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Abstract. The *Hes system is investigated using a hard-core version of the Faddeev differential equations.
Realistic *He-*He interactions are employed, among them the LM2M2 potential by Aziz and Slaman
and the recent TTY potential by Tang, Toennies and Yiu. We calculate the binding energies of the *He
trimer, but concentrate in particular on scattering observables. The scattering lengths and the atom-diatom
phase shifts are calculated for center of mass energies up to 2.45 mK. It is found that the LM2M2 and
TTY potentials, although of quite different structure, give practically the same bound-state and scattering

results.

PACS. 02.60.Nm Integral and integrodifferential equations — 21.45.+v Few-body systems

1 Introduction

Studies of small “He clusters (in particular dimers and
trimers) represent an important step towards understand-
ing the properties of helium liquid drops, super-fluidity in
“He films, the Bose-Einstein condensation etc. (see, for in-
stance, Refs. [1-4]). Besides, the helium trimer is probably
a first specific molecular system where a direct manifes-
tation of the Efimov effect [5] can be observed, for the
binding energy eq of the *He dimer is extremely small
(about 1 mK) on the molecular scale.

There is a great number of experimental and theoreti-
cal investigations of “He clusters. Out of the experimental
works we mention references [6-11] where molecular clus-
ters of helium and other noble gas atoms were considered.
Most of the theoretical investigations consist in comput-
ing the ground-state energy and are based on variational
methods [12-17], on hyperspherical harmonics expansions
in configuration space [18,19], and on integral equations
in momentum space [20,21]. We further note that the re-
sults of reference [22] were based on a direct solution of the
two-dimensional Faddeev differential equations in config-
uration space, while recently binding-energy results were
obtained by using the three-dimensional Faddeev differen-
tial equations in the total-angular-momentum represen-
tation [23]. A qualitative treatment of the *Hes system
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in an effective field theory is presented in reference [24].
In references [17,18,21,25] it was shown that the excited
state of the “*He trimer is indeed an Efimov state [5]. An-
other proof of the Efimov nature of the excited state of
the trimer, based on a scaling consideration, is discussed
in [26]. The resonance mechanism of formation and disap-
pearance of the Efimov levels in the *Hes system has been
studied in references [27,28]. A very promising experimen-
tal method for determining the excited state of the *He
trimer is suggested in a recent paper [29].

In contrast to the bulk of theoretical investigations de-
voted to the binding energies of the *He trimer, scattering
processes found comparatively little attention. In refer-
ence [20] the characteristics of the He-Hes scattering at
zero energy were studied, while the recombination rate of
the reaction (1+1+41 — 2+ 1) was estimated in [30]. The
phase shifts of the He—He, elastic scattering and breakup
amplitudes at ultra-low energies have been calculated for
the first time just recently in [25] (see also [31,32]) and this
was only done for the comparatively old HFD-B potential
by Aziz et al. [33].

In principle, the problem of three helium atoms can be
considered as an example of an ideal three-body quantum
problem, since *He atoms are identical neutral bosons and,
thus, their handling is not complicated by spin, isospin, or
Coulomb considerations. But, in fact, the *He triatomic
system belongs to the three-body systems whose theoreti-
cal treatment, regarding the excited states and scattering
processes, is quite difficult. The difficulty is mainly due to
two reasons. First, the low energy €4 of the dimer makes
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it necessary to consider very large domains in config-
uration space with a characteristic size of hundreds of
Angstroems. Second, the strong repulsion of the He-He
interaction at short distances produces large numerical er-
rors.

In the present paper, which is an extension of the con-
siderations of [25], we employ the mathematically rigor-
ous hard-core version of the Faddeev differential equations
of references [34,35]. This method overcomes the strong-
repulsion problem just mentioned. As compared to [25]
we use in the present work the refined He—He interatomic
potentials LM2M2 by Aziz and Slaman [36], and TTY
by Tang, Toennies, and Yiu [37]. Our numerical meth-
ods have also been substantially improved which allowed
us to deal with considerably larger grids achieving, thus,
a better accuracy. Furthermore, due to better computing
facilities more partial waves were taken into account.

The paper is organized as follows. In Section 2 we
shortly review the three-body bound and scattering state
formalism for hard-core interactions. In Section 3 we de-
scribe numerical details of its application to the system of
three “He atoms. Our numerical results are presented in
Section 4. Finally, in the Appendix we give details of the
potentials used.

2 Formalism

In this work we employ a hard-core version of the Faddeev
differential equation developed in [34,38]. It has also been
described in detail in reference [25]. Therefore, in what
follows we only outline the formalism and present its main
characteristics needed for understanding our procedure.

In treating the three-body system we use the stan-
dard Jacobi coordinates x,,ya, @ = 1,2, 3, expressed in
terms of the position vectors of the particles r; and their
masses 1m;,

2mpgm,,
X = | ———
mg + m,

2mq(mg +m,) i r _ Ingrg +m,ry
Mo + My + m, T mgtm,

T/Q (rg —ry)

Yo =

where (a,3,7) stands for a cyclic permutation of the
indices (1,2,3). The coordinates X,,y, fix the six-
dimensional vector X = (X4,ya) € RS. By Ax we denote
Laplacian in X.

In the hard-core potential model one requires the
three-body wave function ¥(X) to vanish when two of
the three particles, say 8 and ~, approach each other at
distances |x,| < ¢4 where ¢, is the hard-core radius in
the channel «, i.e.,

¥(X) =0, a=1,23. (1)
One can show [35,38] that in this model the Faddeev com-
ponents @, (X), a = 1,2,3, satisfy the following system

|\xa|§ca

of differential equations

(—Ax +Va = B)Pa(X) = ~Va Y $5(X), [Xal > ca
(_AX - E)gba(X) =0, o

[Xa| < Ca
(2)

where V,, stands for the potential acting between particles

[ and v outside the core domain, i.e., at |x4| > cq. Out-

side all the core domains the components @, provide the
total wave function ¥,

3
> s(X) =¥(X)
p=1 |[Xa|>Ca,a=1,2,3

while in the interior region we have, in accordance
with (1),

3
> Ps(X) =0, a=1,2,3.
B=1

In practice, one can replace the latter strong condition by
a weaker one [34,38],

3
> Bp(X) =0, a=1,2,3, (3)
B=1

‘xa|:Ca

which requires the sum of @3(X) to be zero only at the
boundaries of the core domains.

The numerical advantage of our approach is already
obvious from the structure of equations (2). When a po-
tential with a strong repulsive core is replaced by the hard-
core model, one approximates inside the core domains only
the Laplacian Ax instead of the sum of the Laplacian and
the huge repulsive term. In this way a much better numer-
ical approximation is achieved.

In the present investigation we apply this formalism to
the “He three-atomic system with total angular momen-
tum L = 0. The partial-wave version of equations (2) for a
system of three identical bosons with L = 0 reads [39,40]

0?02 11
{@a—yQJrl(lJrl) (EJFE) E] @l(:ﬂ,y)—

V() (z,y), x> c
0, T <c.

(4)

Here, z,y are the absolute values of the Jacobi variables
and c is the core size, which is the same for all three two-
body subsystems. The angular momentum [ corresponds
to a dimer subsystem and a complementary atom. For
a three-boson system in an S-state, [ can only be even,
Il =0,2,4,... The potential V(x) is assumed to be cen-
tral and the same for all partial waves [. The function
¥ (x,y) is related to the partial-wave Faddeev components

dsl(l.a y) by

+1
@ (z,y) :¢l($,y)+2/ dn ha (,y, ) Pu (2, y")
et

(5)



AK. Motovilov et al.: Binding energies and scattering observables in the *Hes atomic system 35

where

1 3 V3
’ -2 2.2
w—\/4fc tqY 5T,

3 1 V3
o 2.2 =2 vy
y—\/4:c+4y+ 5 TYN,

with 7 = x-y. Analytic expressions for the kernels hj are
found in [25,39,40]. It should be noted that these kernels
depend only on the hyperangles

/

Y and ¢ = arctany—/

0 = arctan =
x
but not on the hyperradius
p= \/x2+y2 - \/a:’2+y’2.
The functions &@;(z,y) satisfy the boundary conditions
P1(2,Y)| =0 = P1(x,y) [—g = 0. (6)

The partial-wave version of the hard-core boundary con-
dition (3) reads

+1
Biey)+ Y / dnhu (e, y,m) Bu (2, y/) =0 (7)
U -1

which requires the wave function ¥;(x, y) to be zero at the
core boundary x = c¢. Furthermore, one can show that,
in general, condition (7) like condition (3) causes also the
functions (5) to vanish inside the core domains.

The asymptotic condition for the helium trimer bound
states reads [39]

Dy (x,y) = dipta(x) exp(iv/ By — €4 y) [CLO + O(y—l/Q)}

N wftm [40) +0(p~7?)] ®

as p — oo and/or y — oo. Here we use the fact that the
helium dimer bound state exists only for [ = 0. ¢q stands
for the dimer energy while 14(z) denotes the dimer wave
function which is assumed to be zero within the core, i.e.,
Ya(z) =0 for z < c.

The coeflicients ag and A;(6) describe the contribu-
tions of the (2+ 1) and (14 1+ 1) channels to &;, respec-
tively. Both the trimer binding energy E; and the differ-
ence Ey —€q in (8) are negative which means that for any
6 the function @;(z, y) decreases exponentially as p — co.

The asymptotic boundary condition for the partial-
wave Faddeev components of the (2+1 — 2+4+1; 1+1+1)
scattering wave function reads for p — oo and/or y — oo

D1(z,y;p) =
d0a () {sin(py) + exp(ipy) [ao(p) + O(y71/2>} }
exp(ivEp)

= {AZ(E, 0) + 0(/)71/2)} 9)

Table 1. Dimer energies eq, inverse wave lengths 1 /%(2), and
‘He—*He scattering lengths ééi) for the potentials used.

Potential  eq (mK) 1/x® (A) 62 (A)
HFDHE2 —0.83012 120.83 124.65
HFD-B  —1.68541 84.80 88.50
LM2M2  —1.30348 96.43 100.23
TTY  —1.30962 96.20 100.01

where p is the momentum corresponding to the variable y,
E is the scattering energy given by E = eq +p?, and ag(p)
is the elastic scattering amplitude. The functions A;(E, 6)
provide us for £ > 0 with the corresponding partial-wave
breakup amplitudes.
The helium-atom helium-dimer scattering length g is
given by
lse = —ﬁ lim %(p)

2 D
p—0

while the S-state elastic scattering phase shifts do(p) are
given by

1
do(p) = 5 min So(p). (10)
Here So(p) = 14+2iag(p) is the (241 — 2+1) partial-wave
component of the scattering matrix.

3 Numerical details

As mentioned in the Introduction, an essential part of our
present approach consists in a substantial improvement
of our methods. Let us, therefore, go into some technical
details. We employed the Faddeev equations (4) and the
hard-core boundary condition (7) to calculate the bind-
ing energies of the helium trimer and the ultra-low energy
phase shifts of the helium atom scattered off the helium
diatomic molecule. As He-He interaction we used three
versions of the semi-empirical potentials of Aziz and col-
laborators, namely HFDHE2 [41], HFD-B [33], and the
newer version LM2M2 [36]. Furthermore, we employed the
latest theoretical He-He potential TTY of Tang et al. [37].
These potentials are given in the Appendix. In our calcula-
tions we used the value 1% /m = 12.12 K A2. All the poten-
tials considered produce a weakly bound dimer state. The
energy €q of this state together with the He—He atomic
scattering length fé? are given in Table 1. Notice that the
latest potentials LM2M2 and TTY give practically the
same scattering length /5. and dimer energy eq.

A description of our numerical method has been given
in reference [25]. Therefore, we outline here only the main
steps of the computational scheme employed to solve the
boundary-value problems (4, 6, 7) and (8) or (9). First, we
note that the grid for the finite-difference approximation
of the polar coordinates p and 6 is chosen such that the
points of intersection of the arcs p = p;, 7 = 1,2, ..., N, and
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the rays 6 = 0;, j = 1,2,..., Ng with the core boundary
x = c constitute the knots. We found that the values of
the hard-core diameter ¢ of *He atoms, taken within the
interval 0.7-1.3 A, provide a dimer bound-state energy eq
which is stable within six figures and a trimer ground-

state energy Et(o) stable at least within three figures. The
reason of such a stability is simple: even the radius 2 A
lies in the highly repulsive domain of the He—He potential.
For example, the value of the LM2M2 potential for this
radius is 538 K while for 1.5 A it acquires the value of
5590 K. Thus, in the present work we were allowed to fix
the core diameter ¢ to be simply 1.0 A. The p; are chosen
according to

7

pi=—————¢, i:172’m’NC(P)’
N 41
pi+N(P) Zm, i:1’2""5Np_Nc(p),

where Nc(p ) stands for the number of arcs inside the do-
main p < ¢ and
b= F i, @ m=
P Np _ NC(P)
The nonlinear monotonously increasing function f(7), 0 <
7 < 1, satisfying the conditions f(0) =0 and f(1) =1, is
chosen to be

f(r) = T V,TG[O,TQ].
o+ 7, T € (70, 1]

The values of ag, ag > 0, and «ay, a1 > 0, are determined
via 79 and v from the continuity condition for f(7) and
its derivative at the point 7y. In the present investigation
we took values of 75 within 0.15 and 0.2. The value of the
power v depends on the cutoff radius ppax = pn, = 200
1000 A, its range being within 3.4 and 4 in the present
calculations.

The knots 6; at j = 1,2,...,N, — Nc(p) are taken ac-
cording to #; = arctan(y;/c) with the remaining knots
0;, j = N, — c(p) + 1,..., Ny, being chosen equidis-
tantly. Such a choice is required by the need of having
a higher density of points in the domain where the func-
tions @ (x,y; z) change most rapidly, i.e., for small values
of p and/or . In this work, we used grids of the dimension

Ny = N, = 500-800 while the above number Nép ) and the

number Ny — (N, — Nc(p)) of knots in 6 lying in the last
arc inside the core domain was chosen equal to 2-5.
Since we consider identical bosons, only the compo-
nents @; corresponding to even [ differ from zero. Thus,
the number of equations to be solved is Ne = lnax/2 + 1
where [.x is the maximal even partial wave. The finite-
difference approximation of the N, equations (4) reduces
the problem to a system of Ne/Ng N, linear algebraic equa-
tions. The finite-difference equations corresponding to the
arc ¢ = N, include initially the values of the unknown
functions &;(z,y;z) from the arc ¢ = N, + 1. To elimi-
nate them, we express these values through the values of

&(x,y; z) on the arcs i = N, and i = N, — 1 by using the
asymptotic formulas (8) or (9) in the manner described
in the final part of Appendix A of reference [25]. In [25],
however, this approach was used for computing the bind-
ing energies only, while in the present work this method is
extended also to the scattering problem. The matrix of the
resulting system of equations has a block three-diagonal
form. Every block has the dimension N.Ny x NNy and
consists of the coefficients standing at unknown values of
the Faddeev components in the grid knots belonging to
a certain arc p = p;. The main diagonal of the matrix
consists of N, such blocks.

In this work we solve the block three-diagonal algebraic
system on the basis of the matrix sweep method [42]. This
method makes it possible to avoid using disk storage for
the matrix during the computation. Besides, the matrix
sweep method reduces the computer time required by al-
most one order of magnitude as compared to [25].

4 Results

Our results for the trimer ground-state energy Et(o), as well
as the results obtained by other authors, are presented in
Table 2. It should be noted that most of the contribution
to the ground-state energy stems from the I = 0 and [ = 2
partial-wave components, the latter being slightly more
than 30%, and is approximately the same for all poten-
tials used. The contribution from the [ = 4 partial wave
is of the order of 3-4% (cf. [22]). One can see that our

results for Et(o) with lhax = 4 are in perfect agreement
with corresponding values obtained in the most advanced
calculations [12-16,19,23]. Our ground-state energy Et(o)
for LM2M2 disagrees, however, with the variational value

—0.15 em~! = —0.216 K for Et(o) obtained with the same
potential in [17] (here, for converting the energy units we
use the factor 1 em~! = 1.4387752 K [43]).

The results obtained for the excited-state energy of the

trimer Et(l), as well as the results found in the literature,
are presented in Table 3. To illustrate the convergence of

our results, we show in Table 4 the dependence of Et(l) on
the grid parameters using the TTY potential. It is seen
that the [ = 0 partial-wave component contributes about
71% to the excited-state binding energy. The contribution

to Et(l) from the [ = 2 component is about 25-26% and
from ! = 4 within 3-4%. These values are similar to the
ones for the ground state. Finally, we see that our results

for Et(l) are in a quite good agreement with the best results
for Et(l) found in the literature [19,23], while they deviate

considerably from the result E{") = —1.24x 1073 cm ™! =
—1.784 mK of reference [17] obtained with LM2M2.
Although we have performed detailed calculations of
the “Hes binding energies, the main goal of the present
work was to perform calculations for the scattering of
a helium atom off a helium dimer at ultra-low energies.
Our results at L = 0 for the scattering length of the
collision of the He atom on the He dimer, obtained for
the HFD-B, LM2M2 and TTY potentials, are presented
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(

Table 2. Ground state energies Et(o) for the helium trimer obtained via different methods. The (absolute) values of Eto) are
given in K. The grid parameters used were Ng = N, = 555, 790 = 0.2, v = 3.6, and pmax = 250 A.

Faddeev Variational Adiabatic
equations methods approaches
Potential lmax this work [22]  [21] [20] [23] [13] [12]  [14] [15] [16] [18] [19]
0 0.084 0.0823 0.082 0.092 0.098
HFDHE2 2 0.114® 0.1124 0.107 0.11
4 0.1167 0.1171  0.1173
0 0.096) 0.0942 0.096
HFD-B 2 0.131® 0.1277 0.130
4 0.1325 0.1330 0.1193 0.133 0.131 0.129
0 0.0891 0.106
LM2M2 2 0.1213
4 0.1259 0.1264 0.1252
0 0.0890
TTY 2 0.1212
4 0.1258 0.1264 0.126

(@ Results from [25] for a grid with Np = N, = 275 and pmax = 60 A.

Table 3. Excited state energies Et(l) for the helium trimer. The
(absolute) values of Et(l) are given in mK. The grid parameters
used were Ny = N, = 805, 70 = 0.2, vp = 3.6, and pmax =
300 A.

Potential lmax this work [21] [20]
0 1.5 146 1.46 1.04

2 1.7 165 1.6

4 1.67

0 25 245

2 28@am

4 2.74

0 2.02

2

4

0

2

4

23] [18]

1.517

[19]

HFDHE2
1.665

HFD-B
2.734

2.118
LM2M2 2.25
2.28
2.02
2.25
2.28 2.280

(@ Results from [25] for a grid with Ny = N, = 252 and pmax =
250 A.

2.271 2.269

TTY

Table 4. Trimer excited-state energy Et(l) (mK) obtained with
the TTY potential for various grids.

No=N,=252 Ny=N,=502 Ny=N,=0652
Imax  pmax =250 A prmax =300 A prax = 300 A

0 —2.108 —2.039 —2.029

2 —2.348 —2.273 —2.258

No =N, =805 Ny=N,=1005

Imax  Pmax =300 A pmax = 300 A

0 —2.024 —2.021

2 —2.253 —2.248

in Table 5. For the definition of the scattering length, in
case of at least one of the two particles being composite,
see, e.g., Section IIB in reference [20]. Our approach to
calculation of the He-Hes scattering length is described
in [25]. As compared to [25] the present calculation is es-
sentially improved (the result ¢, = 14545 A for HFD-B
with lnax = 2 was obtained in [25] with a much smaller
grid). Notice that the exact value of this length is im-
portant for estimating the three-body recombination rate
of Bose-condensed helium atoms (see [30,44]). Apart from
our previous result [25], there exist, to our knowledge, only
two further results for the He—He, scattering length. The
one of reference [20] provides £ = 195 A, obtained within
a zero-energy scattering calculation based on a separable
approximation for the oldest Aziz et al. He—He potential
HFDHE2. A more recent one is obtained by Blume and
Greene [45] via a Monte Carlo hyperspherical calculations
with the LM2M2 potential. Their result of fs. = 126 A
is in good agreement with our result of 131 £5 A (see
Tab. 5). Within the accuracy of our calculations, the scat-
tering lengths provided by the LM2M2 and TTY poten-
tials, like the energies of the excited state, are exactly the
same. It should be mentioned that in this case also the
two-body binding energies and scattering lengths are al-
most indentical.

The phase shifts obtained for the HFD-B, LM2M2 and
TTY potentials are given in Tables 6-8. For the HFD-B
and TTY potentials they are plotted in Figure 1. Note that
for the phase shifts we use the normalization required by
the Levinson theorem [46], 61(0) — 0r(00) = nm, where
n is the number of trimer bound states. Incident ener-
gies below and above the breakup threshold, i.e. for the
processes (24+1 — 2+ 1)and 24+1 — 1+ 1+ 1),
were considered. It was found that after transformation
to the laboratory system the phase shifts 5(()lma") for the
potentials HFD-B, LM2M2 and TTY for different values
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Table 5. Estimations for *He atom —*He dimer scattering lengths ¢ and inverse wave numbers 2~ ! corresponding to the
excited-state energy Et(l) for the HFD-B, LM2M2 and TTY potentials. The accuracy for the scattering lengths is within +5 A.
The grid parameters used for the calculation of ¢sc are: Ny = N, = 502, 7o = 0.18, v = 3.45 and pmax = 460 A.

Potential  Imax Lse (A) x 1 (A) Potential Imax  lse (A) 271 (A)
0 170 168 109 0 168 113
HFD-B 2 145 138 94 LM2M2/TTY 2 134 98
4 135 93 4 131 96

(M Results from [25] for a grid with Ny = N, = 320 and pmax = 400 A.

Table 6. Phase shift (5élma") results (in degrees) for the HFD-B potential for various c.m. energies E (in mK). The grid
parameters used are: Ny = N, = 502, 70 = 0.18, v = 3.45, and pmax = 460 A.

E s s W E s s s B 5O s s

—1.68541 359.9 359.9 359.9 —1.05 299.1 3082 309.2 095 2624 2721 273.7
~1.68 3526 353.9 3541 —0.8 290.8 3004 3015 1.2 260.0 269.6 270.7
—1.65 3417 3450 3454 —0.55 2844 2042 2954 145 257.8 267.3 268.4
~1.60 3308 337.7 3382 —0.3 279.3 2893 2904 1.7 2559 2652 266.3
—155 3269 3328 3335 —005 2751 2852 2863 1.95 2541 2634 2645
~1.50 3224 3290 3298 02 2714 2813 2825 22 2525 261.7 262.7
140 3154 3230 3239 045 2681 277.9 279.0 245 251.0 260.1 261.1
~1.30 3099 3181 319.1 0.7 2651 2748 276.0

Table 7. Phase shift Jél“““) results for the LM2M2 potential. The units and grid parameters used are the same as in Table 6.

E IS E s s B 50 5P
—1.30348 3598 359.9 —08 3046 3138 095 267.0 276.2
—~1.3 3541 3553 —0.55 2952 3048 1.2 2641 2732
—~1.25 3379 3423 —0.3 2879 297.7 145 261.5 270.6
—~1.20 3305 3363 —0.05 2823 2022 1.7 2592 268.1
—~1.15 3252 3320 0.2 277.7 2874 195 257.1 266.0
—~1.10  321.1 3285 045 273.7 2832 22 2553 2640
~1.05 3176 3255 0.7 270.1 2795 245 253.6 262.3

Table 8. Phase shift 6élma") results for the TTY potential. The units and grid parameters used are the same as in Table 6.

E S S T T S o OB T S

~1.30961  359.7 359.8 359.8 —0.8 3043 3135 3146 095 266.8 2761 277.2
~1.308 3559 356.8 3569 —0.55 2950 304.6 3057 1.2 2640 273.1 274.2
~13 3502 3521 3524 0.3 287.7 297.5 2987 145 2614 2705 2715
~1.25 3368 3414 3419 -0.05 2820 2920 2932 1.7 259.1 268.1 269.1
~1.2 3297 3357 3364 02 2775 287.3 2884 195 257.0 2659 266.9
~1.10 3205 3281 3290 045 2735 283.1 2842 22 255.0 2639 265.0
~1.05 3171 3251 3261 0.7 2700 279.4 280.5 245 253.5 2622 263.2

of lnax are practically the same, especially those for

LM2M2 and TTY. The difference between 5(()2) and 5(()4)
is only about 0.5%.

We also compare the values obtained for the He—He,
scattering lengths {5 with the corresponding inverse wave
numbers 2! for the trimer excited-state energies. The

values of 71, where » = 21/(eq —Et(l))/3, with both

Et(l) and eq being given in A~2, are also presented in Ta-
ble 5. It is seen that these numbers are about 1.3—1.7 times
smaller than the respective *He-atom “He-dimer scatter-
ing lengths. The situation differs completely from the *He
two-atomic scattering problem, where the inverse wave

numbers (%(2))_1 = |eq|~"/? are in a rather good agree-
ment with the *He-*He scattering lengths (see Tab. 1).
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Fig. 1. S-wave helium-atom helium-dimer scattering phase shifts 6o(Elab), Elab = 3(E + |ed|)/2, for the HFD-B and TTY
‘He-*He potentials. The lower curve corresponds t0 lmax = 0 while for the upper one lmax = 2

Such significant differences between 4. and >~ ! in case
of the *He three-atomic system can be attributed to the
Efimov nature of the excited state of the trimer, which im-
plies that the effective range rq for the interaction between
the He atom and the *He dimer is very large as compared
to the “He diatomic problem. While the accuracy in our
results for the amplitude ag(p) at p =~ 0 is good enough
to estimate the scattering length /s, we consider it to be
still insufficient to extract a definite value of rg.
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Appendix: The potentials used

The general structure of the realistic semi-empirical po-
tentials HFDHE2 [41] and HFD-B [33] developed by Aziz
et al. is

Vi(z) =eV(Q) (A.1)

where ¢ = z/ry, and the term V4 () reads

C C C
hi6) = Aexp(-ac + 5¢%) - |2+ %+ Ge| P,
x is expressed in the same length units as r,, (A in the
present case). The function F(¢) is given by

_ Jexp[-(D/¢-D)?, (<D
F(O_{1 if¢(>D.

)

In addition to the term V4 (¢) the LM2M2 potential [36]
contains a term V4 (¢),

V(r) =e{Vu(¢) + Va(Q)} (A.2)
where
Va(() =
[2r((-G) 7™
Aa{Sln[ﬁ—g} +1}, Q<<
0; < g [Cla <2] .

The parameters for the HFDHE2, HFD-B and LM2M2
potentials are given in Table 9.

The form of the theoretical He—He potential TTY is
taken from [37]. This potential reads

V() = A[Vex(2) + Vaisp (7))
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Table 9. The parameters for the *He—*He Aziz and co-workers
potentials used.

Parameter HFDHE2 [41] HFD-B [33]  LM2M2 [36]
¢ (K) 10.8 10.948 10.97

T (A) 2.9673 2.963 2.9695

A 544850.4 184431.01 189635.353
a 13.353384 10.43329537  10.70203539
3 0 —2.27965105  —1.90740649
Cs 1.3732412 136745214  1.34687065
Cs 0.4253785 042123807  0.41308398
Cho 0.178100 0.17473318  0.17060159
D 1.241314 1.4826 1.4088

A, - - 0.0026

G - - 1.003535949
G - - 1.454790369

Table 10. The parameters for the *He—%*He TTY poten-
tial used.

A (K) 315766.2067@) Cs 1461
B ((auw)™") 13443 Cs 1411
D 7.449 Cio 1835
N 12

(@)The value of A was obtained from the data presented
in [37] using, for converting the energy units, the factor
1 K =3.1669 x 107° a.u.

where x stands for the distance between the *He atoms
given in atomic length units. (Following [37] in converting
the length units we used 1 a.u. = 0.52917 A.) The function
Vex has the form

Vex(x) = D P exp(—20z)

with p = %

— 1, while the function Vgisp reads

N
Vaisp(z) = — Z Can fon(z) 272",
n=3

The coefficients Cy,, are calculated wvia the recurrency re-
lation

and the functions fs, are given by

fon(z) =1 — exp(—bx) Z o

k=0
where - )
b(z) =28— |— — 1| =
@ =20 |55-1] 1
The parameters of the TTY potential are given in Ta-
ble 10.
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