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Abstract. The analysis of singly-charmed hadrons has been extended to the case of doubly-charmed
baryons, Ξ++

cc , Ξ+
cc and Ω+

cc. Doubly-charmed baryons are described as a system containing a heavy cc
diquark and a light quark, as in the case of a heavy–light meson. This leads to preasymptotic effects in
semileptonic and nonleptonic decays that are essentially proportional to the meson wave function. In-
terplay between preasymptotic effects in semileptonic and/or nonleptonic decay rates leads to very clear
predictions for semileptonic branching ratios and lifetimes of doubly-charmed baryons.

1 Introduction

Weak decays of heavy hadrons [1–4] present a very rich
field of phenomena owing to the complexity of confine-
ment. Being the bound states of heavy-quark and light
constituents (mesons and singly-charmed or bottom
baryons) or even of two heavy quarks and one light con-
stituent (doubly-charmed or bottom baryons), heavy
hadrons contain soft degrees of freedom which generate
nonperturbative power corrections, such as the destruc-
tive and/or constructive Pauli interference and the W
exchange/annihilation between a light constituent and a
quark coming from the heavy-quark decay.

The inclusive decay rates and lifetimes of charmed
mesons that have been calculated in the last decade are
fairly reliable. The overall picture emerging is qualita-
tively satisfactory, and the lifetime hierarchy predicted for
singly-charmed baryons has been found to be in agreement
with present experiments [4]. The difference in lifetimes (a
factor of 2–3) between D+ and D0 mesons, which is due to
the negative Pauli interference preasymptotic effect, has
also been explained, a long time ago [5–7].

The numerical calculations performed in the mid-
eighties [8,9] provided us with predictions of a lifetime
pattern that has recently been confirmed by experiment.
This success is rather surprising, since with the advent of
the systematic operator product expansion (OPE) [1] and
heavy quark effective theory (HQET) [10], it has become
clear that the charmed-quark mass is not heavy enough
for the m−1

c expansion to be trustworthy. Nevertheless,
it seems that if one systematically employs field-theory
methods to the very end of the calculation (up to the
hadronic wave function, for which we have to rely upon
some phenomenological models), one is able to make clear
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predictions that can be compared with present and fu-
ture experiments, and can possibly disentangle various
preasymptotic effects.

On the other hand, the inverse bottom-quark mass ap-
pears to be a good expansion parameter in bottom de-
cays. However, the role of four-quark operators is negligi-
ble there (effects of the O(1%)), leaving charmed-hadron
decays as a playground for studying such effects and for
testing the possible violation of the quark–hadron duality.

In this paper we extend the analysis of singly-charmed-
baryon decays and lifetimes [11] to the case of doubly-
charmed baryons. Recently [12], a rather phenomenologi-
cal approach using effective constituent–quark masses and
a fit of singly-charmed-baryon decays has been employed
to study doubly-charmed-baryon decays. We, however,
have used a systematic field-theory approach to the very
end in order to be consistent with the previous treat-
ment of singly-charmed hadrons. We have also included
the preasymptotic effects in semileptonic decay rates of
doubly-charmed baryons and calculated all decay rates at
the Cabibbo subleading level. We show that preasymp-
totic effects dramatically change the simple spectator pic-
ture, and lead to a very clear pattern of semileptonic
branching ratios and lifetimes.

2 Preasymptotic effects and the wave
function in doubly-charmed-baryon decays

Using the optical theorem, the inclusive decay width of
a hadron Hcc with mass MHcc containing two heavy c
quarks can be written as

Γ (Hcc → f) =
1

2MHcc

2 Im〈Hcc|T̂ |Hcc〉 , (1)

where T̂ is the transition operator
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T̂ = i
∫

d4xT{Leff(x), L†
eff(0)}. (2)

In the following we use the OPE, which is based on
the assumption that the energy release in the decay of a c
quark is large enough. This implies that momenta flowing
through internal lines are also large, and therefore justify
the OPE.

The general formula for the decay is given by [1–3]

Γ (Hcc → f) =
G2

Fm
5
c

192π3 |V |2 1
2MHcc

{
cf3 〈Hcc|cc|Hcc〉 (3)

+ cf5
〈Hcc|cgsσ

µνGµνc|Hcc〉
m2

c

+
∑

i

cf6
〈Hcc|(cΓiq)(qΓic)|Hcc〉

m3
c

+O(1/m4
c)

}
.

Here cf3 and cf5 are Wilson coefficient functions which
are known at tree level and one-loop order, respectively
[1–3]. V represents appropriate matrix elements of the
Cabibbo–Kobayashi–Maskawa (CKM) matrix.

Let us calculate the semileptonic decay rates first. The
main contribution is expected to come from a quark-decay-
type diagram; the decay is proportional to 〈Hcc|cc|Hcc〉,
and is given, to O(m2

c), as

Γ dec
SL (Hcc) = 2

G2
F

192π3m
5
c(c

2ηSL(x)P0(x) + s2ηSL(0))

×
(

1 − 1
2
µ2

π(Hcc)
m2

c

+
1
2
µ2

G(Hcc)
m2

c

)
. (4)

Throughout the paper we use the abbreviations s2 and
c2 for sin2 θc and cos2 θc (θc is the Cabibbo angle). Here
µ2

π(Hcc) and µ2
G(Hcc) parametrize the matrix elements of

the kinetic energy and the chromomagnetic operators, re-
spectively. Their determination will be discussed later.

The next contribution comes from the dimension-five
operator

ΓG
SL(Hcc) = 2

G2
F

192π3m
5
c

(
c2P1(x) + s2

) (
−2

µ2
G(Hcc)
m2

c

)
.

(5)
Note that in both (4) and (5) there is an additional factor
2 coming from the decays of two c quarks in the doubly-
charmed baryon.

The phase-space corrections P0 and P1 are cited ex-
plicitly in the Appendix. The radiative QCD correction
ηSL [13,14] is given by

ηSL(x) = 1 − 2
3
αS

π
g(x) , (6)

where for g(x) we have

g(x) = π2 − 25
4

+ x(18 + 8π2 + 24 lnx) , (7)

and x = m2
s/m

2
c . Leptons are taken to be massless.

Recently, Voloshin noticed [15] that preasymptotic ef-
fects in semileptonic inclusive decays could be very large

because of the constructive Pauli interference; the result
up to the CKM matrix element is given by

Γ̃SL =
G2

F

12π
m2

c(4
√
κ− 1)5|ψ(0)|2 . (8)

Here κ is a correction due to the hybrid renormalization of
the effective Lagrangian, and it takes care of the evolution
of Leff from mc down to the typical hadronic scale µ ∼
0.5–1 GeV. The factor 5 in front of |ψ(0)|2 reflects the spin
structure of doubly-charmed baryons. The baryon wave
function ψ(0) will be discussed later.

The total semileptonic rate for one lepton species is
given by

ΓSL(Hcc) = Γ dec
SL (Hcc) + ΓG

SL(Hcc) + ΓVoloshin
SL (Hcc) , (9)

where

ΓVoloshin
SL (Ξ++

cc ) = 0 ,

ΓVoloshin
SL (Ξ+

cc) = s2Γ̃SL ,

ΓVoloshin
SL (Ω+

cc) = c2Γ̃SL . (10)

In view of the significant preasymptotic effects in the
SL decay rates of singly-charmed baryons, one can expect
a large Pauli-interference contribution in the semileptonic
decay rate of the Ω+

cc baryon (ccs quark structure), where
that contribution is present at the leading Cabibbo level.

Nonleptonic decay rates are slightly more complicated,
since in the final state, the lepton pair is substituted by
a quark pair. The contributions analogous to (4) and (5)
are (including O(m3

c) corrections)

Γ dec
NL (Hcc) = 2

G2
F

192π3m
5
c(c

2
− + 2c2+)[((c4 + s4)P0(x) +

c2s2)ηNL(x) + c2s2P̃0(x)η̃NL(x)]

×
[
1 − 1

2
µ2

π(Hcc)
m2

c

+
1
2
µ2

G(Hcc)
m2

c

]
, (11)

ΓG
NL(Hcc) = 2

G2
F

192π3m
5
c{(2c2+ + c2−)[((c4 + s4)P1(x) +

c2s2)ηNL(x) + c2s2P̃1(x)η̃NL(x)]
+ 2(c2+ − c2−)[((c4 + s4)P2(x) + c2s2)ηNL(x) +

c2s2P̃2(x)η̃NL(x))]}
(

−2
µ2

G(Hcc)
m2

c

)
. (12)

Radiative corrections to the nonleptonic decay, ηNL(x)
and η̃NL(x), are far more complicated than analogous cor-
rections (6) and (7) to the semileptonic decay; the reader
is referred to the original paper where they were first cal-
culated [16].

Again, the preasymptotic effects are expected to con-
tribute significantly to the total nonleptonic decay rate.
They are given by

Γ ex =
G2

F

2π
m2

c

[
c2− +

2
3
(1 − √

κ)(c2+ − c2−)
]

5|ψ(0)|2 ,
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Γ int
− =

G2
F

2π
m2

c

[
−1

2
c+(2c− − c+)

−1
6
(1 − √

κ)(5c2+ + c2− − 6c+c−)
]

5|ψ(0)|2 ,

Γ int
+ =

G2
F

2π
m2

c

[
1
2
c+(2c− + c+)

−1
6
(1 − √

κ)(5c2+ + c2− + 6c+c−)
]

5|ψ(0)|2 . (13)

An explicit calculation leads to the following nonleptonic
decay rates:

ΓNL(Ξ++
cc ) = Γ dec

NL (Ξ++
cc ) + ΓG

NL(Ξ++
cc )

+ {(c4 + s4)Pint(x) + c2s2(1 + P̃int(x))}Γ int
− ,

ΓNL(Ξ+
cc) = Γ dec

NL (Ξ+
cc) + ΓG

NL(Ξ+
cc)

+(c4Pex(x) + c2s2)Γ ex

+(s4Pint(x) + c2s2)Γ int
+ ,

ΓNL(Ω+
cc) = Γ dec

NL (Ω+
cc) + ΓG

NL(Ω+
cc)

+(c4 + c2s2Pint(x))Γ int
+

+(c2s2Pex(x) + s4)Γ ex . (14)

All corrections P and P̃ are given explicitly in the Ap-
pendix.

An important remark to be made here concerns the
mass parameters in the calculation of the matrix elements
µ2

π and µ2
G. Whenever we perform an expansion, which is

essentially a field-theoretic procedure (either the OPE for
the transition operator T̂ , or the HQET expansion in the
case of the cc operator), the expansion parameter is always
the current heavy-quark running mass mc. On the other
hand, in the calculation of the matrix elements, which is
performed within quark models, it is more appropriate to
use constituent quark masses m∗.

Following this procedure, we give the expressions for
µ2

π and µ2
G. For µ2

π, we have

µ2
π = m2

cv
2
c =

(
m∗

qT

2m∗2
c +m∗

cm
∗
q

+
T

2m∗
c

)
m2

c , (15)

where vc is the average heavy-quark velocity in the ccq
baryon, m∗

c and m∗
q are constituent masses of the heavy

and the light quark, respectively, and T is the average
kinetic energy of the light quark and the heavy diquark.
The precise description of this calculation is given in [12]
and relies upon some phenomenological features of the
meson potential.

The contributions to the µ2
G operator, which are con-

nected to the matrix element of the chromomagnetic oper-
ator, can be divided into two parts. The first part includes
effects coming from the heavy–light chromomagnetic in-
teraction and these contributions can also be found in the
singly-charmed baryon Ω+

c . The second part comprises ef-
fects originating within the heavy diquark, i.e., heavy–
heavy chromomagnetic interactions. These effects are new
[12,17] and characteristic of doubly-charmed baryons.

Their estimation relies upon the nonrelativistic QCD model
calculation [12,17–19]. The final expression is

µ2
G =

2
3
(M∗

ccq −Mccq)mc −
(

2
9
g2

S

|φ(0)|2
m∗

c

+
1
3
g2

S

|φ(0)|2
mc

)
,

(16)
where the first term describes the heavy diquark–light
quark hyperfine interaction, while the second and the third
terms correspond to the interaction of two heavy c quarks
in a diquark state. They are of the “chromomagnetic” and
“Darwin” types, respectively. In (16), Mccq is the mass of
the doubly-charmed baryon, M∗

ccq is the mass of its 3/2-
spin counterpart, and φ(0) is the wave function of the cc
pair in the heavy diquark, i.e., |φ(0)|2 is the probability
for these two heavy quarks to meet at one point.

In the calculations above, we have used only field the-
ory up to the hadronic matrix elements. The results are
expressed in terms of the baryon wave function ψ(0) and
the matrix elements of the kinetic and chromomagnetic
operators, which are µ2

π and µ2
G, respectively. The use of

the usual singly-charmed-baryon wave function Ψ(0), as
given in [11], would be premature, since intuitively, one
expects a two-heavy-quark system to behave differently
from the single-heavy-quark one.

In the case of singly-charmed baryons, the heavy quark
is stationary in the center of the baryon, and the other
two light quarks are moving around. Their spin and color
charges are correlated (in order to have the appropriate
spin and color structure of the entire baryon), but their
spatial motion is not. In this way, one has a three-body
picture of the baryon containing a single heavy quark, and
one should use the baryonic wave function Ψ(0) accord-
ingly.

In the case of doubly-charmed baryons, one assumes
that two heavy quarks are strongly bound into a color
antitriplet state. As far as the light quark is concerned,
the bound state of two cc quarks appears as a pointlike
diquark object [20–22]. Thus, in the heavy-quark limit,
which can (presumably) still be applied in our case (mc >
ΛQCD), a doubly-charmed baryon appears to consist of
a heavy diquark and a light quark, forming a meson-like
state. Therefore, one expects that the doubly-charmed-
baryon wave function (which has to be considered as the
light-quark wave function at the origin of the cc diquark)
behaves essentially as the mesonic wave function.

We use the derivation of hyperfine splittings of mesons
calculated in the constituent nonrelativistic quark model
by De Rújula, et al. [23,24] to obtain the following relation
between the wave functions of the doubly-charmed baryon
and the D meson:

|ψ(0)|2 =
2
3
|ψ(0)|2D =

2
3
f2

DMDκ
−4/9

12
. (17)

The factor 2/3 comes from the different spin content
of doubly-charmed baryons; i.e., the cc diquark forms the
spin-1 color antitriplet state. The baryonic wave function
squared in (17) is directly proportional to the D meson
decay constant, fD, squared. The factor κ−4/9 is the effect
of the hybrid renormalization, which accounts for the fact
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Fig. 1. Dependence of nonleptonic decay widths on the
squared wave function. The shaded area represents the un-
physical region of negative ΓNL, stressing the problem of choice
of the wave function. The vertical line represents the squared
value of the wave function (corresponding to fD = 170MeV)
used in the calculations.

that fD is measured at the scale proportional to mc (κ =
1), and that one has to evolve fD down to the hadronic
scale µ = 0.5 − 1 GeV.

The choice of the mesonic wave function proportional
to fD, instead of the singly-charmed-baryon wave func-
tion, |Ψ(0)|2 ∼ F 2

D, where FD is the static value of the
D meson decay constant, also seems to be consistent nu-
merically. In Fig. 1 we have displayed the dependence of
ΓNL(Hcc) on |ψ(0)|2 in the large range of the fD values.
In our numerical calculation, we use fD = 170 MeV as a
central value. This value is consistent with both QCD lat-
tice calculations [25] and QCD sum rule calculations [26,
27]. In the case of ΓNL(Ξ++

cc ) there is a negative Pauli in-
terference which cancels the contribution coming from the
decay-type diagram (11) and the chromomagnetic opera-
tor (12). This case is very similar to that of the negative
Pauli interference in theD+ decay, where it competes with
the decay-diagram contribution. For fD large enough, the
nonleptonic and total rates in both D+ and Ξ++

cc decays
become negative (see Fig. 1). However, a reasonable choice
of fD gives positive results.

In view of these facts and results, we may conclude that
the phenomenological rule of using fD in mesonic systems
and its static value FD in baryonic systems, employed
first in singly-charmed hadrons [1], can be successfully ex-
tended to the consideration of doubly-charmed baryons.
Not doing so, and taking FD instead of fD, would lead us
to the unphysical region.

Thus, our result is a confirmation of the above-men-
tioned phenomenological rule at the same, qualitative level.
Taking this rule as postulated for singly-charmed hadrons,
we can interpret our results as an extension of the same
rule into the doubly-charmed sector. Also, we can gener-
alize the rule to some extent. We see that the use of fD

Table 1. Predictions for nonleptonic widths, semileptonic
widths, semileptonic branching ratios (for one lepton species)
and lifetimes of doubly-charmed baryons for the values of pa-
rameters mc = 1.35 GeV, µ = 1 GeV, ΛQCD = 300 MeV,
fD = 170 MeV.

Ξ++
cc Ξ+

cc Ω+
cc

Nonleptonic widths in ps−1

ΓNL 0.345 4.158 2.859

Semileptonic widths in ps−1

ΓSL 0.151 0.173 0.603

Semileptonic branching ratios in%

BRSL 23.4 3.9 14.9

Lifetimes in ps

τ 1.55 0.22 0.25

is required in singly-charmed mesons and doubly-charmed
baryons, while FD is used in singly-charmed baryons [11].
So, it is allowed to say that fD should be used in sys-
tems with two-body dynamics (in the ccq baryon case, a
heavy diquark and a light quark), and FD in systems with
three-body dynamics. It is important to stress that these
considerations and conclusions are of purely phenomeno-
logical origin, i.e., they have no direct justification in field
theory.

3 Semileptonic inclusive rates
and lifetimes – results and discussions

In numerical calculations, we use the following set of pa-
rameters, which closely follows the set used in [11]: For
ΛQCD = 300 MeV, the Wilson coefficients are c+ = 0.73
and c− = 1.88. The charmed-quark mass is taken to be
mc = 1.35 GeV, and for the strange-quark mass we use
ms = 150 MeV. The value of the average kinetic energy
T , appearing explicitly in (15), is taken from [12] to be
T = 0.4 GeV, and the light- and heavy-quark constituent
masses arem∗

q = 0.3 GeV andm∗
c = 1.6 GeV, respectively.

The numerical value of the diquark wave function is also
taken from [12]: |φ(0)| = 0.17 GeV3/2. The numerical val-
ues for masses of doubly-charmed baryons are taken from
[28].

As far as the ΛQCD dependence is concerned, in the
range ΛQCD ∼ 200 − 300 MeV, the lifetimes of Ξ+

cc and
Ω+

cc are practically constant, and the lifetime of Ξ++
cc is

more sensitive to the value of ΛQCD; it is somewhat (10%)
larger for ΛQCD = 200 MeV. The same is true for the µ
dependence in the reasonable range µ ∼ 0.5 − 1 GeV.
The lifetimes of Ξ+

cc and Ω+
cc stay almost constant with

variation of µ, and the lifetime of Ξ++
cc grows slowly with

µ (by 18%) (see Fig. 2).
From Table 1, one can see that the Voloshin type of

preasymptotic corrections in the semileptonic decay rates
of Ω+

cc is significant, contributing at the Cabibbo leading
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Fig. 2a,b Dependence of lifetimes on the parameters µ and ΛQCD. Both pictures show the evident insensitivity of τ(Ω+
cc) and
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cc) under variation of µ and ΛQCD, and a small but notable sensitivity of τ(Ξ++

cc ).
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Fig. 3a,b Dependence of semileptonic decay widths and lifetimes on the squared value of the wave function. The vertical line
represents the |ψ(0)|2 used in calculations, and corresponds to fD = 170 MeV. The second picture shows the instability of
τ(Ξ++

cc ) for large |ψ(0)|2.

level (10). This contribution makes ΓSL(Ω+
cc) four times

larger than ΓSL(Ξ++
cc ), which receives contributions only

from (4) and (5). In the ΓSL(Ξ+
cc), there is the Pauli in-

terference effect at the Cabibbo suppressed level, but the
rate is still made larger by 15% than that for the Ξ++

cc

baryon.
Clearly, since both semileptonic and nonleptonic rates

are significantly affected by large preasymptotic effects
that are proportional to |ψ(0)|2 ∼ f2

D, the results for life-
times and for the semileptonic branching ratio for Ω+

cc

depend crucially on the choice of fD. The latter is ob-
vious from Fig. 3, where we see that ΓSL(Ω+

cc) grows lin-
early with f2

D, and especially from the second picture in

Fig. 3, where it is clear that τ(Ξ++
cc ) shows instability for

fD larger than 180 MeV, because of the large cancellation
between the negative Pauli interference term and the con-
tributions from (11) and (12). This is a clear signal that
one should not take the results for Ξ++

cc too literally.
Keeping the above remarks in mind, we predict the

following pattern for semileptonic branching ratios:

BRSL(Ξ+
cc) � BRSL(Ω+

cc) � BRSL(Ξ++
cc ) , (18)

and the following pattern for the lifetimes:

τ(Ξ+
cc) ∼ τ(Ω+

cc) � τ(Ξ++
cc ) . (19)
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oretical predictions are drawn as filled diamonds (all weakly
decaying charmed baryons). Values for masses of doubly- and
triply-charmed baryons are taken from [29].

We can compare our results with the recent calculations
of lifetimes of Ξ++

cc and Ξ+
cc [12]. The authors of that pa-

per employed a similar field-theory technique, but had a
different approach to the choice of relevant parameters.
Throughout their paper they used the constituent heavy-
quark mass as an expansion parameter, which is a phe-
nomenological procedure that we do not find fully consis-
tent. In the calculation of semileptonic decay rates, they
did not include large preasymptotic effects, which sig-
nificantly change total semileptonic widths. Comparison
shows that our numerical results are significantly differ-
ent from those of Kiselev, et al. [12].

Finally, it is worth discussing briefly the decay of the
heaviest weakly decaying charmed hadron: the triply-
charmed baryon Ω++

ccc . Although its complicated structure
and intrinsic tree-body motion prevent us from applying
to this particle the heavy–light picture (as described above
to other weakly decaying heavy hadrons), it is possible
to give some qualitative predictions for its Ω++

ccc decay
rate and the lifetime. In this baryon, preasymptotic ef-
fects (giving large contributions in the singly-charmed and
the doubly-charmed cases) do not exist, for lack of light
valence quarks. Thus, the dominant contribution comes
from the operators of dimensions three and five. Since in
doubly-charmed decays, the contribution of dimension-five
operators represents less than 20% of the contribution of
the decay (dimension-three) operator, it seems reasonable
to approximate the total decay width of Ω++

ccc with the
triple-c quark-decay contribution and to estimate the er-
ror of disregarding dimension-five operators at the level
of 20%. In this case, the expression for ΓTOT(Ω++

ccc ) can
be obtained by multiplying the expressions (4), (5), (11)
and (12) by a factor of 3/2, summing them and taking the

limit µ2
π → 0 and µ2

G → 0. The numerical value for the
lifetime is

τ(Ω++
ccc ) = 0.43 ps . (20)

As the calculation of dimension-five operator contribu-
tions in triply-charmed-baryon decay rates is beyond the
scope of the present paper, this result can be considered
as only qualitatively correct.

4 Conclusions

Application of the heavy-quark expansion to the prob-
lem of inclusive decays of doubly-charmed baryons enables
us to give very interesting predictions for their lifetimes
and semileptonic branching ratios. Large lifetime differ-
ences are present between Ξ++

cc , on the one hand, and
Ξ+

cc and Ω+
cc, on the other. Our numerical results pick out

Ξ++
cc as the longest living charmed particle (Fig. 4), al-

though the numerical value for τ(Ξ++
cc ) should be consid-

ered with certain reserve, for reasons already mentioned.
Such a large numerical difference within the lifetime hi-
erarchy makes these predictions suitable for testing by
forthcoming experimental observation of doubly-charmed
baryons. A theoretical prediction for semileptonic branch-
ing ratios is even clearer, and the hierarchy of BRSL is
unambiguously determined.

The total hierarchy of lifetimes for charmed hadrons
is shown in Fig. 4. It is evident that charmed hadrons
show a very complex pattern in the τ −M plane. One can
note that doubly-charmed baryon lifetimes are compara-
ble with those of their singly-charmed counterparts. This
result opposes the naive expectation of roughly double
widths in the doubly-charmed case, because there is de-
cay of two, instead of one, c quark, or, in other words, cor-
respondingly twice-smaller lifetimes of ccq baryons. How-
ever, the mesonic nature of doubly-charmed-baryon wave
functions, where one uses the smaller fD constant instead
of its static FD value, reduces four-quark operator contri-
butions, increasing doubly-charmed-baryon lifetimes.

Although the c quark is considered not heavy enough
to ensure a reasonable convergence of the heavy-quark ex-
pansion series, the numerical results in the singly-charmed
sector show satisfactory qualitative and even quantitative
agreement with experiment [11]. If future experiments con-
cerning the doubly- (and triply-) charmed sector should
show similar agreement with our theoretical predictions,
that would have important implications for the role of
four-quark operators and for the entire theory of heavy-
quark expansion. Besides, the absence or the presence of
agreement might have notable implications on the validity
of the quark–hadron duality in the charmed sector.
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Appendix: phase-space corrections

Phase-space corrections can be understood as the reduc-
tion of particle phase space, due to the propagation of
the massive particle in the loops of diagrams describing
inclusive decays. In our case, we consider the s quark to
be massive, while the other particles (u,d quarks and lep-
tons) are treated as massless. These corrections can be
classified according to the type of operator diagram in
which they appear and according to the number of mas-
sive quarks in the loop (or the number of them in a final
state if we consider an inclusive process to be a sum of
exclusive channels).

First, we shall enumerate corrections that appear in
decay and dimension-five operator diagrams. From here
on, x = m2

s/m
2
c .

– One massive quark in the loop:

P0(x) = (1 − x2)(1 − 8x+ x2) − 12x2 lnx , (21)

P1(x) = (1 − x)4 , (22)

P2(x) = (1 − x)3 . (23)

P0(x) appears as a correction to the decay-type dia-
gram, while P1(x) and P2(x) come as corrections to
the chromomagnetic operator.

– Two massive quarks in the loop: Using the notation

v(x) =
√

1 − 4x , (24)

we have

P̃0(x) = v(x)(1 − 14x− 2x2 − 12x3) +

24x2(1 − x2) ln
(

1 + v(x)
1 − v(x)

)
, (25)

P̃1(x) =
1
2
(2P̃0(x) − y∂yP̃0(y) |y=x) , (26)

P̃2(x) = v(x)(3x2+
x

2
+1)−3x(1−2x2) ln

(
1 + v(x)
1 − v(x)

)
.

(27)

As above, P̃0(x) appears in the decay diagram, while
P̃1(x) and P̃2(x) are corrections to the dimension-five op-
erator.

Corrections in the paper due to one massive quark are
systematically denoted by P , while those due to two mas-
sive quarks are denoted by P̃ .

Next, we display the phase-space corrections to four-
quark operators:

Pex(x) = (1 − x)2 , (28)

Pint(x) = (1 − x)2(1 + x) , (29)

P̃int(x) =
√

1 − 4x . (30)

Pex(x) appears as a correction to the exchange diagram,
Pint(x) corrects for the massive quark in the interference
contributions, and P̃int(x) is a correction in the case of
negative interference when there are two massive quarks
in the loop [3,30,31].
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