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Abstract. Nuclear structure functions and cross-sections for heavy flavour production in lepton–nucleus
collisions are investigated in the low x region accessible now or in the near future. The scattering on a heavy
nucleus is described by the sum of fan diagrams of BFKL pomerons, which is exact in the high-colour limit.
The initial condition for the evolution at x = 0.01 is taken from a saturation model, which reproduces
the experimental data on the proton. The A dependence of the structure functions is well described by
a power factor Aα, with α reaching values as low as 1/2 at extremely low x. The total cross-sections for
heavy flavour production reach values of the order of mb, and the corresponding transverse momentum
distributions are sizable up to transverse momenta larger than the initial large scale (Q2 + 4m2

f )
1/2.

1 Introduction

In the framework of the colour dipole model [1,2] and in
the high-colour limit Nc → ∞, the scattering on a heavy
nucleus is exactly described by the sum of fan diagrams
constructed of BFKL pomerons, each of them splitting
into two. Numerical solutions of the resulting equation
for the colour dipole cross-section on the nucleus [3–9]
were first presented in [8], and then in [10–14]. The gluon
density introduced in [8] revealed a “supersaturation” be-
haviour, tending to zero at any fixed momentum k as the
rapidity Y → ∞. As a function of ln k it proved to have a
form of a soliton wave moving to the right with a constant
velocity as Y increases. This latter phenomenon is related
to its scaling property: at high enough Y the gluon den-
sity at fixed impact parameter b proved to be a function of
the ratio k/Qs(Y, b), where Qs(Y, b), the position in mo-
mentum space of the maximum of the gluon density, can
be interpreted as a “saturation momentum” growing as
a power of energy. Subsequent numerical calculations [10,
14] confirmed this scaling behaviour, although the gluon
density itself is defined differently by different authors.

Obviously partonic densities in the nucleus are not ob-
servable themselves but are only certain theoretical tools
to calculate the observable quantities. Therefore different
definitions of the gluonic density are well admissible, pro-
vided they lead to the same observables. As such the struc-
ture function of the nucleus is the most directly calculable
one. It was first calculated in [8] from the found solution
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of the BFKL fan diagram equation for a very wide range
of energies (up to rapidities ∼ 50), for the nucleus in the
form of a spherical well and for a rather specific colour
distribution inside the nucleon, not adapted to the exper-
imental data. The found structure function proved to be
rising as Y with rapidity and roughly linearly with Q2 in
agreement with the theoretical expectations [7,11]. Later
calculations with a more realistic nuclear density [15] re-
vealed that the nuclear structure function in fact grows
as Y 2, the extra growth provided by the contribution of
peripheral collisions not damped by the non-linear term
in the evolution equation. Still the attention in both [8]
and [15] was centered at the asymptotic behaviour at high
energies, insensitive to the choice of the initial conditions
and governed only by the internal dynamics of the evolu-
tion equation.

However, from the experimental point of view it is de-
sirable to know the structure function at values of x acces-
sible now or in the near future (see e.g. [16]), say down to
10−7 corresponding to Y ≤ 16÷17. At such rapidities the
influence of the initial condition is still rather noticeable so
that its choice becomes a matter of importance. Accord-
ingly we performed a new run of calculations employing
more realistic colour distributions in the proton, following
from the saturation approach of [17] consistent with DIS
data for the proton below x = 0.01 1. In [10] the par-

1 Other approaches [18] which explicitly contain saturation
in the form of multiple scattering and also describe the exper-
imental data for the proton, could be used, see [19] for a study
of saturation in the low Q2 region within this multiple scatter-
ing model. We will restrict ourselves to the use of [17] due to
technical reasons, see Sect. 3
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ton distributions following from this initial condition were
studied. In this paper we report on the nuclear structure
function following from the BFKL fan diagram evolution
equation with physically supported initial conditions. The
solution of this equation also allows us to find the gluon
density in the nucleus. We use it to study another directly
measurable quantity: the inclusive probability for heavy
flavour production off nuclei (by photon–gluon fusion) in
photon induced reactions.

2 The nuclear structure function
from the evolution equation

In this section we collect the formulae necessary to calcu-
late the structure function from the solution of the BFKL
fan diagram evolution equation. The nuclear structure
function F2 can be standardly defined via the cross-sec-
tions σT,L for the collision of the transversal (T) or longi-
tudinal (L) virtual photon of momentum q, q2 = −Q2, on
the nucleus A of momentum Ap:

F2(x,Q2) =
Q2

πe2 (σT + σL), (1)

where x = exp(−Y ) = Q2/(2q ·p). Both cross-sections can
be conveniently presented via the cross-section σdA(Y, r)
for the scattering of a colour dipole of the transverse radius
r on the nucleus:

σT,L(Y ) =
∫

d2rρT,L(r)σdA(Y, r), (2)

where ρT,L is a well-known distribution of colour dipoles
created by splitting of the incident photon into qq̄ pairs:

ρT(r) =
e2Nc

8π3

∑
f

Z2
f (3)

×
∫ 1

0
dα

{
[α2 + (1 − α)2]ε2K2

1(εr) +m2
fK

2
0(εr)

}
and

ρL(r) =
e2Nc

2π3 Q2
∑

f

Z2
f

∫ 1

0
dαα2(1 − α)2K2

0(εr). (4)

Here summation goes over flavours, ε2 = Q2α(1 − α) +
m2

f , and mf and Zf are respectively the mass and electric
charge in units of e, of the quark of flavour f .

The dipole–nucleus cross-section in its turn can be pre-
sented as an integral over the impact parameter b:

σdA(Y, r) = 2
∫

d2bΦ(Y, r, b), (5)

where 2Φ has a meaning of the cross-section at fixed im-
pact parameter. The evolution equation in Y can be most
conveniently written for the function

φ(Y, r, b) =
1

2πr2Φ(Y, r, b) (6)

in momentum space. It reads [8](
∂

∂y
+HBFKL

)
φ(y, q, b) = −φ2(y, q, b), (7)

where y = αsNcY/π and HBFKL is the forward BFKL
Hamiltonian.

Putting (6) into (5) and (2), and passing to the mo-
mentum space, we can express the cross-sections σT,L di-
rectly via the function φ or its second derivative in the
logarithm of the momentum:

σT,L =
1
π

∫
d2bd2qφ(y, q, b)wT,L(q)

=
1
π

∫
d2b

d2q

q2 h(y, q, b)ρ̃T,L(q), (8)

where

ρ̃T,L(q) =
∫

d2rρT,L(r)
(
1 − eiqr) ,

wT,L(q) =
∫

d2rr2ρT,L(r)eiqr (9)

and

h(y, q, b) = q2∇2
qφ(y, q, b) =

∂2φ(y, q, b)
(∂ ln q)2

. (10)

Up to a trivial factor, the function h gives the gluon den-
sity in the nucleus [8]:

∂xG(x, k2, b)
∂2b∂k2 =

2Nc

πg2 k
2∇2

kφ

(
ln

1
x
, k, b

)
. (11)

This definition is not unique (see the discussion in [20])
but natural in the sense that the structure function can be
directly expressed via the gluon density thus defined. We
shall see later that this is also true for other observables.

Note that for numerical calculations the first form in
(8) is much more convenient, since it requires neither nu-
merical differentiation nor taking into account the singu-
larity at q = 0. Functions wT,L can be easily found ana-
lytically:

wT(q) =
e2Nc

8π2 ∇2
q

∑
f

Z2
f

∫ 1

0
dα

[ (
α2 + (1 − α)2

)

×(q2/2 + ε2) − m2
f

]
J(q, ε), (12)

where

J(q, ε) =
2

q
√

q2 + 4ε2
ln

√
q2 + 4ε2 + q√
q2 + 4ε2 − q

. (13)

The longitudinal density wL is given by the same expres-
sion without the term with m2

f and with the substitutions

α2 + (1 − α)2 → α(1 − α), q2/2 + ε2 → −4ε2.

Formulae (8)–(13) allow one to find the nuclear struc-
ture function provided function φ is known from the evo-
lution equation (7). To solve the latter one should fix the
initial conditions for the evolution, that is, the φ(y, q, b)
at the starting point of the evolution which we denote as
y = 0.
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3 Initial conditions for the evolution

The initial function φ0(q, b) = φ(y = 0, q, b) can be ex-
pressed via the dipole–nucleus cross-section at y = 0 and
fixed b:

φ0(q, b) =
∫

d2r

2πr2 e
iqrΦ0(r, b) =

∫ ∞

0

dr
r
J0(qr)Φ0(r, b),

(14)
where Φ0(r, b) = Φ(Y = 0, r, b).

Staying in the BFKL picture, with a fixed small strong
coupling constant αs, at Y = 0 the scattering of a dipole
on the nucleus is described by the Glauber formula with
the dipole–nucleon cross-section σ(r) given by the two-
gluon exchange:

Φ0(r, b) = 1 − e−(1/2)AT (b)σ(r). (15)

Here
σ(r) = g4

∫
d2r′G(0, r, r′)ρp(r′), (16)

ρp(r) is the colour dipole density in the proton and
G(0, r, r′) is the BFKL Green function at Y = 0:

G(0, r, r′) =
rr′

8π
r<

r>

(
1 + ln

r>

r<

)
,

r>(<) = max(min){r, r′}. (17)

T (b) is the nuclear profile function normalized to 1. Obvi-
ously the density ρp is non-perturbative and not known.
If, as in [8], to simplify the calculations one chooses ρp to
be a Yukawa distribution

ρp(r) = a
e−µr

r
, (18)

then one obtains

1
2
AT (b)σ(r) = B

[
2C − 1 + 2 ln r̃ − Ei(−r̃)

× (
2 + r̃2) + e−r̃(1 − r̃)

]
,

r̃ = µr, (19)

where C is the Euler constant and the dimensionless quan-
tity B combines the information about the nucleus den-
sity, the value of αs and the normalization constant a in
(18). At r → 0 and ∞, (19) behaves as r2 ln(1/r) and ln r,
respectively.

However, this sort of initial conditions is only true in
the rigorous BFKL approach with a fixed and very small
coupling. In fact, if one calculates the structure function
of the proton using (19), one finds a very strong Q2 de-
pendence, incompatible with the experimental data. To
be nearer the realistic situation we therefore choose the
dipole–nucleon cross-section σ(r) in (15) to be in agree-
ment with the DIS data at moderately low x, at which
one may expect the start of the evolution according to
(7). We take x = 0.01 as a starting point for the evolu-
tion and choose σ(r) as parameterized by Golec-Biernat

and Wüsthoff [17] to reproduce all DIS data on the proton
below x = 0.01:

σ(r) = σ0

(
1 − e−r̂2

)
, r̂ = βr, (20)

with σ0 = 29.12mb and β = 0.234GeV for 4 quark
flavours (with masses mu = md = ms = 0.14GeV and
mc = 1.5GeV, which we will use in all our computations).
Nevertheless, these values have been obtained from a fit
to experimental data with x ≤ 0.01 and we are interested
only in σ(r) at x = 0.01, where the quoted values produce
a cross-section which overestimates the experimental data
for F2 of the proton, while the Q2 evolution at this x is
well described. Thus, to better agree with the experimen-
tal data at x = 0.01 we diminished σ0 to a lower value
20.80mb, keeping the value of β; we have verified that
with this choice, (15) reasonably reproduces F2 in nuclei
at this value of x, see e.g. [21] for another use of (15) in
this context. Apart from being in agreement with the ex-
perimental data, the cross-section (20) has the advantage
of allowing one to relatively simply Bessel transform the
Glauberized cross-section (15) to obtain the initial func-
tion φ in the momentum space according to (14) (see the
appendix).

4 Heavy flavour production off the nucleus

The total cross-section for the photoproduction of heavy
flavour f off the nucleus is given by σT at Q2 = 0 with wT
corresponding to the contribution of this flavour in the
sum (12). The inclusive cross-section for the production
of the heavy quark with a given transverse momentum l
can be obtained from the expression for the heavy quark
density (see [10,22]):

∂[xqf (x, l, b)]
∂2l∂2b

=
αsQ

2

(2π)3

∫ 1

0
dαd2b1d2b2e−il(b1−b2)

×
[ (

α2 + (1 − α)2
)
ε2

b1b2

b1b2
K1(εb1)K1(εb2)

+
[
4Q2α2(1 − α)2 +m2

f

]
K0(εb1)K0(εb2)

]

×
∫

d2k

(2π)2
1
k2

∂[xG(x, k, b)]
∂2b∂k2

×
[
1 + e−ik(b1−b2) − e−ikb1 − eikb2

]
. (21)

Note that, using (6) and (11) and the fact that Φ(Y, 0, b) =
0, the last line of (21) can be rewritten as

Nc

π2g2 [Φ(Y,b1, b) + Φ(Y,b2, b) − Φ(Y,b1 − b2, b)];

if we neglect the evolution in Y and take into account only
the multiple Glauber rescattering in the nucleus implied
by (15), we recover the result for the quark density in [22]
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(see (26) in this reference). The inclusive cross-section is
expressed via the density (21) as

dσf

d2l
=

4π2αem

Q2 Z2
f

∫
d2b

∂[xqf (x, l, b)]
∂2l∂2b

. (22)

Evidently it is finite at Q2 = 0 with only the transverse
part surviving in this limit.

The leptoproduction cross-sections can be found once
the cross-sections for the virtual photoproduction are
known, which correspond to (21) and (22) at non-zero
Q2:

dσf (e+A → e′ +Q+X)
d2ldQ2dz

=
αem

πzQ2

(
1 − z +

1
2
z2

)
dσf (γ∗ +A → Q+X)

d2l
(23)

(see [23] for a discussion on the validity of the equivalent
photon approximation in this kind of computations). Here
z is the fraction of the energy of the incident electron
carried by the virtual photon: z = q · p/(pl · p), where Ap
is the momentum of the nucleus and pl that of the lepton.

It is remarkable that both total and inclusive cross-
sections for the heavy flavour production are directly ex-
pressed via the gluon density (11) in our definition. This
perfectly fits the assumed photon–gluon fusion production
mechanism and thus supports our definition of the gluon
density from a pragmatic point of view.

Performing part of the integrations and using (10) and
(11), we express the quark density by

∂[xqf (x, l, b)]
∂2l∂2b

=
Q2Nc

8π4

∫ ∞

0

dk
k
h(y, k, b)

×
∫ 1

0
dα

{ [
α2 + (1 − α)2

]
IT(ε, k)

+
[
4Q2α2(1 − α)2 +m2

f

]
IL(ε, k)

}
, (24)

where the function h is defined by (10),

IT =
(
2ε2 + k2)χξ − ε2

(
ε2 + l2 + k2)χ3 − ε2ξ2 (25)

and
IL =

(
ε2 + l2 + k2)χ3 + ξ2 − 2χξ, (26)

with

ξ =
1

ε2 + l2
, χ =

1√
(ε2 + (l + k)2) (ε2 + (l − k)2)

.

(27)
These formulae allow one to calculate the quark den-

sity both at Q2 = 0 and at finite Q2 once the gluon density
in the nucleus (i.e. the function h up to a numerical fac-
tor factor) is known from the solution of the evolution
equation (7).

5 Numerical results

Starting from the initial function φ0 at x = 0.01 described
in Sect. 3 we solved numerically the evolution equation (7)

Fig. 1. The structure function F2 of Pb as a function of x at
different Q2

for values of y up to ymax = y0+4.0, where y0 is the initial
value of y. We have taken αs = 0.2, so that y0 � 0.88 and
the minimal value of x is ∼ 10−11.

For the nuclear profile function we use the one cor-
responding to the nuclear density given by a 3-parameter
Fermi distribution, with the values of the parameters
taken from [24].

We have taken into account the contribution of charm
but neglected that of bottom, which is relatively small in
the total structure function. The structure function of Pb
in this interval of x and for different values of Q2 between
10 and 105 (GeV/c)2 is shown in Fig. 1. One observes that
it grows roughly as ln2(1/x) with x, and as Q2 with Q2.
Its A-dependence can be well represented by a power be-
haviour:

F2A(x,Q2) = Aα(x,Q2)F (x,Q2). (28)

The power α is found to be dependent both on x and Q2.
It is presented in Fig. 2. One observes that at relatively
large values of x α is close to unity and depends on Q2

very weakly. However, at smaller x the power goes down
up to values below 2/3 naively expected from the nuclear
screening. At a given x it rises with increasing Q2, how-
ever, the general trend of going down with 1/x persists at
all Q2.

Our results for the total cross-section for the real and
virtual photoproduction of charm and bottom (with mb =
4.75GeV) on various nuclei are presented in Figs. 3 and 4.
The cross-sections are shown as functions of the photon
c.m. energy W with respect to a nucleon in the nucleus.
We assumed that

x =
4m2

f +Q2

W 2 +Q2 . (29)
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Fig. 2. The power α of the A-dependence of the nuclear struc-
ture functions as a function of x at different Q2

Fig. 3. The total cross-sections for real and virtual photopro-
duction of charm on Pb (lower right plot), Ag (lower left plot),
Cu (upper right plot) and Ne (upper left plot)

The minimal value ofW corresponds to the maximal value
of x = 0.01 for our solution. Accordingly it rises with
Q2, which explains why the curves for different Q2 start
from different W . As expected, the cross-sections rise with
increasing W and 1/Q2. Their absolute values are rather
large, reaching ∼ 3 and ∼ 1mb for charm and bottom
respectively for Pb at W = 1000GeV and Q2 = 0. The
growth with W in the shown interval, W < 104 GeV, is

Fig. 4. The total cross-sections for real and virtual photo-
production of bottom on Pb (lower right plot), Ag (lower left
plot), Cu (upper right plot) and Ne (upper left plot)

Fig. 5. The inclusive cross-section dσ/d2l for the real pho-
toproduction of charmed quarks on Pb, as a function of the
photon–nucleon c.m. energy W

rather close to power-like. However, corresponding to the
behaviour of the structure function (Fig. 1), at higher W
this should change to ∼ ln2 W .

In Figs. 5 and 6 we show the transverse momentum dis-
tribution of the produced charmed quark off Pb at Q2 = 0
and 30 (GeV/c)2 respectively, and at W = 200, 1000 and
5000GeV (in mb/(GeV/c)2). Here we assumed that
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Fig. 6. The inclusive cross-section dσ/d2l for the virtual pho-
toproduction at Q2 = 30 (GeV/c)2 of charmed quarks on Pb,
as a function of the photon–nucleon c.m. energy W

x =
4m2

f +Q2 + 4l2

W 2 +Q2 . (30)

Our restriction x < 0.01, combined with discrete values
of y at which the gluon density was calculated, severely
limited the number of points at small W . This explains a
somewhat irregular form of the curves at W = 200GeV.
One observes that, in accordance with the BFKL kine-
matics, a relatively large part of the charmed quarks are
produced with momenta of the order or even larger than
the initial large scale (Q2 + 4m2

f )
1/2.

6 Discussion

We have calculated the nuclear structure functions at low
x which follow from the fan diagram evolution equation in
the perturbative QCD, with the initial conditions adjusted
to the existing experimental data on DIS on the proton
at x = 0.01. Knowing the gluon density in the nucleus we
also calculated the total and inclusive cross-sections for
charm and bottom production at low x. The results show
that the structure functions grow with increasing 1/x and
Q2 as ln2(1/x) and Q2 respectively. Parameterizing the
A dependence as Aα we found that at very small x, α is
going down to values below 1/2. The found transverse dis-
tributions of heavy quarks exhibit a relatively large contri-
bution from the momenta comparable or even larger than
the natural scale (4m2

f +Q2)1/2.
Our results have been obtained in the pure BFKL kine-

matical regime without any additional cuts. However, they
are based on the approximation of large Nc. Therefore one
should not expect that they remain valid at extremely

small x when the 1/N2
c corrections growing with 1/x may

change the found behaviour.
We can compare our results for the structure functions

with the ones recently obtained in [12]. Although the gen-
eral trend is similar, our structure functions grow with
1/x considerably faster. In particular, for Au at Q2 = 100
(GeV/c)2 and x = 10−7, and also taking αs = 0.25 as
in [12], we obtain F2A/A ∼ 140 as compared to ∼ 20 in
[12]. The difference may come partly from a different ini-
tial condition, which in [12] was taken in a simplified form
(with σ(r) roughly proportional to r2) and partly from
the fact that in [12] the asymptotical form for the photon
dipole distributions (3) and (4) at large Qr was used. The
latter approximation seems of dubious validity to us, since
in fact values Qr ∼ 1 give the bulk of the contribution
to the structure function. Besides, in [12] the integration
over the dipole dimension r was cut at both small and
large values, which obviously introduced a dependence on
the cut-off parameters.
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Appendix

The initial function with the
Golec-Biernat–Wüsthoff dipole cross-section

Using (14), (15) and (20) and passing to the integration
over x = βr we write the initial function φ0(q, b) as an
integral:

φ0(q, b) =
∫ ∞

0

dx
x
J0(qx/β)

(
1 − e−B

[
1−e−x2])

. (31)

The dependence on b is contained in the dimensionless
factor B:

B =
1
2
AT (b)σ0. (32)

In the following this dependence will be suppressed. We
will also denote z = q/β.

We present the exponential as a power series in its
argument:

1 − e−B
[
1−e−x2]

= −
∞∑

n=1

(−B)n

n!

(
1 − e−x2

)n

, (33)

so that

φ0(q) = −
∞∑

n=1

(−B)n

n!
In(z), (34)

where
In(z) =

∫ ∞

0

dx
x
J0(xz)

(
1 − e−x2

)n

. (35)
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The integral In can be presented as

In(z) =
n∑

k=0

Ck
n(−1)k

∫ ∞

0

dx
x
J0(xz)e−kx2

= −
n∑

k=0

Ck
n(−1)k

∫ ∞

0

dx
x
J0(xz)

(
1 − e−kx2

)
. (36)

The last integral in x can be found analytically. Indeed
one has (see [25])∫ ∞

0
dxxµe−αx2

Jν(zx) =
zνΓ ((µ+ ν + 1)/2)

2ν+1α(µ+ν+1)/2Γ (ν + 1)
(37)

× 1F1

(
µ+ ν + 1

2
; ν + 1;− z2

4α

)
.

Taking ν = 0 one has∫ ∞

0
dxxµe−αx2

J0(zx) =
Γ ((µ+ 1)/2)
2α(µ+1)/2

× 1F1

(
µ+ 1
2

; 1;− z2

4α

)
. (38)

We take the difference of two integrals (38) with dif-
ferent α’s,∫ ∞

0
dxxµ

(
e−γx2 − e−αx2

)
J0(zx)

=
1
2
Γ ((µ+ 1)/2)

[
γ−(µ+1)/2

1F1

(
µ+ 1
2

; 1;− z2

4γ

)

− α−(µ+1)/2
1F1

(
µ+ 1
2

; 1;− z2

4α

)]
. (39)

The result is obviously finite at µ = −1. To find it we put

µ+ 1 = 2∆ → 0. (40)

In this limit,

γ−∆ � 1 − ∆ ln γ, α−∆ � 1 − ∆ lnα, Γ (∆) � 1/∆
(41)

and

1F1(∆; 1; t) � 1 +∆
(
Ei(t) − C − ln(−t)

)
, t < 0. (42)

Putting this into (39) we find, in the limit ∆ → 0,∫ ∞

0

dx
x

(
e−γx2 − e−αx2

)
J0(zx)

=
1
2

[
Ei

(
− z2

4γ

)
− Ei

(
− z2

4α

)]
. (43)

Taking here γ → 0 we find the desired integral:∫ ∞

0

dx
x

(
1 − e−αx2

)
J0(zx) = −1

2
Ei

(
− z2

4α

)
. (44)

With the help of this formula one can find the integrals
In(z) as a finite sum of exponential integrals of different
arguments, (36). Putting this into (34) gives the initial
function φ0. For realistic values of the parameter B ≤ 3
the convergence of the series in n is very fast, so that φ0
can be calculated with very high accuracy at all q.
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13. M.A. Kimber, J. Kwieciński, A.D. Martin, Phys. Lett. B

508, 58 (2001)
14. M. Lublinsky, hep-ph/0106112
15. M.A. Braun, hep-ph/0101070
16. H. Abramowicz et al., TESLA Technical Design Report,

Part VI, Chapter 2, edited by R. Klanner, U. Katz, M.
Klein, A. Levy
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