapm​otion​.com, last visited on January
19th, 2018.
24  Hi5 VR Glove: https​://hi5vr​glove​.com, last visited on January
19th, 2018.
25  VRgluv: https​://vrglu​v.com, last visited on January 19th, 2018.
26  HaptX: https​://haptx​.com, last visited on January 19th, 2018.
27  VRtouch: https​://www.gotou​chvr.com/order​_vrtou​ch/, last visited
on January 19th, 2018.

https://www.leapmotion.com
https://hi5vrglove.com
https://vrgluv.com
https://haptx.com
https://www.gotouchvr.com/order_vrtouch/

166	 Virtual Reality (2019) 23:155–168

1 3

assume, that with a very small maximum number of itera-
tions, the end-effector will move toward the desired position,
but the joint angle will change over time only very slowly.
In this case, the IK solver will not be able to provide an
appropriate set of joint configurations in order to reach the
desired position as smoothly, rapidly and as accurately as
possible. The results of the latency evaluation suggest that
the maximum number of iterations is very important for the
performance of the IK solver.

As presented in Fig. 8, with a higher iteration number, the
latency will exponentially fall. One would normally expect
increasing computational costs in terms of time. As already
mentioned before, with fast movements, a very small number
of iterations will indeed move the end-effector toward the
desired position. However, it will always stay too far away
from this desired position. Thus, for fast movements, we
obtain better results with a higher number of iterations. If the
speed of the movement is very slow, even a lower number of
iterations is enough for the convergence because the position
in the current frame is almost the same as in the previous
frame. As described in Sect. 3.1.3, the IK solver converges
if the end-effector is close enough to the desired location
or when there is no significant change between current and
desired rotation. However, on average after 95 iterations
there is no significant change between desired and current
position as well as orientation. If the algorithm would ter-
minate at much higher iteration number, without checking
if the end-effector is close enough to the desired position,
the latency would increase. Due to many calculations (e.g.,
calculating an inverse of a non-square matrix), it would not
be possible to complete the computations before the next
frame needs to be rendered. Thus, the frame rate would drop
rapidly, which would decline the performance.

The end-to-end latency of 6.71 ms shows that the imple-
mented solution can reconstruct the motions in real-time.
Since the result stays well below 20 ms , it meets the require-
ments for real-time VR experiences (Raaen and Kjellmo
2015; Kasahara et al. 2017). Compared to the results based
on the publication by Jiang et al. (2016) with a total latency
of 7 ms , our solution provides a slightly better result. In this

work, two Vive Controllers were used. Similarly, Seele et al.
(2017) also used two Vive Controller. However, only the
upper body was reconstructed and no latency was measured.
Table 3 summarizes the end-to-end latencies of the related
work. All these publications tracked full-body movements
and visualized an avatar. As it can be seen, we could achieve
similar results or even much lower latency.

Compared to the latency of the Vive system (without IK
solution) with 6.07 ms , we can still improve our method. We
expected a total delay below 11.11 ms since this would sat-
isfy the refresh rate of the HTC Vive HMD, which is 90 Hz .
Thus, the latency measurements fulfill our expectations.
However, because the tracked and the corresponding VR
objects were captured with a camera at 240 FPS, a latency
below 4.16 ms cannot be detected at all. In the future work,
an even better camera, which is capable of recording at a
high-speed, could be used in order to measure the latency
even more accurately.

The overall evaluation results suggest that the algorithm
can be further optimized. On the one hand, the current per-
formance of the implementation can be improved, so that
a smaller number of iterations would be needed to obtain
the best solution. Therefore, we must first evaluate the per-
formance of computing the Jacobian inverse. In the current
implementation, a pseudo-inverse method is used to approxi-
mate the inverse of the Jacobian matrix. By applying a more
computationally efficient approach to calculate the inverse,
e.g., damped least squares, we could reduce the computa-
tional cost, complex matrix calculations, and singularity
problems. On the other hand, we could minimize the user’s
experience of latency by predicting their movements. More
specifically, we could analyze the posture of the user and
their movements in order to predict the actions in the virtual
environment to further reduce the latency.

5 � Conclusion

In this paper, a novel body tracking system using IK
approach with reduced Jacobian Matrix was developed. Such
a real-time solution can be used for immersive VR-based
games. By strapping only a small number of Vive Tracker to
the player, the full-body motions of the player can be trans-
formed into a virtual avatar. With the tracked motions, even
the gestures can be recognized in order to create multiplayer
VR experiences. The evaluation with the latency measure-
ment tool showed a very low delay of only 6.71 ± 0.80 ms .
Thus, the results show that the proposed method is satis-
fied with the technical requirement of the HTC Vive HMD
and fulfill our expectations. Furthermore, compared to the
related work, our latency evaluation shows similar or even
better results. Our system can provide an appropriate set of
joint configuration in order to reach the desired position as

Table 3   Latency results of the related work

Authors Latency (m)

Latoschik et al. (2016) 73
Desai et al. (2017) < 50

Kasahara et al. (2017) ≈ 70

Latoschik et al. (2017) < 150

Jiang et al. (2016) 7
Schmidt et al. (2015) < 100

Thomas et al. (2016) 39
Johnson et al. (2016) > 300

167Virtual Reality (2019) 23:155–168	

1 3

smoothly, rapidly and as accurately as possible in real-time.
The evaluation with the participants revealed that the posi-
tion and orientation of the arms were accurately tracked.
Because the movements of the virtual body corresponded to
the real movements of the users, the user could feel like they
were a part of the VR and could identify themselves with
the avatar. The evaluation with the subjects also validated
that a minority could perceive only a low end-to-end latency.

Future research will focus on making the body tracking
even more robust and reliable. The effectiveness of the itera-
tive method to solve the IK should be improved. Therefore,
we should reduce the computational cost by minimizing the
maximum number of iterations that are needed to calculate
the appropriate orientation of bones. In particular, because
there is no objective evaluation on the accuracy in this
research (the accuracy was only evaluated with the subjects),
in future work a tool should be developed in order to meas-
ure how accurate the developed body tracking system is.

Since in the current evaluation the participants could see
the full-body avatar, but only the hands were animated, also
feet should be animated in the future work. By attaching an
additional Vive Tracker to the back or hip as well as feet, the
user should be able to see an animated avatar while walk-
ing, dancing or jumping. To further improve the immersion
in the VR experience, the steps of the user could be iden-
tified in order to create stepping sound. Furthermore, we
could do a comparative study, comparing different presence
approaches, e.g., full-body animated avatar versus only ani-
mated hands as well as even showing only the Vive Control-
ler or Tracker.

Additionally, collision detection should be considered,
e.g., to interact with the environment. Collision detection is
also important in the detection of body movements since we
do not want the body limbs to intersect. When the user tries
to touch the virtual body, the collision detection should pre-
vent that the hands go through the body. Another important
aspect is the appearance of the avatar. Therefore, a tool to
personalize the avatar body, e.g., based on muscles, clothes
and skin color should be integrated into the pipeline, to cre-
ate an even more immersive VR experience.

References

Aristidou A, Lasenby J (2011) FABRIK: a fast, iterative solver for the
inverse kinematics problem. Graph Models 73(5):243–260

Banakou D, Groten R, Slater M (2013) Illusory ownership of a virtual
child body causes overestimation of object sizes and implicit atti-
tude changes. Proc Natl Acad Sci 110(31):12846–12851

Bolton J, Lambert M, Lirette D, Unsworth B (2014) PaperDude: a
virtual reality cycling exergame. CHI’14 Extended Abstracts on
Human Factors in Computing Systems. CHI EA’14. ACM, New
York, NY, USA, pp 475–478

Botev J, Rothkugel S (2017) High-precision gestural input for immer-
sive large-scale distributed virtual environments. In: Proceedings
of the 9th workshop on massively multiuser virtual environments,
MMVE’17. ACM, New York, NY, USA, pp 7–11

Caserman P, Krabbe P, Wojtusch J, von Stryk O (2016) Real-time step
detection using the integrated sensors of a head-mounted display.
In: 2016 IEEE international conference on systems, man, and
cybernetics (SMC), pp 3510–3515

Chan JCP, Leung H, Tang JKT, Komura T (2011) A virtual reality
dance training system using motion capture technology. IEEE
Trans Learn Technol 4(2):187–195

Choi SW, Seo MW, Lee SL, Park JH, Oh EY, Baek JS, Kang SJ (2016)
Head position model-based latency measurement system for vir-
tual reality head mounted display. SID Symp Dig Tech Papers
47(1):1381–1384

Collingwoode-Williams T, Gillies M, McCall C, Pan X (2017) The
effect of lip and arm synchronization on embodiment: a pilot
study. In: 2017 IEEE virtual reality (VR). IEEE, pp 253–254

Dempsey P (2016) The teardown: HTC Vive VR headset. Eng Technol
11(7–8):80–81

Desai PR, Desai PN, Ajmera KD, Mehta K (2014) A review paper on
oculus rift—a virtual reality headset. Int J Eng Trends Technol
(IJETT) 13(4):175–179

Desai K, Raghuraman S, Jin R, Prabhakaran B (2017) QoE studies
on interactive 3D tele-immersion. In: 2017 IEEE international
symposium on multimedia (ISM), pp 130–137

Farahani N, Post R, Duboy J, Ahmed I, Kolowitz BJ, Krinchai T,
Monaco SE, Fine JL, Hartman DJ, Pantanowitz L (2016) Explor-
ing virtual reality technology and the oculus rift for the examina-
tion of digital pathology slides. J Pathol Inform 7:22

Friðriksson FA, Kristjánsson HS, Sigurðsson DA, Thue D, Vil-
hjálmsson HH (2016) Become your avatar: fast skeletal recon-
struction from sparse data for fully-tracked VR. In: Proceedings of
the 26th international conference on artificial reality and telexist-
ence and the 21st Eurographics symposium on virtual environ-
ments: posters and demos, pp 19–20

Friston S, Steed A (2014) Measuring latency in virtual environments.
IEEE Trans Vis Comput Graph 20(4):616–625

Galna B, Barry G, Jackson D, Mhiripiri D, Olivier P, Rochester L
(2014) Accuracy of the microsoft kinect sensor for measur-
ing movement in people with Parkinson’s disease. Gait Posture
39(4):1062–1068

Goradia I, Doshi J, Kurup L (2014) A review paper on oculus rift &
project morpheus. Int J Curr Eng Technol 4(5):3196–3200

Grochow K, Martin SL, Hertzmann A, Popović Z (2004) Style-based
inverse kinematics. ACM Trans Graph 23(3):522–531

Huang J, Wang Q, Fratarcangeli M, Yan K, Pelachaud C (2017) Multi-
variate gaussian-based inverse kinematics. Comput Graph Forum
36(8):418–428

Jain D, Sra M, Guo J, Marques R, Wu R, Chiu J, Schmandt C (2016)
Immersive terrestrial scuba diving using virtual reality. In: Pro-
ceedings of the 2016 CHI conference extended abstracts on
human factors in computing systems. ACM, New York, USA,
pp 1563–1569

Jiang F, Yang X, Feng L (2016) Real-time full-body motion reconstruc-
tion and recognition for off-the-shelf VR devices. In: Proceedings
of the 15th ACM SIGGRAPH conference on virtual-reality con-
tinuum and its applications in industry—Volume 1, VRCAI’16.
ACM, pp 309–318

Johnson M, Humer I, Zimmerman B, Shallow J, Tahai L, Pietroszek
K (2016) Low-cost latency compensation in motion tracking for
smartphone-based head mounted display. In: Proceedings of the
international working conference on advanced visual interfaces,
AVI’16. ACM, New York, NY, USA, pp 316–317

Kasahara S, Konno K, Owaki R, Nishi T, Takeshita A, Ito T, Kasuga
S, Ushiba J (2017) Malleable embodiment: changing sense of

168	 Virtual Reality (2019) 23:155–168

1 3

embodiment by spatial-temporal deformation of virtual human
body. In: Proceedings of the 2017 CHI conference on human fac-
tors in computing systems, CHI’17. ACM, New York, NY, USA,
pp 6438–6448

Kavan L, Sloan PP, O’Sullivan C (2010) Fast and efficient skinning of
animated meshes. Comput Graph Forum 29(2):327–336

Kenwright B (2012) Real-time character inverse kinematics using the
Gauss–Seidel iterative approximation method. Int Conf Creat
Content Technol 4:63–68

Lange B, Rizzo S, Chang CY, Suma EA, Bolas M (2011) Marker-
less full body tracking: depth-sensing technology within virtual
environments. In: Interservice/industry training, simulation, and
education conference (I/ITSEC)

Latoschik ME, Lugrin JL, Habel M, Roth D, Seufert C, Grafe S (2016)
Breaking bad behavior: immersive training of class room manage-
ment. In: Proceedings of the 22nd ACM conference on virtual
reality software and technology, VRST’16. ACM, New York, NY,
USA, pp 317–318

Latoschik ME, Roth D, Gall D, Achenbach J, Waltemate T, Botsch M
(2017) The effect of avatar realism in immersive social virtual
realities. In: Proceedings of the 23rd ACM symposium on virtual
reality software and technology, VRST’17. ACM, New York, NY,
USA, pp 39:1–39:10

Martindale J (2018) Oculus Rift vs. HTC Vive. https​://www.digit​altre​
nds.com/virtu​al-reali​ty/oculu​s-rift-vs-htc-vive/. Accessed 4 May
2017​

Melo M, Rocha T, Barbosa L, Bessa M (2016) The impact of body
position on the usability of multisensory virtual environments:
case study of a virtual bicycle. In: Proceedings of the 7th interna-
tional conference on software development and technologies for
enhancing accessibility and fighting info-exclusion, DSAI 2016.
ACM, New York, NY, USA, pp 20–24

Nakamura Y, Hanafusa H (1986) Inverse kinematic solutions with sin-
gularity robustness for robot manipulator control. J Dyn Syst Meas
Control 108(3):163–171

Orin DE, Schrader WW (1984) Efficient computation of the Jacobian
for robot manipulators. Int J Robot Res 3(4):66–75

Peck TC, Seinfeld S, Aglioti SM, Slater M (2013) Putting yourself in
the skin of a black avatar reduces implicit racial bias. Conscious
Cognit 22(3):779–787

Raaen K, Kjellmo I (2015) Measuring latency in virtual reality sys-
tems. In: Chorianopoulos K, Divitini M, Baalsrud Hauge J, Jac-
cheri L, Malaka R (eds) Entertainment computing—ICEC 2015.
Springer, Cham, pp 457–462

Roberts D, Duckworth T, Moore C, Wolff R, O’Hare J (2009) Compar-
ing the end to end latency of an immersive collaborative environ-
ment and a video conference. In: Proceedings of the 2009 13th

IEEE/ACM international symposium on distributed simulation
and real time applications, DS-RT’09. IEEE Computer Society,
Washington, DC, USA, pp 89–94

Schmidt D, Kovacs R, Mehta V, Umapathi U, Köhler S, Cheng LP,
Baudisch P (2015) Level-ups: motorized stilts that simulate stair
steps in virtual reality. In: Proceedings of the 33rd annual ACM
conference extended abstracts on human factors in computing
systems, CHI EA’15. ACM, New York, NY, USA, pp 359–362

Seele S, Misztal S, Buhler H, Herpers R, Schild J (2017) Here’s look-
ing at you anyway!: how important is realistic gaze behavior in
co-located social virtual reality games? In: Proceedings of the
annual symposium on computer-human interaction in play, CHI
PLAY’17. ACM, New York, NY, USA, pp 531–540

Shoemake K (1985) Animating rotation with quaternion curves. In:
Proceedings of the 12th annual conference on computer graphics
and interactive techniques, SIGGRAPH’85. ACM, New York, NY,
USA, pp 245–254

Shum H, Ho ES (2012) Real-time physical modelling of character
movements with microsoft kinect. In: Proceedings of the 18th
ACM symposium on virtual reality software and technology,
VRST’12. ACM, pp 17–24

Sra M, Schmandt C (2015) MetaSpace II: object and full-body tracking
for interaction and navigation in social VR. CoRR abs/1512.02922

Steed A (2008) A simple method for estimating the latency of interac-
tive, real-time graphics simulations. In: Proceedings of the 2008
ACM symposium on virtual reality software and technology,
VRST’08. ACM, New York, NY, USA, pp 123–129

Tao G, Archambault PS, Levin MF (2013) Evaluation of kinect skeletal
tracking in a virtual reality rehabilitation system for upper limb
hemiparesis. In: 2013 international conference on virtual rehabili-
tation (ICVR), pp 164–165

Thomas JS, France CR, Leitkam ST, Applegate ME, Pidcoe PE,
Walkowski S (2016) Effects of real-world versus virtual envi-
ronments on joint excursions in full-body reaching tasks. IEEE J
Transl Eng Health Med 4:1–8

Tsai TC, Chen CY, Su GJ (2015) U-art: your art and ubiquitous art. In:
Adjunct proceedings of the 2015 ACM international joint confer-
ence on pervasive and ubiquitous computing and proceedings of
the 2015 ACM international symposium on wearable comput-
ers, UbiComp/ISWC’15 Adjunct. ACM, New York, NY, USA,
pp 1295–1302

Publisher’s Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/
https://www.digitaltrends.com/virtual-reality/oculus-rift-vs-htc-vive/

	Real-time body tracking in virtual reality using a Vive tracker
	Abstract
	1 Introduction
	2 Related work
	2.1 Full-body tracking
	2.2 Inverse kinematics
	2.3 Latency

	3 Approach
	3.1 Development of the body tracking system
	3.1.1 Character model
	3.1.2 Position and rotation tracking
	3.1.3 Implementation of inverse kinematics with reduced Jacobian matrix
	3.1.4 Animation

	3.2 Development of a latency measurement tool

	4 Results
	4.1 Evaluation of the body tracking system
	4.2 Evaluation of latency measurements

	5 Conclusion
	References

