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Abstract. Off-Forward Parton Distributions (OFPD’s) are new hadronic objects which may be measured
in various exclusive reactions. We derive non-trivial positivity constraints for them that should allow to

get unbiased rate estimates for proposed experiments.

1 — The concept of Off-Forward (non-forward, non-
diagonal) Parton Distributions (OFPD), related to the
matrix elements of non-local string operators [1], has at-
tracted much attention since it has been recognized|2,3]
that these new objects describing the deep hadronic struc-
ture could be measured in deep exclusive reactions such
as forward virtual Compton scattering and diffractive elec-
troproduction of mesons. They factorize[3,4] from a hard
subprocess amplitude, provided the virtuality Q2 of the
photon is large enough for the differential cross section
to enter a scaling regime, where the handbag type dia-
grams dominate[5]. As for any long distance dominated
object, not much is known about these distributions, ex-
cept some limiting values obtained from already measured
standard forward parton distributions. Various model es-
timates have been recently proposed[2,6-9], but in the ab-
sence of any trustable non-perturbative QCD calculations,
we want here to advocate the usefulness of bounds com-
ing from positivity requirements for constructing models,
which should allow to get seriously guided rate estimates
for several proposed experiments at CEBAF, CERN and
DESY.

For every parton species, there are six off-forward par-
ton distributions. They all depend on three kinematical
variables, which can be chosen as x, the light-cone fraction
of the parton emitted by the proton target, z’, the frac-
tion of the parton absorbed by the scattered proton, and ¢,
the momentum transfer between the initial and final pro-
ton. Both momentum fractions are measured with respect
to the initial proton momentum p [3]. It is meaningful for
positivity studies as well as for symmetry properties [10] to
reexpress the light-cone fraction of the parton absorbed by
the final proton as a fraction with respect to that proton’s
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momentum, i.e. z1 = z and xo = z’/(1—x+2’). This may
be compared with the symmetric choice [2], which, strictly
speaking, is understood when OFPD are considered. We
restrict ourselves to the case when the momentum fraction
of the second (absorbed) parton is positive, since there is
then a clear relation between the OFPD and ordinary dis-
tribution functions measured in deep inelastic scattering
[9]. Kinematics fixes ¢ and the difference x — 2’ to some
fixed value like z; in the deeply virtual Compton scatter-
ing (DVCS) process, while the scattering amplitude has
an imaginary part with 2’ = 0 and a real part, which is a
principal part integral over z’. Here we pay special atten-
tion to spin-averaged quark g¢(z) [3] and gluon g(z,2’,t)
[8] distributions.

The t—dependence of the OFPD’s is governed by the
proton form factors through relations such as:
fjll dxy g(x1,72,t) = F(t). Remember that kinematics
fixes tymin 7 0. The OFPD’s acquire a Q?-dependence gov-
erned by evolution equations|[2,3,10-12], and we show at
the end of the paper that the QCD Q?- evolution preserves
the validity of the positivity bound.

2 — Since our present knowledge on OFPD’s is rather
limited, any rigorous bounds for them are of great in-
terest. The aim of the present paper is to develop such
bounds, coming from positivity of the density matrix. Be-
cause the OFPD’s do not have a probabilistic interpreta-
tion, one may wonder if this is possible at all. However,
non-diagonal elements of a density matrix are constrained
by positivity as well as its diagonal elements, as shown
by the Soffer bound on the chiral-odd quark distribution
h4(z)[13] (this distribution is forward in momentum, but
it is non-diagonal in helicity), which reads [14]:

[P1(2)] < g4 (2) = 5 a(x) + Ag(2)], (1)

| =

where ¢ and Aq are the usual spin-averaged and spin-
dependent quark distributions. Although this interesting
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result was originally proven at the level of the parton
model, it was shown recently that it is preserved by the
QCD @Q? evolution, up to next-to-leading order[15,16].

The OFPD’s are elements of parton density matrices
which are non-diagonal in momentum, and they may be
treated in a similar way, provided the momentum fraction
of the absorbed parton is positive [17]. Moreover, in the
recent paper [8] the inequality

22 g(w,2") < wg(x) + 2 g(z) (2)

was obtained by a rather similar method to that of [14].

Let us now derive another, stronger (especially at low
x) inequality, and outline the method allowing to derive
similar inequalities for the various spin components of the
OFPD’s. We present here the derivation with some details,
in order to stress the dependence of the actual definition
of the non-forward distribution?.

Let us start the discussion with the simpler case of
non-polarized quark distribution, which by introducing
the light-cone decomposition of the quark fields [18] is
analogous to the scalar one. The quark forward distribu-
tion is just

dle) = [ e < p SO ). S 5=

1 dXx +
S i A
vorl R OGO RN
where ¢ is the good component of the quark field and the
light-cone vectors are normalized such as pn = pT™n~ = 1.

By inserting a complete set of intermediate states |X >
[14,19,9]? and making use of the generalized optical theo-
rem and the fact that the matrix elements may be replaced
by their imaginary parts [17], the forward distribution can
be written as

o(z) = ;ﬂlpg <, 816(0)X > %5(z — (p — px)n) -
(4)

The quark non-forward distribution reads,

A< p, S0 (An)lp', S >,
(5)

! We are indebted to A.V. Radyushkin for pointing out the
correct definitions and for helpful comments, which allowed to
restore the related factors, which were missing in the original
version of this paper

2 These states are necessarily colored, and we assume the
existence of soft exchanges between the soft and hard subpro-
cess, while calculating the physical quantities. Moreover, as the
discussed positivity properties may be traced back to the pos-
itivity of the quark-parton density matrix, the inserted states
may be considered as formal objects to unravel these proper-
ties, rather than physical ones. Also, the results below may
be obtained by consideration of the Deeply virtual amplitude

1 a\
0= 1= | &

< p\JJ|p/ > and similar insertion of the full set of states, now
perfectly color neutral. The result would be the same inequal-
ities, multiplied by a common coefficient function
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where ( is defined such that p — p’ = (p and the factor
V1 — ¢ comes from the bilinear @(p')u(p), in the defini-
tion. By an analogous procedure as above, it becomes

<p,S[6(0)|X >

1
z) = Re _—
qc () ZX: O
<7, Slg(0)|X > 6(z — (p—px)n) . (6)
where we used the hermiticity of the matrix element. Note
that this representation is explicitely applicable, provided
the sign of the momentum fraction of the absorbed par-
ton is positive, as discussed above. The opposite case is
related to the exclusive kinematics, where the appearance
of intermediate states | X > is not allowed by unitarity [9].
In that case the parton density matrix is also not defined,
as both partons are appearing in the initial state.
We are now ready to write down the Cauchy-Schwarz
inequality as:

> 1< p,S[$(0)[X > (7)
X

+a <p, 8|¢(0)|X > [*6(z — (p — px)n) 20,

where a is a positive number, which we put equal to 1
for the time being. Note that the scalar product AB, re-
quired to formulate Cauchy-Schwarz inequality, is defined
as < pl|ABlp >= 3y < p|A|X >< p|B|X >*. While the
non-diagonal term of (7) is producing just the non-forward
distribution, and the first diagonal term - the distribution
q(x), the second diagonal term should be studied in more
details:

1 /
> g <#SIOOIX > Pola = =
=Y. ﬁlpw <P, SIB(O)|X > 6@’ — (¢ — px)n)
X

1
=Y <P 8lp(0)|X >
~ V2p't

x8[a’ (' /n7) = (p — px)n'] = q(z2) . (8)
Here the necessary rescaling of the light-cone coordinate,
which is required to get the definition (3) is making the
argument equal just xy, while the overall factor 1 —( com-
ing from the rescaling of the delta-function argument, is
precisely cancelled with the rescaling of the factor 1/p*
(which is the natural consequence of the correct transfor-
mation properties of ¢(x)), so that the overall rescaling of
the diagonal term [9] is actually manifested for the scalar
case only.
As a result, we have the following inequality

ac(e)] € 5= la(en) + afoa) o)

for the spinor case, and

(g(1) + —— ()

46(2)] < —

N =
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for the scalar case. By restoring the dependence on the
parameter a, one is led to

1

(e € o lna(e) +aga)] (1)

for spinor case and to

ca)| < 5looen) + Tozale] (12

for scalar case. By minimizing the r.h.s. with respect to
the variation of a, we finally get [9]

q(z1)q(z2)
1—¢

for both scalar and spinor cases. A similar bound can be
obtained for Ji’s off-forward quark distribution,that is

lg¢(@)] < (13)

q(w1)q(w2)

1—¢

where 215 = (z £¢)/(1+¢),§ = (/2= ().
The derivation for the gluons is analogous. The forward
and nonforward [3,8] distributions may be expressed as

[Hq(z,8)| < (14)

1 .
zg(r) = 5 D | <p.SIGT(O)X >
X,i

x0(z — (p—px)n)

1 )
. < p,S|GT0)|X > |?
2(1—4‘);' P, SIGT(0)] |

x6(z — (p—px)n)

Fyfara) = gARe 3 <pSIGHOIX > (13
X

Tag(x2) =

where the summation over 7 stands to select the transverse
components of the gluon field of strength G. The Cauchy-
Schwarz inequality leads to

2" \/1 = Cg(a1,22)| < S[g(z1) + a(l — ()azg(z2)]

(16)

N —
e | B

and, after minimization with respect to the variation of a,
one is led to
|2 g(z1, 22)| < Va1229(21)9(22) - (17)
Equality (16), for zo ~ # < x , is numerically close to
(2). However, the symmetry properties for the variables
T1,T9 are simpler
' (z1, 22)g(21, 72) = 2/ (22, 1) g(22, 21) - (18)
It was stressed [9] that in the case of the double distri-
bution this symmetry is manifested, provided the overall
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factor 1 — (/2 [10] is extracted. However, the symmetry of
nonforward distribution is more complicated in that case
and one can see that

1 X —
T—cfoa-o (19 :

Some comments are in order. First, all the considered
inequalities are also valid, when the t dependence of the
OFPD’s is present in the lLh.s., while this dependence is
absent in the r.h.s. due to Lorentz invariance [20]. Second,
the z dependence of the two terms in (9) is not governed by
Lorentz invariance, as the light-cone direction is crucial.

F(X) = (19)

3 — Let us now take into account the spin degrees of free-
dom. To do so, we consider the quantities < p, S|GT*(0) +
G1(0)|X >, corresponding to a definite gluon helicity,
while the hadron helicities are fixed to be positive, leading
to the absence of the contributions which are non-diagonal
in helicity indices. By applying the same method as above,
one easily gets

22" /1= (|gF (21, 22)| < 2197 (21) + 22(1 — Qg™ (22) -
(20)

By adding these two inequalities, one checks that (16) is
still valid, so that unpolarized distributions are decoupling
from the polarized ones. This is no more valid in the case
of the optimized inequalities

2 g (21, 02)| < VarwagE(z)gE (a) ,  (21)
leading to the bound
& |g(x1, 22)| < Vaizag(z1)g(ae) - A[P(z1), Pxs)] , (22)

with 2X[P(z1), P(z2)] = /(1 + P(z1))(1+ P(22))+
v/ (1 = P(x1))(1 — P(x2)), where one introduces the gluon
polarization, defined as P(x)=AG(z)/G(z) and such as
|P(x)| < 1. This inequality, in principle, offers a possibility
of extracting information on the gluon spin-dependent dis-
tribution AG from the unpolarized diffractive processes.
Conversely, if one knows AG one gets an inequality which
is stronger than (17) since one has always the inequality
A[P(x1), P(x2)] < 1.

The inequality (17) in turn provides a stronger bound
on g(x1,x2), in comparison with (16), and this is related
to the difference between g(x1) and g(x2). It is especially
pronounced when one of the x is small, a situation occur-
ing in diffractive electroproduction. At the same time, a
bound for the behaviour of the OFPD’s in the quasielastic
region x1 — 1,x2 = const. is implied by the stronger in-
equality (17), while it cannot be derived from the weaker
one. Namely, the OFPD’s should decrease like (1 —z;)%/2,
where the power 3 characterizes the decrease of the for-
ward distribution and is related to the form factor be-
haviour by the quark counting rules. In particular, the
ratio R defined in [8], as 2’¢g(x, ) /zg(x) is bounded as

e Wl/(l —ata)g(@/(1—z+a'))
- zg(x)
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z'g(x")
zg(x)

; (23)

where we neglected the difference between 2" and z,.

For a better estimate one may use the parametrization
g(z) = Nz=%(1 — x)”, so that the growth of R for small
x, z is bounded as

a—1

R< (afa)"7 (24)

while the power is twice larger for the weaker bound.

4 — Up to now, we have considered non-diagonality either
in helicity [14] or in momentum. It is also possible to con-
sider both effects together, by a simple generalization of
the outlined method. Let us consider in the quark sector
the distributions ¢4 (z) and h(z,z’), the latter being the
non-forward generalization of transversity [21]. By opti-
mization with respect to a, one gets the obviously non-
trivial bound

|h(21, 22)| < Vay(21)q4 (22) -

One may derive other inequalities, considering various
combinations of the quantities a, and varying the helic-
ity indices in their definitions.

(25)

5 — To check the validity of the positivity bounds in the
case of the leading order Q? evolution, one may use the
kinetic interpretation of the latter [22,16], similarly to the
proof for the Soffer inequality. As a result, one finds that
the positivity constraint (17) is preserved provided the
following inequality is satisfied

2'(1—2)

mP(z,z’) <

P(2)P(z') , (26)

where P(z) and P(z,z’) are the non-singular parts of
the diagonal and off-diagonal [8] splitting kernels. Note

that the factor j((ll_jg

respect to the interchange z <« z’. Since P(z,z2’) is it-
self symmetric with respect to the transformation z —
1—2',2" = 1— 2, the Lh.s. is also symmetric with respect
to the simultaneous interchange z <+ 1 — 2,2’ < 1 — 2/,
while the symmetry with respect to these interchanges
made separately, also respected by the r.h.s., is violated
by the factor 1/2 of the two last terms in P(z,2’). One
easily checks that (26) is actually satisfied by the kernel
[8]. In the next-to-leading order case, the positivity is de-
pendent on the factorization scheme and may be used [22]
, as an extra constraint, for making the suitable choice.

makes the 1.h.s. symmetric with

In conclusion, let us stress that the positivity constraints
derived here will help model builders to improve their rate
estimates for proposed electroproduction experiments.
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