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Abstract. We investigate the exclusive photoproduction of a heavy timelike photon which decays into a
lepton pair, γp → �+�−p. This can be seen as the analog of deeply virtual Compton scattering, and we argue
that the two processes are complementary for studying generalized parton distributions in the nucleon. In
an unpolarized experiment the angular distribution of the leptons readily provides access to the real part
of the Compton amplitude. We estimate the possible size of this effect in kinematics where the Compton
process should be dominated by quark exchange.

1 Introduction

A considerable amount of theoretical and experimental
work is currently being devoted to the study of generalized
parton distributions, whose measurement could make im-
portant contributions to our understanding of how quarks
and gluons assemble themselves to hadrons [1–3]. The the-
oretically simplest and cleanest of the exclusive processes
where these distributions occur is deeply virtual Compton
scattering (DVCS), i.e., γ∗p→ γp in kinematics where the
γ∗ has large spacelike virtuality while the invariant mo-
mentum transfer t to the proton is small. In the present
paper, we investigate the “inverse” process, γp → γ∗p at
small t and large timelike virtuality of the final state pho-
ton. We shall refer to this as timelike Compton scatter-
ing (TCS). This reaction shares many features of DVCS,
although the timelike character of the virtual photon en-
tails some specific differences. The combination of data on
DVCS and TCS would offer a powerful tool to make sure
we understand the reaction mechanism, and eventually to
obtain stronger constraints on the generalized parton dis-
tributions than DVCS alone would provide.

The physical process where to observe TCS is pho-
toproduction of a heavy lepton pair, γp → µ+µ−p or
γp → e+e−p, shown in Fig. 1. Despite the close anal-
ogy to real photon production ep → eγp or µp → µγp,
where DVCS can be accessed, the phenomenology of these
reactions shows important differences. In both cases, a
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�� Unité mixte C7644 du CNRS

−l

l +

q k

p’p

k’

pp

γ

Fig. 1. Real photon–proton scattering into a lepton pair and
a proton. � stands for an electron or a muon

Bethe–Heitler (BH) mechanism contributes at the ampli-
tude level. Contrary to the case of DVCS, this contribution
always dominates over the one from TCS in the kinemati-
cal regime where we want to study it. On the other hand,
the interference between the TCS and BH processes can
readily be accessed through the angular distribution of
the lepton pair, whereas the corresponding observable for
DVCS is the lepton charge asymmetry and requires beams
of both positive and negative charge.

This paper is organized as follows. In Sect. 2 we re-
view the kinematics, factorization properties, and helicity
structure of the Compton amplitude in the general case
where the two photon virtualities are different, but at least
one of them is sufficiently large to provide a hard scale. In
Sect. 3 we discuss specific features related to the timelike
nature of the outgoing photon in TCS. We develop the
phenomenology of exclusive photoproduction of a lepton
pair in Sect. 4, taking into account the Bethe–Heitler and
the Compton processes and their interference. In Sect. 5
we present estimates of cross sections and of asymmetries
suitable to extract information on the Compton signal.
Section 6 contains our conclusions. In an appendix we dis-
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Fig. 2. Handbag diagrams for the Compton process (1) in the
scaling limit. The plus-momentum fractions x, ξ, η refer to the
average proton momentum (1/2)(p+ p′)

cuss the relevance of parton densities at very small x when
modeling generalized parton distributions with a double
distribution ansatz.

2 The Compton amplitude

Both DVCS and TCS are limiting cases of the general
Compton process

γ∗(q) + p(p) → γ∗(q′) + p(p′), (1)

where the four-momenta q and q′ of the photons can have
any virtuality. We will also use ∆ = p′ − p, the invariants
Q2 = −q2, Q′2 = q′2, s = (p+ q)2, t = ∆2, (2)

and write M for the proton mass. In the region where
at least one of the virtualities is large, the amplitude is
given by the convolution of hard scattering coefficients,
calculable in perturbation theory, and generalized parton
distributions, which describe the nonperturbative physics
of the process. To leading order in αs one then has the
quark handbag diagrams of Fig. 2. The arguments for fac-
torization given in [4], based on the analysis of Feynman
graphs, hold both for large spacelike and for large time-
like virtualities [5]. We thus define the scaling limit as
|q2|+ |q′2| → ∞ at fixed t and fixed ratios q2/s and q′2/s.

For our subsequent discussion let us recall the expres-
sion of the hadronic tensor

Tαβ = i
∫

d4xe−iq·x〈p(p′)|TJα
em(x)J

β
em(0)|p(p)〉, (3)

where eJα
em(x) is the electromagnetic current with e de-

noting the positron charge. In the scaling limit we have to
leading order in αs

Tαβ = − 1
(p+ p′)+

ū(p′)
[
gαβ
T

(
H1γ

+ + E1
iσ+ρ∆ρ

2M

)

+ iεαβ
T

(
H̃1γ

+γ5 + Ẽ1
∆+γ5
2M

)]
u(p). (4)

This expression holds in reference frames where both pro-
ton momenta p and p′ have small transverse components
of order (−t)1/2 and are moving fast to the right, i.e., have
large plus-components. Light-cone coordinates are defined
as v± = (v0 ± v3)/21/2 for any four-vector v. The trans-
verse tensors gT and εT have as only nonzero components

−g11T = −g22T = ε12T = −ε21T = 1. Following the notation of
[6] we have introduced the convolutions

H1(ξ, η, t) =
∑

q

e2q

∫ 1

−1
dx
(
Hq(x, η, t)
ξ − x− iε

− H
q(x, η, t)
ξ + x− iε

)
,

E1(ξ, η, t) =
∑

q

e2q

∫ 1

−1
dx
(
Eq(x, η, t)
ξ − x− iε

− E
q(x, η, t)
ξ + x− iε

)
,

H̃1(ξ, η, t) =
∑

q

e2q

∫ 1

−1
dx

(
H̃q(x, η, t)
ξ − x− iε

+
H̃q(x, η, t)
ξ + x− iε

)
,

Ẽ1(ξ, η, t) =
∑

q

e2q

∫ 1

−1
dx

(
Ẽq(x, η, t)
ξ − x− iε

+
Ẽq(x, η, t)
ξ + x− iε

)

(5)

of the generalized quark distributions defined in [2], sum-
med over quarks of flavor q and electric charge eeq. The
scaling variables ξ and η are given by

ξ = − (q + q′)2

2(p+ p′) · (q + q′) ≈ Q2 −Q′2

2s+Q2 −Q′2 ,

η = − (q − q′) · (q + q′)
(p+ p′) · (q + q′) ≈ Q2 +Q′2

2s+Q2 −Q′2 , (6)

where the approximations hold in the kinematical limit
we are working in. x, ξ, and η represent plus-momentum
fractions

x =
(k + k′)+

(p+ p′)+
, ξ ≈ − (q + q′)+

(p+ p′)+
, η ≈ (p− p′)+

(p+ p′)+
. (7)

The expressions (4) and (5) reveal that the two-photon
amplitude is independent of the photon virtualities at
fixed ξ, η and t. In the case of spacelike q = q′ this is just
Bjorken scaling. To be precise, the independence on q2 and
q′2 only holds up to logarithmic corrections: the photon
virtualities provide the hard scale of the process and thus
enter through the factorization scale dependence of the
parton distributions, which we have not displayed above.
The corresponding evolution equations are well known [1–
3,?], and as usual we will refer to −1 < x < −η and
η < x < 1 as the DGLAP regions, and to −η < x < η as
the ERBL region of the parton distributions.

Let us now recall the helicity structure of the two-
photon process in the scaling limit. Contracting the had-
ronic tensor with polarization vectors ε of the incoming
and ε′ of the outgoing photon, one obtains the helicity
amplitudes of (1) as

e2Mλ′µ′,λµ = e2εαTαβε′∗β , (8)

where λ (λ′) denotes the helicity of the incoming (outgo-
ing) proton and µ (µ′) the helicity of the incoming (out-
going) photon. Parity invariance provides the relations
M−λ′−µ′,−λ−µ = (−1)λ

′−µ′−λ+µMλ′µ′,λµ. From (4) one
easily finds that the quark handbag diagrams only gener-
ate helicity conserving transitions between transverse pho-
tons, Mλ′+,λ+ and Mλ′−,λ−. At order αs one further has
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amplitudesMλ′0,λ0, provided of course that both photons
are off shell [8]. Double helicity flip amplitudes Mλ′+,λ−

andMλ′−,λ+ are generated at order αs by gluon transver-
sity distributions [9,10]. Finally, transitions involving one
transverse and one longitudinal photon are suppressed by
one power of the large scale Q or Q′. These twist-three
contributions1 have been studied in [11], and twist-four
contributions to the double helicity flip amplitudes in [12].
These studies were performed for large spacelike virtuali-
ties; whether they can be extended to the timelike case is
a question beyond the scope of this paper.

The DVCS and TCS processes are limiting cases of (1)
where one of the photons is on shell. From (6) we readily
see that to leading-twist accuracy one has ξ = η in DVCS
and ξ = −η in TCS. The convolutions (5) obey

H1(−η, η, t) = [H1(η, η, t)]∗,

H̃1(−η, η, t) = −[H̃1(η, η, t)]∗,
E1(−η, η, t) = [E1(η, η, t)]∗,

Ẽ1(−η, η, t) = −[Ẽ1(η, η, t)]∗, (9)

which leads to the simple relations

Mλ′+,λ+
∣∣∣
TCS

= [Mλ′−,λ−]∗DVCS,

Mλ′−,λ−
∣∣∣
TCS

= [Mλ′+,λ+]∗DVCS (10)

between the helicity amplitudes for TCS and DVCS at
equal values of η and t. These relations should be eval-
uated at corresponding values of Q′2 and Q2 since the
photon virtualities play analogous roles in providing the
hard scale of the respective processes and thus enter in
the scale dependence of the parton distributions. The re-
lations (10) tell us that at Born level and to leading twist
one obtains the amplitudes for TCS from those of DVCS
by changing the sign of the imaginary part and revers-
ing the photon polarizations. To this accuracy, the two
processes thus carry exactly the same information on the
generalized quark distributions.

We remark that the relations (9) and hence (10) no
longer hold at O(αs), neither for the one-loop corrections
to the quark handbag diagrams in Fig. 2 nor for the dia-
grams involving gluon distributions. On general grounds,
the phase structure of the two processes is in fact differ-
ent. Whereas the only discontinuity of the two-photon am-
plitude in DVCS kinematics is in the s-channel, the TCS
amplitude has discontinuities in both s and Q′2, with one-
loop hard scattering diagrams contributing to both cuts.
In situations whereO(αs) contributions are important, the
DVCS and TCS processes will have a different dependence
on the generalized parton distributions. TCS and DVCS
together can then constrain them more effectively than ei-
ther process alone. The detailed study of TCS at one-loop
level is beyond the scope of this work, and we will base
our numerical studies on the Born level expression (4).

1 We use here the dynamical definition of twist, where twist n
contributions to the Compton amplitude are suppressed by
n− 2 inverse powers of the large scale
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Fig. 3a,b. The loop momentum configurations x = η where
the Born level amplitude receives its imaginary part in a DVCS
and b TCS. Short vertical lines indicate on-shell quark lines
in the hard scattering, plus-momentum fractions ±2η and 0
refer to the average proton momentum (1/2)(p+ p′). The cor-
responding configurations for x = −η are obtained by reversing
the charge flow of the quark line

It is worthwhile to compare the momentum configura-
tions in DVCS and TCS from which the Born level con-
volutions (5) receive their imaginary parts. From Fig. 3
we see that in both cases there is a quark line with zero
plus-momentum coming from the proton, and that in both
cases it is attached to the real photon, i.e., to the final state
in DVCS and to the initial state in TCS.

We conclude this section by defining the variable

τ =
Q′2

2p · q =
Q′2

s−M2 (11)

for the TCS process as the analog of the Bjorken vari-
able xB = Q2/(2p · q) in DVCS. The similar roles played
by these quantities reveals itself in their relations with η,
which to leading-twist accuracy reads η = τ/(2 − τ) for
TCS and η = xB/(2 − xB) for DVCS.

3 The timelike photon

Processes involving timelike photons can have markedly
different features than processes controlled by large space-
like virtualities. These features usually do not arise to
leading order in perturbation theory, which is the approx-
imation we will work in here. A closer look at the Born
level diagrams reveals nevertheless important similarities
and differences between timelike processes, which we now
briefly discuss.

The reaction which at first sight is most similar to
TCS is Drell–Yan pair production in hadron–hadron col-
lisions. In that case, the O(αs) corrections to the Born
graph of Fig. 4a have considerable size and make up for
most of the much discussed K-factor of this process. A
way to understand them is the occurrence of large contri-
butions enhanced by π2, which can be traced back to the
correction of the quark-photon vertex for spacelike γ∗ and
on-shell quarks [13]. Notice that in the TCS Born graphs
of Fig. 2 only one of the two quark lines attached to the
γ∗ is on shell, whereas the other one is off shell by order
Q′2. One might argue that the second line does become
on shell in the imaginary part of the amplitude, as indi-
cated in Fig. 3b, but there is an important difference: the
quark lines in the Drell–Yan diagram and one of the lines
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Fig. 4a,b. Born level diagrams for the a Drell–Yan process
pp̄ → �+�−X and b e+e− annihilation into hadrons, e+e− →
X

in TCS physically correspond to small virtualities as they
are directly attached to parton distributions, i.e., to quan-
tities describing long-distance physics. This is not the case
for the vertical quark line in the TCS diagrams. Techni-
cally, the singularity of its propagator can be avoided by
analytical continuation of the loop momenta, whereas the
singularities associated with the lines attached to a par-
ton distribution are pinched [4,14]. The analogy between
the two processes must hence be used with care, and in
particular one cannot easily infer on the size of the O(αs)
corrections from the experience with the Drell–Yan pro-
cess.

A second issue in processes with timelike photons is
the importance of resonance effects, which are beyond the
realm of perturbation theory. At invariant photon masses
above 4 or 5GeV, excluding of course the region of the Υ
resonances, the comparison of leading-twist perturbative
calculations and data works rather satisfactorily for the
Drell–Yan process, cf. the data compilation in [15]. The
situation for masses below the J/Ψ is difficult to assess,
mainly due to background lepton pairs from the weak de-
cays of b and c quarks [16]. This type of background does
of course not affect TCS, where we are dealing with exclu-
sive lepton pair production. As for inclusive e+e− annihi-
lation into hadrons, the recent BES data [17] in the mass
region from 2 to 3GeV is remarkably flat and close to the
leading-twist result. The same holds for the data above 5
GeV, cf. e.g. [18], excluding again the Υ region. Between
3 and 5 GeV on the other hand, resonance structures are
clearly visible [17].

Again one should keep in mind that the importance of
resonance effects may be different in all these processes.
In line with our above analysis, we remark that in the tree
level diagram for inclusive e+e− annihilation, Fig. 4b, both
quark and antiquark correspond to large virtualities. Tech-
nically, the cross section is calculated as the imaginary
part of the photon vacuum polarization, where the quarks
appear in a loop and are indeed far off shell. We notice that
in both Drell–Yan production and e+e− annihilation one
has quark–antiquark configurations with comparable vir-
tualities. In contrast, we have asymmetric configurations
in TCS, with one quark line soft and the other far off shell.
Furthermore, the space-time structure of TCS is such that
the γ∗ is formed from a qq̄-pair only in the ERBL region
of the parton distributions, while in the DGLAP region
the parton-level process is photon radiation off a quark or
antiquark, q → γ∗q or q̄ → γ∗q̄.

To conclude, we estimate based on e+e− → X and the
Drell–Yan data that ranges of Q′ where the leading-twist
description of TCS may work should be between about 1.5
to 2GeV and the J/Ψ mass, and above the charmonium
resonances. We stress however that the reaction mecha-
nism in the TCS process displays important differences,
and that one will have to see in the data how parton–
hadron duality manifests itself here.

4 Observing TCS in lepton pair production

4.1 Some kinematics

Let us now specify the variables we use to describe the lep-
ton pair production process depicted in Fig. 1, in addition
to those already introduced at the beginning of Sect. 2.
A useful quantity is the transverse component '∆T of the
momentum transfer ∆ with respect to 'p and 'q in the γp
c.m. It is related to the scattering angle Θcm in that frame
by

sinΘcm =
2∆T

√
s

r
, (12)

where ∆T = | '∆T| and r = ((s−Q′2−M2)2−4Q′2M2)1/2.
In the limit of large Q′2, large s, and small −t, we then
have

−t ≈ τ2M2 +∆2
T

1 − τ (13)

up to relative corrections of order M2/Q′2. For the lepton
pair, we use the lepton velocity

β =
√
1 − 4m2

�/Q
′2 (14)

in the ,+,− c.m., wherem� denotes the lepton mass. In the
same frame we introduce the polar and azimuthal angles
θ and ϕ of 'k, with reference to a coordinate system with
3-axis along −'p′ and 1- and 2-axes such that 'p lies in the
1–3 plane and has a positive 1-component2. This is shown
in Fig. 5. In terms of Lorentz invariants, our angles are
given by

2(k − k′) · p′ = βr cos θ, (15)

2(k − k′) · (p− p′) = −β 2(s−M2)Q′∆T

r
sin θ cosϕ

+σβ

√
(Q′2 − t)2 −

[
2(s−M2)Q′∆T

r

]2
cos θ,

4εµνρσpµp
′
νkρk

′
σ = β(s−M2)Q′∆T sin θ sinϕ,

where our convention for the completely antisymmetric
tensor is ε0123 = 1, and the sign factor σ = ±1 is deter-
mined by

σ

√
(Q′2 − t)2 −

[
2(s−M2)Q′∆T

r

]2
2 They correspond to the decay angles θ and φ for vector

meson photoproduction introduced by Schilling, Seyboth and
Wolf [19] with their vector 
π along 
k
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Fig. 5. Sketch of the kinematical variables and coordinate axes
in the γp and �+�− c.m. frames. Notice that the coordinate
systems differ from the one we used in the Compton amplitude
(4), where p and p′ have positive 3-components

=
Q′2(s−M2 −Q′2) + t(s−M2 +Q′2)

r
. (16)

The form of the second equation in (15) is useful in our
kinematics, where ∆T is small and σ = 1.

As polarization vectors ε(λ) for the incoming photon
we take ε(±) = (∓e(1)−ie(2))/21/2, where e(1) and e(2) are
unit vectors along the 1- and 2-directions in the γp c.m. as
shown in Fig. 5. Our polarizations ε′(λ′) of the outgoing
photon are ε′(±) = (∓e′(1) − ie′(2))/21/2 and ε′(0) = e′(3)
with unit vectors along the coordinate axes in the ,+,−
c.m. described above.

4.2 The Bethe–Heitler contribution

The Bethe–Heitler amplitude is readily calculated from
the two Feynman diagrams in Fig. 6. We parameterize
the photon–proton vertex in terms of the usual Dirac and
Pauli form factors F1(t) and F2(t), normalizing F2(0) to
be the anomalous magnetic moment of the target. We find
for the BH contribution to the unpolarized γp cross sec-
tion

dσBH

dQ′2dtd(cos θ)dϕ
=

α3
em

4π(s−M2)2
β

−tL
×
[(
F 2

1 − t

4M2F
2
2

)
A

−t + (F1 + F2)2
B

2

]
, (17)

where we have used the abbreviations

A = (s−M2)2∆2
T − ta(a+ b)

− M2b2 − t(4M2 − t)Q′2

+
m2

�

L

[{(Q′2 − t)(a+ b) − (s−M2)b}2

+ t(4M2 − t)(Q′2 − t)2] ,
B = (Q′2 + t)2 + b2

+ 8m2
�Q

′2 − 4m2
�(t+ 2m2

�)
L

(Q′2 − t)2. (18)

The cross section depends on the angles θ and ϕ through
the scalar products

a = 2(k − k′) · p′, b = 2(k − k′) · (p− p′) (19)

l+

l−

p p

γ

Fig. 6. The Feynman diagrams for the Bethe–Heitler ampli-
tude

given in (15) above, and through the product of the lepton
propagators in the two BH diagrams,

L = [(q−k)2−m2
� ][(q−k′)2−m2

� ] =
(Q′2 − t)2 − b2

4
. (20)

These expressions are rather lengthy, but simplify con-
siderably in kinematics where t, M2 and m2

� can be ne-
glected compared to terms going with s or Q′2. We then
have

L ≈ L0 =
Q′4 sin2 θ

4
. (21)

and

dσBH

dQ′2dtd(cos θ)dϕ
≈ α3

em

2πs2
1
−t

1 + cos2 θ
sin2 θ

×
[(
F 2

1 − t

4M2F
2
2

)
2
τ2

∆2
T

−t + (F1 + F2)2
]
. (22)

We see that the product L of lepton propagators goes to
zero at sin θ = 0 in this approximation. Closer inspection
reveals that when sin θ becomes of order ∆T/Q

′ or m�/Q
′

the approximations (21) and (22) break down and one
must use the full expressions.

Let us see how small the product L can become. At
fixed s, Q′2, t, ϕ we find with (15) and (20) that L assumes
a minimum value,

Lmin ≈ Q′2m2
� +Q

′2∆2
T

sin2 ϕ

(1 − τ)2 , (23)

for

tan θmin ≈ −2∆T

Q′
cosϕ
1 − τ , (24)

up to corrections of order t/Q′2, M2/Q′2, m2
�/Q

′2. For
θ ∼ θmin the leptons ,− and ,+ are nearly collinear with
the initial photon in the γp c.m. They have transverse
momenta of order ∆T with respect to 'p and 'q and share
their total longitudinal momentum in a highly asymmetric
way. In our numerical studies we will impose a cut on θ
which ensures that L remains of order Q′4, thus staying
away from the region where the BH cross section becomes
extremely large.

We finally remark that as long as L is of order Q′4 the
terms going with 1/L in (18) are suppressed at least like
m2

�Q
′2/L compared with the leading behavior of A and

B. For a large range in θ the BH cross section (17) will
thus approximately behave like 1/L instead of 1/L2.
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4.3 The Compton scattering contribution

We now investigate the TCS contribution to lepton pair
production. In order to understand the basics of its in-
terplay with the BH process it is sufficient to consider
the leading behavior of the Compton amplitude in 1/Q′
and in αs, which we discussed in Sect. 2. We will thus in
particular discard γp amplitudes that change the photon
helicity. In line with neglecting power suppressed effects
in the Compton subprocess we will also drop mass cor-
rections of order M2/Q′2 and m2

�/Q
′2 in kinematics and

phase space. To this accuracy, the contribution of TCS to
the unpolarized cross section of γp→ ,+,−p reads

dσTCS

dQ′2dtd(cos θ)dϕ
≈ α3

em

8πs2
1
Q′2

1 + cos2 θ
4

∑
λ,λ′

|Mλ′−,λ−|2.

(25)
We note that the ϕ independence here is a consequence
of having neglected photon helicity changing transitions.
From (4) we obtain

1
2

∑
λ,λ′

|Mλ′−,λ−|2 = (1 − η2)(|H1|2 + |H̃1|2)

− 2η2Re(H∗
1E1 + H̃∗

1Ẽ1)

−
(
η2 +

t

4M2

)
|E1|2 − η2 t

4M2 |Ẽ1|2, (26)

where H1, H̃1, E1, Ẽ1 are to be evaluated at −ξ = η. To-
gether with (22) we see that compared with the TCS cross
section, the BH contribution is parametrically enhanced
by a factor Q′2/(−t) and has an extra factor of 1/ sin2 θ
in the angular dependence.

Let us compare the TCS result (25) with the contri-
bution of DVCS to the electroproduction process

,(k) + p(p) → ,(k′) + γ(q′) + p(p′), (27)

where we have indicated four-momenta in parentheses. Re-
taining only the leading part in 1/Q and αs of the Comp-
ton amplitude, and dropping again mass corrections of
order M2/Q2 and m2

�/Q
2, we have for the unpolarized

cross section

dσDVCS

dQ2dtdydϕ
≈ α3

em

8πs2ep

1
Q2

1 + (1 − y)2
y3

∑
λ,λ′

|Mλ′+,λ+|2.

(28)
Here sep = (p+k)2 is the total c.m. energy of the ep colli-
sion, y = (q ·p)/(k ·p) the usual inelasticity parameter, and
ϕ the azimuthal angle between lepton and hadron planes
as defined in [9]. With the relation (10) we readily see that
to leading twist and leading order in αs the sums over
squared helicity amplitudes in (25) and (28) give identical
results for corresponding values of η = τ/(2 − τ) and Q′2
in TCS, and η = xB/(2 − xB) and Q2 in DVCS. To this
accuracy, the Compton scattering contributions to the re-
spective cross sections only differ by the global kinematic
factors given in (25) and (28).

Comparison of these factors reveals the correspondence
between the variables θ in TCS and y in DVCS, which by
expressing them in terms of scalar products is found to be

1 + cos θ
2

≈ k · p′
(k + k′) · p′ ↔ k · p

(k − k′) · p =
1
y
, (29)

where in the first relation we have again neglected mass
corrections. At this point we find a crucial difference in the
phenomenology of the two processes. As is well known [9,
20] the relative weight of DVCS and BH crucially depends
on y, given that at amplitude level the DVCS contribu-
tion comes with a factor 1/y relative to the BH contribu-
tion. In the region of Q2 and t defining the DVCS regime,
BH dominates for moderate values of y, whereas for suffi-
ciently small values of y the Compton contribution wins.
Since the quantity corresponding to 1/y in (29) is always
between −1 and 1, no such enhancement takes place for
TCS, and we will indeed find numerically that here the
BH contribution to the cross section is always dominant.
The strategy is then the same as in DVCS at moderate
values of y, namely to gain information on the Compton
process through its interference with BH, which can be
extracted using symmetry properties of the process.

Another noteworthy difference concerns the variables
τ and xB, which determine the values η where the general-
ized parton distributions are probed in the two processes.
In DVCS at fixed collision energy s1/2

ep the variables xB and
y are not independent since Q2 = yxB(sep −m2

� −M2). If
at given Q2 one wants to vary xB and thus choose a kine-
matical point where to probe the Compton subprocess,
one must vary y. In TCS on the other hand, one has the
relation Q′2 = τ(s −M2), independent of the value of θ.
In order to vary τ at given Q′2, one here needs to change
the γp collision energy s1/2. A continuous spectrum in s
is of course automatically obtained if the initial photon
originates from bremsstrahlung off a lepton beam.

4.4 The interference term

Let us now explore how information on the Compton pro-
cess can be obtained from the interference between the
TCS and BH amplitudes. The general strategy is the same
as described in [9] for the case of DVCS, but we will again
encounter important differences in the phenomenology of
these reactions.

A key point is that the amplitudes for the Compton
and Bethe–Heitler processes transform with opposite signs
under reversal of the lepton charge. As a consequence the
interference term between TCS and BH is odd under ex-
change of the ,+ and ,− momenta, whereas the individual
contributions of the two processes are even. Any observ-
able that changes sign under k ↔ k′ will hence project out
the interference term, eliminating in particular the large
BH contribution. Clean information on the interference
term is therefore contained in the angular distribution of
the lepton pair. The corresponding observable in the elec-
troproduction process ,p→ ,γp is the lepton beam charge
asymmetry, whose measurement presents important ex-
perimental challenges.
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Let us take a closer look at the interference part of the
cross section for γp → ,+,−p with unpolarized protons
and photons. It is given by

dσINT

dQ′2dtd(cos θ)dϕ
= − α

3
em

4πs2
1
−t
M

Q′
1

τ
√
1 − τ

L0

L

×
[
cosϕ

1 + cos2 θ
sin θ

ReM̃−− − cos 2ϕ
√
2 cos θReM̃0−

+ cos 3ϕ sin θReM̃+− +O
(

1
Q′

)]
, (30)

with L and L0 from (20) and (21). Here

M̃µ′µ =
∆T

M

[
(1 − τ)F1 − τ

2
F2

]
M−µ′,−µ

+
∆T

M

[
F1 +

τ

2
F2

]
M+µ′,+µ

+
[
τ2(F1 + F2) +

∆2
T

2M2F2

]
M−µ′,+µ

− ∆2
T

2M2F2M
+µ′,−µ (31)

is the same combination of Compton helicity amplitudes
as defined in [9]3. The close analogy between TCS and
DVCS is manifest, and we see that a γ∗ with negative
helicity in TCS corresponds to a γ∗ with positive helicity
in DVCS as we already found in the relations (10).

The terms indicated by O(1/Q′) in (30) have kinemat-
ical coefficients suppressed by at least one power of 1/Q′
relative to the other terms in brackets. Notice that we
have not approximated the product L of lepton propaga-
tors from the BH process. In the limit of large Q′2 the fac-
tor L0/L tends to 1, but we have seen in Sect. 4.2 that this
approximation becomes increasingly bad as θ approaches
0 or π, so that it is useful to keep L0/L in an analysis. The
same is true for the lepton propagators in the interference
of DVCS and BH, as has been emphasized in [6].

We see that without polarization one probes the real
parts of the Compton helicity amplitudes. Access to the
imaginary parts can be obtained with polarized photon
beams. If the photons have a circular polarization ν, as is
the case for a bremsstrahlung beam emitted from longitu-
dinally polarized leptons, one has

dσINT

dQ′2dtd(cos θ)dϕ
=

dσINT

dQ′2dtd(cos θ)dϕ

∣∣∣∣
Eq.(30)

− ν α
3
em

4πs2
1
−t
M

Q′
1

τ
√
1 − τ

L0

L

×
[
sinϕ

1 + cos2 θ
sin θ

ImM̃−− − sin 2ϕ
√
2 cos θImM̃0−

+ sin 3ϕ sin θImM̃+− +O
(

1
Q′

)]
. (32)

3 In contrast to [9] our notation here is to list the helici-
ties of outgoing particles first. With our phase convention the
transverse polarization vectors of the two photons coincide for
∆T = 0, cf. Sect. 4.1. In [9] we made a different choice, and
the Compton helicity amplitudes here and there differ by an
overall sign

The photon polarization dependent and independent
terms are simply related by exchanging sin ↔ cos and
Im ↔ Re. This is not quite the same as for lepton beam
polarization in the interference between DVCS and BH,
where different kinematical factors occur in the polariza-
tion dependent and independent parts, and where notably
the term with sin 3ϕImM̃+− is absent.

The various terms in the ϕ dependence of the interfer-
ence term can for instance be projected out by weighting
the differential cross section with appropriate functions.
The weights (L/L0) cos(nϕ) and (L/L0) sin(nϕ) for in-
stance give the terms with cos(nϕ) and sin(nϕ) in (30)
and (32), respectively. Notice that these weights are odd
under the exchange of k and k′ and hence do not pick
up the BH and TCS contributions to the cross section, as
discussed above.

In this way we can project out the various helicity
combinations M̃µ′µ of Compton amplitudes, up to relative
corrections in 1/Q′. Along the lines of [9] this can be used
to test whether the power behavior in Q′ at fixed τ and
t follows the predictions discussed in Sect. 2, i.e., whether
arguments based on the large Q′2 limit apply at the fi-
nite Q′2 of a measurement. If one is in the scaling regime,
one can then analyze the photon helicity conserving am-
plitudes in terms of generalized parton distributions. The
quark handbag diagrams of Fig. 2 give

M̃−− =
2
√
t0 − t
M

1 − η
1 + η

×
[
F1H1 − η(F1 + F2)H̃1 − t

4M2F2E1

]
, (33)

where −t0 = 4η2M2/(1 − η2) is the minimal value of −t
at given η, up to corrections in 1/Q′2.

The above extraction of the Compton amplitudes re-
quires measurement of the angle ϕ. If one integrates the in-
terference term over ϕ, the photon polarization dependent
part in (32) vanishes because of parity invariance. The in-
tegral of the unpolarized contribution (30) is nonzero, due
to the ϕ dependence of L0/L and to the ϕ independent
part of the terms denoted by O(1/Q′). This integral can
in principle be projected out from the cross section be-
cause it is odd under θ → π − θ, whereas the BH and
TCS contributions are even when integrated over ϕ. The
interference signal so obtained is however an order 1/Q′
smaller than what can be seen in the ϕ dependence of the
cross section, and will thus be harder to extract.

5 Numerical estimates

In this section we model the generalized parton distribu-
tions (GPDs) and give estimates for various observables.
We restrict ourselves to moderate values of τ and use
the leading-order handbag approximation (4), (5) of the
Compton amplitude. We omit all terms proportional to Eq

and Ẽq. In the region 0.1 ≤ τ ≤ 0.36 and |t| ≤ 0.4GeV2

we will consider in our estimates, E1 is multiplied by kine-
matical coefficients at most 0.15 times those of H1 in (26)
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and (33) and thus would not significantly change our re-
sults. In any case, it is at present fairly unclear how to
model the distributions Eq, so that taking them into ac-
count would not improve the reliability of the estimates.
As for Ẽ1, it is multiplied by a tiny coefficient in (26) and
absent in the interference term (33).

5.1 Modeling the parton distributions

Now we define the model we use for Hq and H̃q. Following
[21] we take a factorizing ansatz for the t dependence,

Hu
DD(x, η, t) = h

u(x, η)
1
2
Fu

1 (t),

Hd
DD(x, η, t) = h

d(x, η)F d
1 (t),

H̃q
DD(x, η, t) = h̃

q(x, η)F̃ q(t), (34)

with

Fu
1 (t) = 2F p

1 (t) + F
n
1 (t),

F d
1 (t) = F

p
1 (t) + 2Fn

1 (t),

F̃u(t) = F̃ d(t) = gA(t)/gA(0). (35)

F p
1 and Fn

1 are the electromagnetic Dirac form factors of
the proton and neutron, for which we take the usual dipole
parameterization [22]. For the axial form factor of the pro-
ton we take gA(t) = gA(0)(1− t/M2

A)
−2 with gA(0) = 1.26

and MA = 1.06GeV from [23]. For strange quarks we
make the ansatz

Hs
DD(x, η, t) = h

s(x, η)FD(t), (36)

where the dipole form factor FD(t) = (1 − t/M2
V)

−2 with
MV = 0.84GeV is the same as the one that enters in the
parameterization of F p

1 and Fn
1 . Note that via the sum

rule for
∫
dxHs(x, η, t) a factorizing ansatz like (36) cor-

responds to setting the strange quark contribution F s
1 (t)

to the Dirac form factor to zero. We remark that several
studies [24,25] indicate that GPDs do not factorize in the
simple manner of (34) and (36). The ansatz has however
the virtue of simplicity and should be good enough for our
estimates, as long as we do not study the interplay of the
η and t dependence of the cross section. For hq and h̃q we
make an ansatz based on double distributions [26],

hq(x, η) =
∫ 1

0
dx′
∫ 1−x′

−1+x′
dy′[δ(x− x′ − ηy′)q(x′)

− δ(x+ x′ − ηy′)q̄(x′)]π(x′, y′), (37)

h̃q(x, η) =
∫ 1

0
dx′
∫ 1−x′

−1+x′
dy′

× δ(x− x′ − ηy′)∆qV(x′)π(x′, y′), (38)

π(x′, y′) =
3
4
(1 − x′)2 − y′2

(1 − x′)3
. (39)

We evaluate (37) with the LO GRV 94 parameterization
[27] of the unpolarized distributions q(x) and q̄(x), and

(38) with set A of the LO polarized valence distributions
∆qV(x) by Gehrmann and Stirling [28]. In both cases we
take the factorization scale as µ2 = 5GeV2. We neglect
the polarized quark sea, which presently is not well con-
strained by data, and thereby also drop H̃s. In the ap-
pendix we shall give a detailed discussion of the role played
by very small values of x′ in the integrals of (37) and (38),
and thus of the uncertainties in evaluating them with par-
ton densities only known above some finite value of x′.

Let us stress that the available models of GPDs are
fraught with uncertainties, in particular in the ERBL re-
gion. There, GPDs describe the emission of a qq̄-pair from
the target, and an ansatz only using the information from
usual parton densities should be used with care. Dynam-
ical calculations [29,24] lead in fact to much richer struc-
ture in the ERBL region than is generated from (37) to
(39). Notice also that, while for x > η GPDs are bounded
from above [30], no analogous constraints are known in
the ERBL region.

A particular type of contribution in the ERBL region
is the Polyakov–Weiss D-term [31], which following [32]
we take as a flavor SU(3) singlet:

Hu
D(x, η, t) = H

d
D(x, η, t) = H

s
D(x, η, t)

= Θ(η2 − x2)
1
3
D

(
x

η

)
FD(t), (40)

where Θ denotes the step function. We make again a
factorizing ansatz for the t dependence, taking the same
dipole form factor as in (36). For the function D we use
the parameterization given in (23) and (24) of [32], which
was obtained by a fit to the result obtained in the chiral
soliton model [29]. That parameterization is given for a
factorization scale µ = 0.6GeV, and we use the leading-
order evolution equations to evolve it up. Because of mix-
ing we then need the D-term in the gluon GPD of the
proton, which we take as zero at µ = 0.6GeV. Following
[27] we take Λ(3) = 232MeV and Λ(4) = 200MeV for the
scale parameter in αS, switching from 3 to 4 flavors at
µ = 1.5GeV. For µ2 = 5GeV2 we get

D(z) ≈ − (1− z2)[2.9C3/2
1 (z) + 0.6C3/2

3 (z) + 0.2C3/2
5 (z)],

(41)
with Gegenbauer polynomials C3/2

n (z). Below, we will give
estimates with and without the D-term contribution ac-
cording to (40) and (41) in order to explore the model
dependence of our results.

In Fig. 7 we show the real and imaginary parts of the
convolution integral H1(−η, η, t), calculated from HDD.
Decomposing H1 = Hu

1 + Hd
1 + Hs

1 we plot the contribu-
tions from u, d, and s quarks separately. We further di-
vide by appropriate factors (1/2)Fu

1 (t), F
d
1 (t), and FD(t),

so that with the factorizing ansatz (34), (36) the result-
ing curves are independent of t 4. Analogous plots for
H̃1 = H̃u

1 + H̃d
1 are given in Fig. 8. We observe that for

τ ∼ 0.1 the s quark contribution to ReH1 is by no means
4 Formally, these curves correspond to Hu,d,s

1 at t = 0, which
for τ �= 0 is however outside the physical region according
to (13)
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Fig. 7. The contributions from u,
d, and s quarks to ReH1 (left) and
ImH1 (right). They are calculated
with Hq = Hq

DD and respectively
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Fig. 8. The contributions from u
and d quarks to ReH̃1 (left) and
ImH̃1 (right). They are calculated
with our model for H̃q and divided
by F̃ q(t)

small compared with u and d quarks, although it is tiny
in ImH1. This illustrates that at least the real part of the
Compton amplitude is not related in a straightforward
manner with the usual parton densities at x ∼ τ , given
that s(x) only becomes comparable to u(x) and d(x) for
x considerably below 0.1.

We do not show in Fig. 7 the contributions from HD.
They are only nonzero in the real part, summed over all
flavors they amount to a τ independent contribution of
−3.3FD(t) in H1. The remarkable fact that the D-term
contribution to the TCS amplitude is independent of η at
fixed t remains true to all orders in perturbation theory.
This is because due to general scaling properties the hard
scattering kernel can be written as the leading-order one in
(5) times a function of x/η. Comparing with Fig. 7 we see
that the D-term has an appreciable impact on the value
of ReH1 in our model. This is surprising if one compares
the functions HD and HDD themselves. We show this for
u quarks in Fig. 9, plotting only the charge conjugation
even combination H(x, η, t) − H(−x, η, t) that enters in
Compton scattering. One can understand the strong am-
plification of a moderate change in the ERBL region of
a GPD by observing that the real part in the convolu-
tions (5) is a principal value integral, which involves large
cancellations between the contributions from |x| < η and
|x| > η. Here is one of the reasons why measuring the real
part of the Compton amplitude, in DVCS or in TCS, can
provide unique information on generalized parton distri-
butions.

5.2 Cross section and angular distributions

To calculate the TCS amplitude we start with the hadronic
tensor (4), evaluated in the γp c.m. with the 3-axis in
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Fig. 9. The combination Hu
DD(x, η, t)−Hu

DD(−x, η, t) divided
by (1/2)Fu

1 (t), and the combination Hu
D(x, η, t)−Hu

D(−x, η, t)
divided by FD(t). Both curves are for η = 0.11, corresponding
to τ = 0.2

the direction of 'p. In order to preserve gauge invariance
beyond the leading-twist approximation, we use the pre-
scription of [21] and take

Tαβ = Tαγ
∣∣∣
Eq.(4)

(
gγ

β − q′γ
p′β

p′q′

)
, (42)

where the index β refers to the virtual photon. The sub-
traction term is formally suppressed by 1/Q′ and has ef-
fects of a few percent on the results we will present. The
γp cross section is then calculated from (42) and the ex-
act expression of the BH amplitude. We have compared
the interference term thus obtained with the approximate
expressions in Sect. 4.4. For Q′2 = 5GeV2, |t| = 0.2GeV2,
and s1/2 = 5GeV we find that the approximation (30)
with (33) deviates by at most 10% from what we obtain
with (42). As one expects, the situation gets worse for
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Fig. 10. The BH (solid line) and TCS (dotted line) cross sec-
tions for s1/2 = 5GeV and Q′2 = 5GeV2, integrated over
ϕ ∈ [0, 2π] and θ ∈ [π/4, 3π/4]. The TCS contribution is cal-
culated using Hq

DD and H̃q
DD from (34), (36)

larger values of |t| but improves quickly for larger values
of Q′2.

We are now ready to estimate the different contribu-
tions to the cross section. In Fig. 10 we show the result
for the TCS and the BH contributions to the ϕ-integrated
cross section at s1/2 = 5GeV and Q′2 = 5GeV2. Here
and in the following we integrate over θ from π/4 to 3π/4,
avoiding the region where the BH contribution becomes
hopelessly large. As we anticipated in Sect. 4.3 the BH pro-
cess nevertheless dominates the cross section, with TCS
contributing less than 5% in this kinematics. In Fig. 10
there is no contribution from the interference between
TCS and BH since the angular integration selects charge
conjugation even quantities. Let us therefore investigate
the manifestation of the interference term in the angular
distribution. We restrict ourselves to unpolarized photons
here.

In Fig. 11a we show the ϕ dependence of the cross sec-
tion integrated over θ in the range [π/4, 3π/4]. With the
integration limits symmetric about θ = π/2 the interfer-
ence term is odd under ϕ → π + ϕ due to charge conju-
gation, whereas the TCS and BH cross sections are even.
We separately show the contribution from BH and the sum
of BH and the interference term. The TCS cross section
is flat in ϕ to leading-twist accuracy, cf. (25), and only
tiny oscillations are induced by the prescription (42). In
the kinematics of the figure we get dσTCS/(dQ′2dtdϕ) ≈
0.2 pbGeV−4 when applying the same cut in θ and taking
the double distribution ansatz (34) for the GPDs.

Figure 11b shows the corresponding contributions to
the weighted cross section

dS
dQ′2dtdϕ

=
∫ 3π/4

π/4
dθ
L(θ, ϕ)
L0(θ)

dσ
dQ′2dtdθdϕ

. (43)

We see that the signal is more easily visible after this
weighting. The interference term behaves now like cosϕ
up to 1/Q′ suppressed terms that are numerically small.
The weighted BH cross section is almost flat with our cut
on θ, in line with our discussion at the end of Sect. 4.2. The
TCS contribution is again small here and will not much
change the picture. As discussed in Sect. 4.4, information
on the interference can in principle also be obtained from

the ϕ-integrated cross section. With the same kinemat-
ics as in Fig. 11 we find that the interference generates
an asymmetry in dσ/(dQ′2dtdθ) about θ = π/2 which is
barely at the 1% level.

To extract information on the Compton amplitude in
a compact way we introduce

R =
2
∫ 2π

0
dϕ cosϕ

dS
dQ′2dtdϕ∫ 2π

0
dϕ

dS
dQ′2dtdϕ

, (44)

which projects out the ratio a1/a0 of Fourier coefficients
in the weighted cross section dS/(dQ′2dtdϕ) =

∑∞
n=0

an cos(nϕ). Up to 1/Q′ suppressed contaminations the nu-
merator in R is proportional to the combination M̃−− of
Compton amplitudes, whereas the denominator is in our
kinematics dominated by the BH part of the cross section.
To explore the dependence of our estimates on the GPDs
we compare in Fig. 12 the ratio R for the cases where Hq

is taken from the double distribution ansatz (34), (36)
alone, or as the sum of this and the D-term in (40). Due
to a numerical accident the contributions from HDD, HD
and H̃DD in (33) nearly cancel each other and produce a
quite small interference term. This result should be inter-
preted with care since, as we discussed, Hq

DD is obtained
by extrapolating information from the usual parton distri-
butions into the ERBL region, and our Hq

D is the result of
a particular dynamical model. With a generic D-term of
the same size one could also obtain a rather sizeable inter-
ference signal, as we see in Fig. 12 when combining Hq

DD
and Hq

D with the “wrong” sign for Hq
D. In accordance with

our discussion at the end of Sect. 5.1 we conclude from this
exercise that the unpolarized interference term is highly
sensitive to the behavior of the GPDs in the ERBL region,
where our modeling is least reliable.

Figure 13 shows R for the same three models of Hq,
now as a function of τ at fixed Q′2 and t, and thus for
varying collision energy s1/2. Notice that at τ = 0.36 the
minimum value of |t| is equal to 0.2GeV2 so that one is
in collinear kinematics, where the angle ϕ is undefined.
As the numerator of R projects out the coefficient of a
cosϕ-dependent term in the cross section, it must strictly
vanish at that point. We remark that τ = 0.36 is still far
from its maximum value τmax = (1 + 2M/Q′)−1 = 0.54,
where the production threshold s1/2 = Q′ +M is reached
for Q′2 = 5GeV2. It is interesting to note that in TCS
the total collision energy at threshold is large, whereas in
DVCS or in inclusive deep inelastic scattering one scans
the resonance mass region down to the proton mass as xB
approaches its upper limit 1. While the straightforward
application of leading-twist dominance seems dangerous
in TCS at τ close to τmax, this might be an interesting
regime to study parton–hadron duality.

We finally wish to remark on TCS with a neutron tar-
get. In that case the BH process is suppressed due to the
zero charge of the neutron. We can explicitly see this in the
approximation (22), where the term in brackets involving
the (typically large) factor 1/τ2 goes with a combination
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and H̃q
DD. b The same as in a but

with the cross section weighted by
L/L0 before integrating over θ
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Fig. 12. The ratio R defined in (44) for s1/2 = 5GeV and Q′2

= 5GeV2. The curves correspond to the three models Hq =
Hq

DD (solid), Hq = Hq
DD +Hq

D (dotted), and Hq = Hq
DD −Hq

D
(dash-dotted)

of form factors that vanishes for t → 0. We find that the
TCS contribution to the cross section is indeed more im-
portant than for a proton target. With the kinematics in
Fig. 10 and the double distribution ansatz of (34) and (36)
it does however not amount to much more than 10% of
the BH contribution. The unpolarized interference term
on the other hand generates a tiny ratio R of barely 1%.
This can be understood from (33), where the potentially
large contribution from H1 is suppressed by the Dirac form
factor. H̃1, whose prefactor survives in the t→ 0 limit, is
penalized with a small factor η and further suppressed by
a near cancellation of the charge-weighted polarized u and
d quark densities in the neutron.

6 Summary and discussion

Next to DVCS, timelike Compton scattering may be the
theoretically cleanest process where generalized parton
distributions can be accessed. To leading twist and at Born
level, both processes involve in fact the very same integrals
over combinations of GPDs. At the level of αs corrections
and the departure from the largeQ′2 limit, they will be dif-
ferent. A simultaneous description of both reactions may
thus be a benchmark test of our understanding of the dy-
namics, both of the approximations employed in describ-
ing the parton-level process and of the nonperturbative
input.
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Fig. 13. The ratio R for the same models as in Fig. 12, but as
a function of τ at Q′2 = 5GeV2 and |t| = 0.2GeV2

TCS can be measured in exclusive lepton pair produc-
tion, either with quasi-real bremsstrahlung photons from
incident leptons or with a dedicated real photon beam.
Unlike DVCS, timelike Compton scattering is always ac-
companied by a Bethe–Heitler contribution much bigger
than itself. It offers however relatively simple access to the
real part of the Compton amplitude via the angular distri-
bution of the produced lepton pair. Appropriate angular
observables allow a rather clean investigation of the de-
tailed structure of the Compton process. With circularly
polarized incident photons one has access to the imaginary
parts of the Compton amplitudes and thus to the timelike
analog of what has been observed in the DVCS channel
using the lepton spin asymmetry [33].

Using the quark handbag diagrams of Fig. 2 and sim-
ple models of the relevant GPDs we have estimated the
cross section and angular asymmetries for lepton pair pro-
duction in a kinematical setting typical of the HERMES
regime. We find that the angular asymmetry carrying in-
formation on the Compton process ranges from about 5%
to 15% within the variations of the GPD models we have
explored. This rather wide range of predictions is gen-
erated by varying the GPDs in the ERBL region. It il-
lustrates that the real part of the Compton amplitude is
highly sensitive to the form of these distributions in the
region where their physics is least known and most differ-
ent from that of ordinary parton densities. Similar results
have been obtained in recent studies of the lepton charge
asymmetry in DVCS [32,34]. Given the uncertainties in
modeling detailed features of GPDs, the numbers we esti-
mate here should hence be taken with due care. We also



686 E.R. Berger et al.: Timelike Compton scattering: exclusive photoproduction of lepton pairs

remark that substantial αs corrections to the DVCS am-
plitude have been reported for our kinematics [35,36]. In
any case, whether the real part of TCS is observably large
or not will already provide important information about
the dynamics of the Compton process.

A look at (33) and the plots in Figs. 7 and 8 reveals
that in the region of τ we considered, the imaginary part
of the Compton amplitude is significantly larger than its
real part. From (30) and (32) it then follows that in this
kinematics the photon helicity asymmetry will be larger
with our model GPDs than the unpolarized angular asym-
metry we have investigated here.

We have not attempted to give estimates for the regime
of very small τ , where DVCS has been observed at the
HERA collider [37]. In that case, the contribution from
gluon GPDs at order αs is expected to be too impor-
tant to be neglected. As to the Born level quark contri-
bution below τ = 0.1, we find in our model that as τ
decreases both ReH1 and −ImH1 rise, as well as their
ratio −ReH1/ImH1.

Contrary to what one might expect, our estimates for
a neutron target do not give a much enhanced TCS sig-
nal in HERMES kinematics, neither in the cross section
nor in the angular distribution. This is due to an unfor-
tunate combination of mostly kinematic prefactors in the
formulae for an unpolarized target. On the other hand,
we do not expect such a suppression for coherent scatter-
ing on a deuteron target, whose GPDs have recently been
discussed [38].
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Appendix

In this appendix we discuss to which extent the evaluation
of generalized parton distributions in the double distribu-
tion model (37) to (39) requires knowledge of the usual
parton distributions down to x = 0. This is of practical
importance since parton distributions are of course only
constrained by data down to some finite value of x, below
which one must rely on extrapolations.

As is well known, the terms in (37) going with δ(x−x′−
ηy′) and δ(x + x′ − ηy′) individually have non-integrable
singularities at x′ = 0, but their sum is finite. To make this
explicit we consider the charge conjugation even combina-
tion h+(x, η) = h(x, η) − h(−x, η), which can be written
as

h+
x<η
=
∫ (η−x)

(1+η)

0
dx′ q+(x

′)
η

[
π

(
x′,
x− x′

η

)
− π

(
x′,
x+ x′

η

)]

+
∫ (η+x)

(1+η)

η−x
1+η

dx′ q+(x
′)

η
π

(
x′,
x− x′

η

)
,

h+
x>η
=
∫ (η+x)

(1+η)

x−η
1−η

dx′ q+(x
′)

η
π

(
x′,
x− x′

η

)
, (45)

with q+(x) = q(x) + q̄(x). Note that the corresponding
singularities at x′ = 0 are integrable for the quark valence
combination q(x′)−q̄(x′), which is not needed in the evalu-
ation of the Compton amplitude. The singularities for the
polarized quark densities are integrable as well, and we
can restrict our discussion to the most problematic case
(45). Writing

π

(
x′,
x− x′

η

)
− π

(
x′,
x+ x′

η

)
=

3
(1 − x′)3

x

η

x′

η
, (46)

we see that the integrand in the first line of (45) only
involves x′q+(x′), whose singularity at x′ = 0 is integrable.

The integrals in the second and third lines of (45) in-
volve q+(x′) down to values of order x′ ∼ η−x and hence
are potentially problematic for x→ η. To investigate them
more closely, we decompose

π

(
x′,
x− x′

η

)
=

3
4(1 − x′3)

(47)

×
[
x′(1 − η)
η

2η − ηx′ − x′

η
+
η − x
η

η + x− 2x′

η

]
.

The first of the two terms in brackets leads again to the
combination x′q+(x′) and causes no trouble when the
lower integration limit goes to zero as x → η. The sec-
ond term does not provide a factor x′ but a factor (η−x)
instead. Let us for the sake of argument assume that for
small x the quark density behaves like

xq+(x) ∼ x−λ (48)

with some λ < 1. For x → η the integral involving the
second term in (47) then goes like

|η − x|
∫

|η−x|
dx′q+(x′)

x→η∼ 1
λ

|η − x|1−λ (49)

and hence vanishes in the limit where its evaluation re-
quires knowledge of q+(x′) down to x′ = 0.

To get a rough feeling for the integral in the first line of
(45) and for the ones involving the first term in (47) let us
consider

∫
dx′x′q+(x′) with lower limit 0 and upper limit

of order η. If we assume the power behavior (48), then
the contribution from the interval x′ ∈ [0, ε] to the total
integral is of order (ε/η)1−λ. For typical values of λ this is
about 10% if ε is one to two orders of magnitude smaller
than η. Of course q+(x) is unknown below some value of x,
but unless its small-x behavior is much steeper than (48),
the above estimate should not be altered significantly.

Our discussion can be adapted to other profile func-
tions π(x′, y′) than the one in (39). Provided that π(x′, y′)
is differentiable in y′ one can replace (46) with

π

(
x′,
x− x′

η

)
− π

(
x′,
x+ x′

η

)

= −2x′

η
∂2π

(
x′,
x

η

)
+O(x′2). (50)
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Fig. 14. hu
+(x, η) for η = 0.11, corresponding to τ = 0.2, eval-

uated with a lower cutoff ε = 10−n on x′ in the integrals (45)

where ∂2π = ∂π(x′, y′)/∂y′. Decomposing

x− x′

η
= (1 − x′) − x

′(1 − η)
η

− η − x
η

(51)

we further see that (47) can be replaced with

π

(
x′,
x− x′

η

)
(52)

= − x
′(1 − η)
η

∂2π(x′, 1 − x′) +O(x′2)

− η − x
η
∂2π

(
x′, 1 − x′ − x

′(1 − η)
η

)
+O((η − x)2),

provided again that π(x′, y′) is differentiable in y′ and that
in addition π(x′, 1 − x′) = 0.

Notice that while the GPD so obtained is finite at x =
η, its first derivative in x is in general not. For profile
functions π(x′, y′) vanishing at x′ + y′ = 1 we readily
obtain a representation of ∂h+/∂x analogous to (45) with
π replaced by η−1∂2π. Provided that ∂2π is differentiable
in y′ our previous line of arguments goes through, except
for the equivalents of (47) and (52). There one will have
an extra term η−1∂2π(x′, 1 − x′) on the right-hand side,
which for our profile function (39) is nonzero. This means
that the integrals corresponding to the second and third
lines of (45) will have an integrand going like q+(x′) at
x′ → 0, without a factor (η − x) in front. ∂h+/∂x thus
behaves for x → η like

∫
dx′q+(x′) with lower limit of

order |η− x|, and with the small-x behavior (48) diverges
like ∣∣∣∣ ∂∂xh+(x, η)

∣∣∣∣ x→η∼ 1
λ

|η − x|−λ. (53)

Now, the principal value integral over x which gives ReH1
according to (5) effectively involves ∂h+/∂x at x around
η, but the singularity (53) is integrable and gives a finite
result for the amplitude. One can also insert the expression
(37) into (5) and explicitly carry out the integrals over x
and y′ for the profile function (39). The result for ReH1

has the form
∫ 1
0 dx′x′q+(x′)ρ(x′, η), where ρ(x′, η) has a

log(x′) singularity at x′ = 0. Up to this logarithm the
small-x′ behavior of the quark density thus enters ReH1

in the same way as according to our above discussion it
enters h+(η, η) and hence ImH1.

Let us explore how our arguments work at the quan-
titative level, restricting ourselves to u quarks for sim-
plicity. In Fig. 14 we plot hu

+(x, η) at η = 0.11 as it is
obtained from (45) when setting u+(x′) = 0 for x′ below
some cutoff ε. We find good convergence as ε approaches
zero, the curves for ε = 10−4 and 10−5 being hardly distin-
guishable. All predictions in this paper have been obtained
with ε = 10−5. Figure 15 shows ReHu

1 and ImHu
1 as func-

tions of τ , calculated with the same cutoffs as in Fig. 14
when constructing the GPDs. Clearly the convergence is
much slower for the real part, which can be traced back
to large cancellations in the relevant integrals5. This illus-
trates again the sensitivity of ReH1 to small changes of
the GPDs we have already encountered in Sect. 5.1.

In Fig. 16 we show hu
+(x, η) obtained from different

parameterizations of the usual quark densities at µ2 =
5GeV2, calculated with a lower cutoff ε = 10−5 on x′. We
compare the GRV 94 LO parameterization used in our pre-
dictions with three NLO distributions in the MS scheme:
GRV 94 NLO [27], GRV 98 NLO [39], and MRSA′ [40]. All
input densities are clearly distinct for x below 0.01, but
above x ≈ 0.05 the three NLO parameterizations hardly
differ among themselves. The corresponding curves for
hu

+(x, η) at η = 0.11 are almost identical for the NLO pa-
rameterizations, in accordance with our arguments about
the relevance of small x in the input densities. In Fig. 17
we make the same comparison for ReHu

1 and ImHu
1 . In

line with our previous findings, differences between the
parameterizations are more prominent for ReHu

1 , but they
remain quite small. Our results are compatible with those
of [36,41], where very similar GPDs and Compton am-
plitudes have been obtained from the GRV 98 NLO and
MRSA′ distributions with the same ansatz (37), (39) we
have used here.

In summary, we have discussed in detail the calcula-
tion of GPDs with the double distribution ansatz (37).
In the DGLAP region the calculation of h+(x, η) involves
the usual quark densities down to x′ = (x − η)/(1 − η),
whereas in the ERBL region the ansatz literally does re-
quire knowledge of q+(x′) down to x′ = 0. The corre-
sponding integrals involve however only the combination
x′q+(x′), or they vanish like (49). The contribution from
q+(x′) at values of x′ several orders of magnitude below
η should thus be moderate, unless one has an extremely
steep rise of the quark density at small x′. We confirm this

5 For the numerical evaluation of (5) we add and subtract
H(x, η, t) at the points |x| = η. To avoid cancellations as much
as possible we only do this for |x| < 2η when η < 1/2, writing

PV
∫ 1

0
dx

[
1

x− η − 1
x+ η

]
h+(x, η)

=
∫ 2η

0
dx

[
1

x− η − 1
x+ η

]
[h+(x, η) − h+(η, η)]

+ h+(η, η) ln
1
3
+

∫ 1

2η

dx
[

1
x− η − 1

x+ η

]
h+(x, η),

where PV denotes the principal value prescription
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5GeV2. Right: The corresponding
generalized distributions hu

+(x, η)
at η = 0.11, obtained with our dou-
ble distribution ansatz

0

1

2

3

4

5

6

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

R
ea

l p
ar

t

τ

GRV94 LO
GRV94 NLO
GRV98 NLO

MRSA’

-35

-30

-25

-20

-15

-10

-5

0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Im
ag

in
ar

y 
pa

rt

τ

GRV94 LO
GRV94 NLO
GRV98 NLO

MRSA’
Fig. 17. ReHu

1 (left) and ImHu
1

(right) divided by 1
2F

u
1 (t), calcu-

lated from the same parameteriza-
tions of u(x) + ū(x) as in Fig. 16

numerically by evaluating the integrals (45) with different
lower cutoffs on x′. For η of order 0.1 we find rather similar
GPDs when implementing the ansatz (37) with different
parameterizations of the quark densities, given that they
show only mild discrepancies down to x′ of order 10−2.

The derivative of h+(x, η) at x → η becomes infinite
with the profile function we used in our double distribu-
tion ansatz, but the corresponding singularity in x is in-
tegrable. The small-x behavior of q+(x) is found to affect
the real and imaginary parts of the Born level Compton
amplitude in a similar way, with the real part showing
somewhat higher sensitivity. Again we confirmed this in
our numerical study.

We finally emphasize that our discussion of how rele-
vant the usual quark densities at very small x are in the
construction of GPDs refers to a particular model prescrip-
tion. It is a different question to what extent one physically
expects the behavior of q+(x) at x→ 0 to be reflected in
GPDs at finite η. In the representation of GPDs as the
overlap of wave functions for the incoming and outgoing
hadron [42] one finds indeed that for x → η a quark mo-
mentum in one of the two wave functions goes to zero.

This is similar to, but not the same as the situation for a
usual quark density at x → 0, where both wave functions
involve a quark with zero momentum.
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