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Abstract. We analyze the transient nonclassical behaviour of a single-mode field whose interaction with
an environment is governed by the quantum optical master equation. Our analytic method makes use
of the generalized characteristic function of the field state. First, we find a time at which all squeezing
effects disappear by decoherence regardless of the initial state of the mode. In the case of an input even
coherent state, an unusual modification of higher-order squeezing at low values of thermal mean occupancy
transferred to the field is found and discussed. For the same initial state, we also perform a comprehensive
analysis of the mixing process during the interaction with the reservoir. We prove that a maximum in the
evolution of the 2-entropy of the attenuated mode exists on condition that its initial mean photon number
exceeds the mean occupancy of the reservoir. This transient mixing enhancement can be considered as a
quantum effect of the initial state on the mode damping.

PACS. 42.50.Dv Nonclassical field states; squeezed, antibunched, and sub-Poissonian states; operational
definitions of the phase of the field; phase measurements – 03.65.Bz Foundations, theory of measurement,
miscellaneous theories (including Aharonov-Bohm effect, Bell inequalities, Berry’s phase)

1 Introduction

Interaction of a quantum system, such as a single-mode
radiation field, with an environment has been intensively
studied in connection with the emergency of classicality
for the system [1–3]. In reference [1], the master equation
of the quantum Brownian motion in the high-temperature
limit has been used to get a predictability sieve for
the effectiveness of quantum decoherence. In references
[2,3], effects of the environment on a harmonic oscillator
have been investigated in the framework of the Lindblad
equation formalism [4]. Special attention is paid to the
case of an interaction which is linear in position and mo-
mentum [5]. The works [1–3] have exploited the produc-
tion of reduced linear entropy as an instrument for de-
termining maximal states of the system. Examination of
the von Neumann entropy production deduced from the
master equation of quantum Brownian motion [6] reveals
that information about the system diminishes consider-
ably at short times. Simultaneously, dramatic changes
of nonclassical properties of the field mode could hap-
pen. These properties generally soften owing to the dis-
sipative interaction [7–9]. However, recent works [10–12]
report that, in some cases, environment enhances nonclas-
sical features. Specifically, a single-mode field in a super-
position of coherent states weakly coupled to a heat bath
at zero [10] or very low temperature [11] has been stud-
ied. It has been found that fourth-order squeezing could
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be transiently created due to the interaction with the
reservoir described by the quantum optical master equa-
tion [13]. Note that, according to references [2–5], this
master equation is precisely of the type introduced by
Lindblad.

Use will be made in the present paper of the quan-
tum optical master equation in order to elucidate two
problems:

(i) occurrence of higher-order squeezing for a nonclas-
sical single-mode radiation field coupled to a low-
temperature heat bath. As an illustration, the case of
an initial even coherent state (ECS) [14] is explicitly
treated;

(ii) evolution of the mixing process undergone by an input
ECS.

The paper is organized as follows. In Section 2 we first
discuss the solution of the master equation in terms of the
characteristic function (CF) of the damped mode. Then,
we give general analytic formulae describing squeezing to
any even order N . They are applied in Section 3 to the
interesting case of an ECS. We also point out the loss of
nonclassicality by means of the P -representation of the
density operator. The 2-entropy of a damped ECS is eval-
uated in Section 4 making use of its CF. Clearly, the 2-
entropy turned out to be an efficient tool to analyze the
evolution of the mixing produced by the environment. We
distinguish a classical behaviour of this mixing from a non-
classical one by comparing the initial mean photon num-
ber of the field with the mean occupancy of the reservoir.
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2 Evolution of higher-order squeezing

We denote by a and a† the amplitude operators of the
field mode. The quantum optical master equation in the
interaction picture is [13]

∂ρ

∂t
=
γ

2
(n̄R + 1)(2aρa† − a†aρ− ρa†a)

+
γ

2
n̄R(2a†ρa− aa†ρ− ρaa†). (2.1)

In equation (2.1), ρ is the reduced density operator of the
field, γ is the coupling constant between field and bath,
and n̄R stands for the mean occupancy of the reservoir.

The usefulness of the normally ordered generalized
characteristic function (GCF) recently introduced in our
paper [12] as

χN(λ, λ′) := 〈exp (λa†) exp (λ′a)〉 (2.2)

is proved once more when applying it to equation (2.1). By
use of well-known methods [7,13], we convert the master
equation (2.1) into a first-order partial differential equa-
tion for the GCF (2.2):

∂χN

∂t
=γn̄Rλλ

′χN−(
γ

2
−iω)λ

∂χN

∂λ
−(

γ

2
+ iω)λ′

∂χN

∂λ′
·

(2.3)

The solution of this equation found by the characteristic-
curve method [15] depends on its initial form
χN(λ, λ′, 0) as

χN(λ, λ′, t) = χN(λe−(γ/2−iω)t, λ′e−(γ/2+iω)t, 0)

× exp
[
n̄R(1− e−γt)λλ′

]
. (2.4)

Note that the GCF (2.2) is picture independent. When
λ′ = −λ∗, equation (2.2) gives the usual normally ordered
CF χN (λ) introduced by Glauber [16]. By employing this
function, one readily finds the expectation values

〈(a†)lam〉 = (−1)m
[

∂l+m

∂λl∂λ∗m
χN(λ)

]
λ=0

, (2.5)

which are necessary when one has to examine the statis-
tical properties of the field state. For instance, the mean
photon number (l = m = 1 in Eq. (2.5)) is obtained from
the normally ordered CF (2.4) as

n̄(t) = n̄(0)e−γt + n̄T(t), (2.6)

where

n̄T(t) := n̄R[1− exp (−γt)] (2.7)

is the thermal mean occupancy in the field mode at time
t. Note also that, if existing as a well-behaved function,
the Fourier transform of the normally ordered CF is the
Glauber-Sudarshan P -representation [17]

P (β) =
1
π

∫
d2λ exp(βλ∗ − β∗λ)χN(λ). (2.8)

The density operator is fully determined by the symmet-
rically ordered CF,

χ(λ) = exp (−|λ|2/2)χN(λ), (2.9)

via the Weyl expansion [18]

ρ =
1
π

∫
d2λ χ(λ)D(−λ). (2.10)

In equation (2.10), D(β) = exp (βa† − β∗a) is a Weyl
displacement operator.

Now, the significance of the factorization (2.4) is quite
transparent: it describes the superposition of the attenu-
ated field with a thermal one whose time-dependent mean
occupancy is n̄T(t) (Eq. (2.7)). Therefore, the decay of
the field mode ruled by the quantum optical master equa-
tion is a thermalization process, as studied generically in
our paper [12]. We can now use the generating-function
method presented in reference [12] in order to obtain the
time-dependent higher-order moments of the quadrature
operators as functions of the similar ones at the initial
moment t = 0. Due to the oscillatory factors in the CF
(2.4), such expectation values are also rapidly oscillating
functions. In what follows, we give only formulae with the
oscillatory factors removed. Application of the steps de-
scribed in reference [12] to the factorization (2.4) yields the
following formulae, valid for an even order N and j = 1, 2:

〈(∆Xj)N 〉t = N !
[N/2]∑
m=0

[2n̄T(t) + 1]m exp (−N−2m
2 γt)

23mm!(N − 2m)!

× 〈: (∆Xj)N−2m :〉0, (2.11a)

〈(∆Xj)N 〉t=N !
[N/2]∑
m=0

[2n̄T(t)+1−e−γt]m exp (−N−2m
2 γt)

23mm!(N − 2m)!

× 〈(∆Xj)N−2m〉0, (2.11b)

〈: (∆Xj)N :〉t = N !
[N/2]∑
m=0

[n̄T(t)]m exp (−N−2m
2 γt)

22mm!(N − 2m)!

× 〈: (∆Xj)N−2m :〉0, (2.11c)

〈: (∆Xj)N :〉t = N !
[N/2]∑
m=0

[2n̄T(t)−e−γt]m exp (−N−2m
2 γt)

23mm!(N−2m)!

× 〈(∆Xj)N−2m〉0. (2.11d)

Here X1 := (a + a†)/2 and X2 := (a − a†)/(2i) are the
quadrature operators, ∆Xj := Xj−〈Xj〉, and the symbol
: : denotes the normal-ordering operation. We briefly ex-
amine the structure of these equations in connection with
the concept of higher-order squeezing [19].

2.1 Intrinsic higher-order squeezing

As 〈(∆Xj)N 〉 is always positive for even N , from equa-
tion (2.11d) we learn that the condition for intrinsic
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squeezing, 〈: (∆Xj)N :〉t < 0, cannot be fulfilled if
2n̄T(t)− e−γt is positive. Accordingly, the time

ts :=
1
γ

ln(1 +
1

2n̄R
) (2.12)

is the upper limit for existence of intrinsic squeezing to any
order for arbitrary input states. Equation (2.11c) displays
a remarkable effect: even if the input field state were not
intrinsically squeezed to orderN , interaction with the heat
bath might in principle lead to the appearance of Nth-
order intrinsic squeezing due to the contributions of lower-
order moments at t = 0 in the r.h.s. of equation (2.11c).

2.2 Ordinary higher-order squeezing

Recall that the negative values of the coefficient

qN =
〈(∆X1)N 〉

2−N(N − 1)!!
− 1, (2.13)

are a manifestation of Nth-order squeezing, as introduced
by Hong and Mandel [19]. Nevertheless, the condition
t < ts holds also in the case of ordinary squeezing as a
consequence of the direct relation between ordinary and
normally ordered moments (McCoy’s theorem). From the
general equations (2.11a, 2.11b), we learn that squeezing
to order N at time t is determined by the presence of
the same property to orders N ′ < N at time t = 0. This
may result in an enhancement of transient higher-order
squeezing with respect to the corresponding initial one.
However, in order to draw such a conclusion, one needs to
examine the squeezing properties of the input state. We
have chosen to discuss such issues for an ECS, that is to
say a superposition of states which has been much used
recently to study decoherence [10,20,21].

3 Input even coherent state

An ECS is a definite superposition of two coherent states,

|α〉e = N (|α〉 + | − α〉), (3.1)

with the normalization factor

N = [2(1 + exp(−2|α|2))]−1/2.

When inserted into equation (2.8), the normally ordered
CF for an ECS,

χN(λ, 0) = N 2
[
eλα

∗−λ∗α + e−λα
∗+λ∗α

+ e−2|α|2(eλα
∗+λ∗α + e−λα

∗−λ∗α)
]
, (3.2)

leads to a P -representation which is not a well-behaved
function. Therefore, the ECS is a nonclassical state.

In reference [12], we have calculated the normally or-
dered moments of the quadrature operator X2 for an
ECS as

〈: (∆X2)N :〉e =
(−1)N/2

2
[
(1− tanh(|α|2))(<e(α))N

+(1 + tanh(|α|2))(i=m(α))N
]
, (3.3)

Note also that the mean photon number in the input ECS,
equation (3.1), is

n̄(0) = |α|2 tanh(|α|2). (3.4)

3.1 P-representation

We proceed now with the examination of the ECS
mixed with thermal noise according to the master equa-
tion (2.1). In the interaction picture, the P -representation
is the Fourier transform of the nonoscillating normally or-
dered CF:

χNI(λ, t) := χN(λe−γ/2t, 0) exp (−n̄T(t)|λ|2).
(3.5)

The occurrence of the factor exp (−n̄T(t)|λ|2) under the
integral (2.8) ensures its existence, but it is still ques-
tionable if P(β, t) is positive. When using equation (3.2)
in equation (2.8) we are simply left to calculate a sum
of Gaussian integrals (see, for instance, Ref. [22], Ap-
pendix A). We finally get

P(β, t) =
2|N |2
n̄T(t)

exp
(
− |β|

2eγt + |α|2
2n̄R sinh(γt/2)

)

×
{

cosh
[
<e(αβ∗)

n̄R sinh(γt/2)

]
+ exp

[
− |α|2
n̄R sinh(γt/2)

×[n̄Reγt/2 − (n̄R + 1)e−γt/2]
]

cos
[
=m(αβ∗)

n̄R sinh(γt/2)

]}
·

(3.6)

If the amplitude of the oscillating function in equa-
tion (3.6) is less than unity, the P -representation is pos-
itive for any β. This implies a sufficient condition for
the existence of the P -representation as a well-behaved
function:

n̄R

n̄R + 1
> e−γt. (3.7)

At the time

tc :=
1
γ

ln
(

1 +
1
n̄R

)
, (3.8)

all the nonclassical properties of the initial ECS dissa-
pear due to the interaction with the heat bath. Obviously,
tc > ts.

To conclude, we point out that only at times t < tc
the ECS coupled to a thermal reservoir is still nonclas-
sical when its P -representation is negative. Nonclassical
properties such as higher-order squeezing could survive at
t < ts < tc, as indicated by our equations (2.11), valid for
an arbitrary input state.
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3.2 Transient higher-order squeezing

In references [10,11], it was shown that the ECS presents
second- and fourth-order squeezing in the quadrature X2.
Second-order squeezing occurs for any α, the maximum
degree of squeezing being q2 = −0.55 for α ≈ 0.8. Fourth-
order squeezing is manifest only for α < 1.23. When cou-
pled to a thermal bath at zero [10] or low temperature [11],
it appears that fourth-order squeezing is also manifest for
α > 1.23.

In the following, we show that squeezing properties
to any order for a damped ECS are described by sim-
ple and versatile analytic formulae. When inserting the
normally ordered moments for an ECS (3.3) into equa-
tions (2.11a, 2.11c), we get the time development of
higher-order squeezing:

〈(∆X2)N 〉t =
(−1)N/2[n̄T(t) + 1/2]N/2

2N+1

×
[

(1− tanh(|α|2))HN

(
<e(α)e−γt/2√
n̄T(t) + 1/2

)

+(1 + tanh(|α|2))HN

(
i=m(α)e−γt/2√
n̄T(t) + 1/2

)]
, (3.9)

and

〈: (∆X2)N :〉t =
(−1)N/2[n̄T(t)]N/2

2N+1

×
[

(1− tanh(|α|2))HN

(
<e(α)e−γt/2√

n̄T(t)

)

+(1 + tanh(|α|2))HN

(
i=m(α)e−γt/2√

n̄T(t)

)]
· (3.10)

In equations (3.9, 3.10), HN(x) is a Hermite polynomial of
degree N . According to equation (3.3), the ECS with real
α (the case we are interested in) does not possess intrinsic
squeezing for even values of N/2. Plots of the degree of
squeezing (2.13) and of the degree of intrinsic squeezing,

q
(i)
N :=

〈: (∆X2)N :〉
2−N(N − 1)!!

, (3.11)

for the quadrature X2 are shown in Figures 1 and 2 for
an ECS coupled to a thermal bath with the mean occu-
pancy n̄R = 0.1 (γts = 1.791). In Figure 1 dependences of
q

(i)
8 and q8 of the coherent amplitude α are given for some

values of γt. The same parameters are plotted in Figure 2
versus γt for several values of α. We see the occurrence at
t > 0 of eighth-order intrinsic squeezing which is absent at
t = 0. Similarly, ordinary eighth-order squeezing is gener-
ated at t > 0 for values of α for which it is not manifest at
t = 0. For example, we can see in Figure 1b that the pa-
rameter q8 for a free ECS is positive for α = 0.9. However,
Figure 2b clearly displays eighth-order squeezing when the
ECS with α = 0.9 is coupled to the bath.

Fig. 1. Intrinsic (a) and ordinary (b) 8th-order squeezing for
an ECS coupled to a thermal environment having n̄R = 0.1 as
function of the coherent amplitude at several times t < ts.

Fig. 2. Time development of intrinsic (a) and ordinary (b)
8th-order squeezing for several significant values of α selected
from Figure 1.



P. Marian and T.A. Marian: Environment-induced nonclassical behaviour 261

Fig. 3. Intrinsic 8th- and 12th-order squeezing versus γt for
α = 1.2 and n̄R = 0.1.

Fig. 4. Ordinary 4th- and 8th-order squeezing versus γt for
α = 0.8 and n̄R = 0.1.

We have also studied how the degree of squeezing de-
pends on the order N . In Figure 3 we plot q(i)

8 and q
(i)
12

versus time for an ECS with α = 1.2. The maximum
of the Nth-order intrinsic squeezing decreases drastically
with N and is reached at N -dependent times: it moves
towards smaller times when N increases. On the contrary,
the maximum of the ordinary Nth-order squeezing moves
towards greater times with increasing N , as can be seen in
Figure 4. Analytic solutions for the times corresponding
to the maximum of squeezing cannot be found because of
the complexity of equations (3.9, 3.10) for higher orders.

4 Mixing by damping

4.1 2-entropy

Evaluation of the degree of mixing of the field state during
the mode-reservoir interaction provides further insight to
the influence that the quantum nature of the initial state
has on its evolution ruled by the master equation (2.1).

To this end, we recall the quantum-mechanical coun-
terpart of a Rényi α̃-entropy [23],

Sα̃(ρ) :=
1

1− α̃ ln[Tr(ρα̃)], (α̃ > 0). (4.1)

The α̃ = 1 limit of equation (4.1) is the von Neumann
entropy,

S1(ρ) = −Tr(ρ ln ρ), (4.2)

which increases in a mixing process, is additive and con-
cave [23]. An α̃-entropy with α̃ > 1 displays the first two
features, but lacks the essential property of concavity.

For a mode of radiation field, the degree of purity
Tr(ρ2) can be evaluated as

Tr{[ρ(t)]2} =
1
π

∫
d2λ|χ(λ, t)|2 (4.3)

(see Ref. [7] for details). It is then convenient to employ
as a measure of the degree of mixing either the so-called
linear entropy,

Slin(ρ) := 1− Tr(ρ2), (4.4)

invoked in references [1,2], or the special case α̃ = 2 of
equation (4.1),

S2(ρ) = − ln[Tr(ρ2)]. (4.5)

Instead of the linear entropy (4.4), which is concave, but
not additive, we prefer to exploit the 2-entropy (4.5),
which is a strictly monotonic function of the former,

S2(ρ) = − ln[1− Slin(ρ)]. (4.6)

4.2 ECS input

When using the CF (2.9) via equation (3.2) for a thermal-
ized ECS, the integral (4.3) can be easily performed. (See
Ref. [22], Appendix A, Eqs. (A6, A8).) We have derived
the exact formula

S2[(ρ(t)] = ln {2[2n̄T(t) + 1]}

− ln

{
1 +

[
cosh(|α|2η(t))

cosh(|α|2)

]2
}
, (4.7)

where the dimensionless parameter

η(t) := 1− 2 exp (−γt)
2n̄T(t) + 1

(4.8)

is determined by the reservoir only. η(t) is a strictly in-
creasing and concave function of time, which varies from
η(0) = −1 to η(∞) = 1, having a single zero, namely,

η(tm) = 0 for tm =
1
γ

ln
(

1 +
1

2n̄R + 1

)
· (4.9)

Let us note the initial and equilibrium values of the
2-entropy (4.7),

S2[ρ(0)] = 0, S2[ρ(∞)] = ln(2n̄R + 1), (4.10)

as well as its first time derivative,

∂S2

∂t
= γu(η), (4.11)
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∂u(η)
∂η

= − 1
n̄R

v(η)
{
v(η) +

|α|2 sinh(2|α|2η)
[cosh(|α|2)]2 + [cosh(|α|2η)]2

}
− 2(1− η)[1 + n̄R(1− η)]|α|4

[cosh(|α|2)]2 + [cosh(|α|2η)]2

×
{

1 + 2[sinh(|α|2η)]2
[cosh(|α|2)]2 − [cosh(|α|2η)]2

[cosh(|α|2)]2 + [cosh(|α|2η)]2

}
. (4.17)

where

u(η) := (1− η)v(η), (4.12)

and

v(η) := n̄R − [1 + n̄R(1− η)]

× |α|2 sinh(2|α|2η)
[cosh(|α|2)]2 + [cosh(|α|2η)]2

· (4.13)

Obviously, u(0) = v(0) = n̄R. Making use of the func-
tion (4.13) and its derivative,

∂v(η)
∂η

=
|α|2

[cosh(|α|2)]2 + [cosh(|α|2η)]2

×
{
n̄R sinh (2|α|2η)− 2[1 + n̄R(1− η)]|α|2

×
[
1 +

2[cosh(|α|2)]2[sinh(|α|2η)]2

[cosh(|α|2)]2 + [cosh(|α|2η)]2

]}
, (4.14)

we evaluate the derivative of equation (4.11),

∂2S2

∂t2
= γη̇

∂u

∂η
, (4.15)

via the general formula

∂u(η)
∂η

= −v(η) + (1− η)
∂v(η)
∂η

· (4.16)

For n̄R > 0, we find

see equation (4.17) above.

In the time interval [0, tm], the function v(η) is positive
and strictly decreasing,

v(η) ≥ n̄R,
∂v(η)
∂η

< 0, for η ≤ 0. (4.18)

Accordingly, the 2-entropy increases significantly from
zero to the value

S2[ρ(tm)] = ln
(

2
2n̄R + 1
n̄R + 1

)
− ln{1 + [sech(|α|2)]2},

(4.19)

which provides a measure of the degree of mixing. This
is a reason for calling tm the mixing time. We also define

the initial value of the slope (4.11) as a conventional rate
of mixing,

Γm :=
∂S2

∂t

∣∣
t=0

, (4.20)

and get

Γm = 2γ[n̄R + (2n̄R + 1)n̄(0)]. (4.21)

Recall that n̄(0), equation (3.4), is the expectation value
of the photon number in the initial ECS.

In contrast to the mixing time tm, equation (4.9), that
does not depend on |α|2, the rate of mixing (4.21) increases
with |α|2. Remark that the slope (4.11) decreases from Γm

to a value independent of |α|2,

∂S2

∂t

∣∣
t=tm

= γn̄R. (4.22)

In order to investigate the behaviour of the 2-entropy (4.7)
for t > tm, we need the asymptotic values of the func-
tions (4.13, 4.14, 4.16), i.e.,

v(1) = n̄R − n̄(0), (4.23)
∂v(η)
∂η

∣∣
η=1

= n̄(0)[n̄R − |α|2 coth(|α|2)], (4.24)

∂u(η)
∂η

∣∣
η=1

= −v(1). (4.25)

We first indicate the role played by the sign of the deriva-
tive (4.24).

Let us assume that this quantity is positive:

∂v(η)
∂η

∣∣
η=1

> 0⇐⇒ |α|2 coth(|α|2) < n̄R. (4.26)

Then, the opposite signs of ∂v(η)/∂η in equations (4.18,
4.26) prove the existence of a minimum of the function
v(η) at a value η1 ∈ (0, 1) which satisfies the transcen-
dental equation ∂v(η)/∂η

∣∣
η=η1

= 0. It is easy to find a
positive lower bound for this minimum:

v(η1) > n̄R[sech(|α|2η1)]2. (4.27)

Therefore, the condition (4.26) entails the positivity of the
function v(η), equation (4.13):

v(η) > 0, η ∈ [−1, 1]. (4.28)
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Let us suppose now that, on the contrary, the derivative
(4.24) is non-positive:

∂v(η)
∂η

∣∣
η=1
≤ 0⇐⇒ |α|2 coth(|α|2) ≥ n̄R. (4.29)

This condition leads to the inequality

∂v(η)
∂η

≤ − 2|α|4 cosh(|α|2η)
[cosh(|α|2)]2 + [cosh(|α|2η)]2

× sinh[|α|2(1− η)]
sinh(|α|2)

, (4.30)

valid for η ∈ [0, 1]. In conjunction with equation (4.18), it
gives

∂v(η)
∂η

< 0 for η ∈ [−1, 1). (4.31)

Equation (4.31) shows that v(η) is a strictly decreasing
function provided that the condition (4.29) is observed.

Second, a crucial point in our analysis that has to be
considered jointly with the above conclusions is the sign
of the difference (4.23).

4.3 Classical regime

The inequality

v(1) ≥ 0⇐⇒ n̄(0) ≤ n̄R (4.32)

is compatible with equation (4.26), as well as with equa-
tion (4.29). In the first situation, the inequality (4.28)
holds, while in the second, the function v(η) steadily de-
creases from the positive value v(−1) to the nonnegative
one (4.23). Therefore, in both cases the function v(η) is
positive:

v(η) > 0, η ∈ [−1, 1). (4.33)

On the one hand, equations (4.16, 4.18) for η ≤ 0, and on
the other hand, equations (4.17, 4.33) for η > 0 yield the
inequality

∂u(η)
∂η

< 0, η ∈ [−1, 1). (4.34)

Accordingly, the time derivatives (4.11, 4.15) have definite
signs,

∂S2

∂t
> 0,

∂2S2

∂t2
< 0, (4.35)

so that the 2-entropy S2[ρ(t)] (Eq. (4.7)) is a strictly in-
creasing and concave function of time. In view of equa-
tion (4.32), this happens when the mean occupancy of
the mode increases on account of the reservoir or at least

is left constant. Nevertheless, as the initial ECS has a zero-
mean mode amplitude, ā(0) := 〈a〉0 = 0, it follows that,
in our case,

n̄(0) = 〈(a† − (〈a〉0)∗)(a− 〈a〉0)〉0. (4.36)

Consequently, we may cast the condition (4.32) into a
more general form:

n̄(0)− |ā(0)|2 ≤ n̄R. (4.37)

When the last condition is fulfilled by an input Gaussian
state, we have found in reference [7] a similar monotonic
evolution of the 2-entropy for the corresponding damped
mode. In particular, this is true for an initial coherent
state regardless of its mean photon number. Indeed, in
that case, the l.h.s of the inequality (4.37) vanishes. It
seems thus appropriate to term as classical this regime of
mixing.

4.4 Nonclassical regime

In the opposite case,

v(1) < 0⇐⇒ n̄(0) > n̄R, (4.38)

an average transfer of photons occurs from the mode to
the thermal bath during their contact. Being stronger than
the condition (4.29), the inequality (4.38) has also the out-
come (4.31). Therefore, in the interval [0, 1], the function
v(η) (Eq. (4.13)), strictly decreases from the nonnegative
value v(0) = n̄R to the negative one (4.23). It follows
that it has a single nonnegative zero, ηM := η(tM), with
ηM ≥ 0, tM ≥ tm. By definition, v(ηM) = u(ηM) = 0. Ac-
cording to equation (4.11), at the time tM which depends
on |α|2, the 2-entropy (4.7) has a unique maximum. After
reaching it, the function S2[ρ(t)] steadily diminishes to its
equilibrium value (4.10): this decrease for t ≥ tM reflects
a demixing imposed by the reservoir. The property

v(η) > 0 for η < ηM (4.39)

implies via equations (4.16, 4.31) the inequality

∂u

∂η
< 0 for η ≤ ηM. (4.40)

On account of equation (4.15),

∂2S

∂t2
< 0 for t ≤ tM. (4.41)

In this way, for t ≤ tM, the 2-entropy is an increasing
and concave function of time. However, in the case (4.38),
according to equations (4.15, 4.25), it is asymptotically
convex:

lim
t→∞

∂2S

∂t2
> 0. (4.42)

This ensures that the 2-entropy (4.7) has a unique inflec-
tion point at tI > tM with ηI := η(tI) > ηM satisfying
the transcendental equation ∂u/∂η

∣∣
η=ηI

= 0.
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∂S

∂(|α|2)
=

2 cosh(|α|2η) sinh[|α|2(1− |η|)] + (1− |η|) cosh(|α|2) sinh(2|α|2|η|)
cosh(|α|2) {[cosh(|α|2)]2 + [cosh(|α|2η)]2} , (4.45)

The existence of a maximum of the 2-entropy, depend-
ing on the initial nonclassical state, is undoubtedly a quan-
tum effect emphasized also for Gaussian states [7]. Of
course, this regime of mixing deserves the attribute non-
classical employed here.

4.5 Dissipation

We designate as dissipation the damping of a field in con-
tact with a zero-temperature reservoir, when n̄R = 0. In
this limit case, the condition (4.38) is always fulfilled. In
other words, the mixing by dissipation takes place in an
essentially nonclassical regime. The 2-entropy reaches its
maximum precisely at the mixing time

tM = tm =
1
γ

ln 2, ηM = 0, (4.43)

so that equation (4.19) specializes to

S2[ρ(tM)] = − ln{1
2

[1 + (sech(|α|2))2]}. (4.44)

The dissipation of the field mode specifically includes a
mixing of the initial ECS with the rate Γm = 2γn̄(0),
followed at times t > tM by a complete demixing ending
in the vacuum state.

Note also that during dissipation, according to equa-
tion (3.8), the P -representation of the density operator
does not exist at any time and squeezing to arbitrary or-
der is always manifest, as shown by equation (2.12).

4.6 |α|2-Enhancement of mixing

The derivative of the 2-entropy (4.7) with respect to |α|2,

see equation (4.45) above

is nonnegative:

∂S

∂(|α|2)
> 0 for |η| < 1,

∂S

∂(|α|2)
= 0 for |η| = 1. (4.46)

This means that, except for the initial and asymptotic val-
ues (4.10), which are independent of |α|2, all other values
of the 2-entropy increase with |α|2 from the lower bound

lim
|α|→0

S2[ρ(t)] = ln[2n̄T(t) + 1] (4.47)

to the upper one

lim
|α|→∞

S2[ρ(t)] = ln{2[2n̄T(t) + 1]}. (4.48)

This enhancement of mixing in the course of the field-
reservoir interaction by increasing the squared modulus
of the coherent amplitude α is a quantum effect of the
initial state on the mode attenuation. When |α|2 is large
enough to satisfy the condition (4.38), the 2-entropy ex-
hibits a maximum at a finite time tM greater than tm,
equation (4.9). We record a substantial loss of informa-
tion about the properties of the field state up to the time
tm, which is less than the nonclassicality time tc, equa-
tion (3.8).

What happens in fact when |α|2 becomes larger? With
increasing |α|2, the overlap of the two coherent states |α〉
and | − α〉 diminishes, so that their initial superposition
becomes more and more conspicuous. Owing to the en-
vironment, the Schrödinger cat (3.1) appears to be more
and more fragile, as the rate of mixing (4.21) also reveals.
Equation (4.46) shows that the damped mode is more able
to deviate from the initial state by mixing to a higher de-
gree.

Notice finally that the properties proved by analytic
means in this section are illustrated in Figure 5 as fol-
lows. In Figure 5a we have plotted 2-entropy versus γt for
several values of α when n̄R = 0.1, (γtm = 0.606, γts =
1.792, γtc = 2.397). The maximum of the 2-entropy is
present only if α satisfies the condition (4.38). The value
α = 0.5 is in the classical range, while all other values of
α belong to the nonclassical regime of mixing. The ver-
tical line drawn at γtm = 0.606 illustrates the time of
significant mixing, and the line γtc = 2.397 delimitates
the time interval when the state of the damped mode is
still nonclassical. Figure 5b is a plot of the transient 2-
entropy in the limit case of a zero-temperature reservoir.
The damped mode is nonclassical at any time. The mixing
regime too is always nonclassical and the maximum of the
2-entropy is reached at γtM = ln 2 = 0.693 regardless of α.
Remark that for higher values of α the process of mixing
has a longer duration and the maximum of the 2-entropy
enlarges in both situations (a) and (b).

5 Conclusions

We have shown that a heat bath may allow new manifes-
tations of the quantum nature of the field mode it inter-
acts with. For instance, transient higher-order squeezing
is possible only if the thermal mean occupancy transferred
to the mode is low enough. Therefore, this effect could be
of interest in experimental attempts to obtain nonclassical
field states which are conducted at very low temperatures.

On the other hand, for an ECS input, we have exam-
ined the features of the mixing during the mode-reservoir
interaction. A nonclassical behaviour of the mixing process
is characterized by the existence of a maximum in the evo-
lution of the 2-entropy. This occurs when the mean photon
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(a)

(b)

Fig. 5. 2-entropy production governed by the master equa-
tion (2.1) for an input ECS plotted at several values of α and
for n̄R = 0.1 (a) and zero-temperature bath (b). Notice that in
the case (b) the position of the maximum is independent of α.

number in the initial mode exceeds the mean occupancy
of the bath. A similar nonclassical regime of mixing has
been pointed out in reference [7] for a class of Gaussian
states evolving according to the quantum optical master
equation.
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